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Abstract. Energy eigenvalues and matrix clements of various anh‘armonic-oscillators are
determined to a high accuracy by applying a method for determim.ng the elgenyalues and
eigenvectors of real symmetric para-p diagonal matrices (described in the preceding paper).
Our results for the 2- and 3-dimensional oscillators are new and complement similar accurate
results for the one dimensional oscillators available in the literature.
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1. Introduction

As an application of the method presented by us in the preceding paper, we consider
here the determination of the energy values and other physical observables of various
anharmonic oscillators (AHO), in one or higher dimensions. There is a vast literature
on AHOs and a critical analysis of these may be found in the work of Bhargava (1982).
As we are interested in computing the energies and other observables of the AHOs to a
very high accuracy, we deem it necessary to discuss only those methods in the literature
that sought to obtain highly accurate results and compare them with our method. The
method of Hill determinant by Biswas et al (1971) and its improvisation by Banerjee
et al (1978) and the moment method of Richardson and Blankenbecler (1979) are
therefore the ones upon which we shall now- comment.

The work of Biswas et al was the first to claim arbitrary accuracy for the energy
values. In their technique, the Schrodinger equation is converted into a matrix
eigenvalue equation by expanding the energy functions as y = exp (— x%/2)Y ¢, x™. The

resulting infinite determinant is evaluated by truncation (toa N x N matrix) and in the
limit of N—co one recovers the eigenvalues. Their matrix is specifically non-
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symmetrical and therefore the appearance of spurious complex or unphysical energy
eigenvalues at the intermediate stages of the calculation could not be ruled out. Also,
the dimension of the matrix needed to yield a particular energy level is very much larger
compared to the level number itself. In contrast, our method is based on symmetric
matrices and hence at no stage do complex values ever appear. The dimension of the
matrix needed is also much less than the level number. Typically, in our case a matrix
dimension of about 25 is enough to secure a 15-figure accuracy to all low-lying levels
and this dimension increases to about 140 for the 500th level for the same accuracy. The
method of Banerjee et al is a significant improvement over the method of Biswas et al
but our above remarks hold for this method as well. Both Biswas et al and Banerjee
et al deal extensively with the one-dimensional oscillators. In contrast, we focus on
higher dimensions. Regarding the method of Richardson and Blankenbecler, one
computes energies by starting with asymptotic expressions for the diagonal moments of
xM with large N and uses, the hypervirial theorem to compute x" for lower N’s down to
zero. The lowermost moment is related to the energy in a simple manner, This is
essentially a trial and error method. To get the various energy levels one has to make a
suitable guess for the {xV) for large N in any particular eigenstate. For instance, one
has to start with N = 10* to get a 9-figure accuracy of the lowest level for a quartic
oscillator. Further, the method was typically designed for a one-dimensional problem
and its extension to higher dimensions and the resulting efficiency are not fully
investigated. In contrast, our method is applicable to any AHO in higher dimensions as
well. '

We shall illustrate our method by computing the eigenvalues and matrix elements for
the Hamiltonian

H=p?/2m + tmw?r? 4 Jr* ~ (1)
in 1, 2 or 3 dimensions. Since the analysis is similar, only results for the case
H =p?/2m + $mw?r? + Ar®

will be given at the end.

2. Basis, matrix elements and the approximate energy level formula

We wish to determine the energy levels and matrix elements of H in (1). Let E,_, be the
energy eigenvalue of the kth level with an orbital angular momentum I. Since l is a good
quantum number, H has non-vanishing matrix elements only between states of the
same [. To choose a basis set of states for this kth level, we rewrite the Hamiltnonian as

H=p?/2m+ $mwir? + im(w? — wi)r? + ir*. (2)

The ‘renormalized’ frequency wy, is so chosen that the expectation value of H in the kth
state of the harmonic oscillator with frequency w, provides a good approximation to

Ey,. In an earlier paper, we have discussed how this must be done (Mathews et al
(1981a, b)). To recall, define

v=w/w, and p?=2i/m>*w? (3a)

.
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and choose v to be the root between 0 and 1 of the equation

Qk + d)p> = (1 —vz)l:l—f—(a— 1)(1 —v?) + by? +C+el(l+d“2)], (3b)

-5

where d is the dimension of the space (d =1, 2, 3). The constants a, b, ¢ and e are
independent of d and their values are a =0-895 647 259 b ="—0-125 020 ¢ = — 0-85
e = — 0-1. The expectation value of H in the kth state |k, ) of the harmonic oscillator
with w, determined from the above is given by

d
Hia = CKIIH|KEY = (1 + vz)("+:o:>

+1p2v3{6k(k +d)— 201 + d — 2) + d(d + 2) . )

The expectation value of H given in (4) then provides a good approximation to the kth
energy level of (1). In the basis of harmonic oscillator states with frequency wy, the
non-vanishing elements of H are given by

Hnl,nl = |:%(1 + Vz)(n + g) + %p2v3(6n(n + d)

—2l(l+d—2)+d(d+2))], | (5a)

d
Hnl,n+ZI=Hn+21,nl=l: —1(1 —v2)+%p2v3(n+§+ 1 )]

x [(n—1+2)-(n+1+d)]%, (5b)

Hypsar= Hy i qm =%PZV3[(” —14+2)(n—1+4)
x(m+l+d)(n+1+d+2)73 (5¢)

in Aiw, units. The formula (4) will be the starting approximation for applying our
method described in the preceding paper (Bhargava et al 1989) to determine the energy
levels quite accurately. We observe at the outset that the angular momentum and parity
are good quantum numbers and therefore the Hamiltonian matrix can be separated
into a direct sum of submatrices H® pertaining to a particular / and parity. Because the
diagonal element associated with the quantum number k of the Hamiltonian H' in the
representation chosen by us is very close to the corresponding eigenvalue, the matrix
H' = (H'— Hy, ,,I) will have a very small value for its eigenvalue labelled by this
particular k. Let this eigenvalue be ¢,,. Then, by definition,

Ey=Hyu+ ey - (6)

Our task therefore is to determine that the eigenvalue ¢ of H' which is very close to zero.
The matrix H' is symmetric and para-2-diagonal and by construction the kth

A
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diagonal element of this is zero. Therefore H' can be put in the partitioned form

A x B
H=(x 0 y
B y C

which we have dealt with in the preceding paper. More explicitly,

i
e
R
[
il (
1

Py U,

where the P, Q}, U, Ui, B are all 2 x 2 blocks and x, and y, are 2 x 1 columns. All

elements outside these blocks are zero. We observe that the labels of adjacent rows or

columns of the matrix differ by 2. By a relabelling, this can be made 1 as follows:
Let us define for even n

0, P, U,

01 Py x, B

H = su 0§, ‘ 7)
A Bove oo Oy

Uy @, Oy,

Uy 0,

I

n=2r-2, (r=1,213,..)

k=2s—2, (s=some fixed positive integer).

With this correspondence between n and r, we replace

1 s
Hnn — qn

1
Hnn +27* l,,,

1
Hnn+4_>pr

and the explicit expressions for the g I's and p’s are follows:

q,.:(r—s)[(l+v2)+3p2v3<r+s+g—2>:|, (8a)

d 1
AT

X [(r=1/2)r +12 + d)2— 1),

(8b)

Pr=3p*V[(r —1/2)(r — 24+ D+ 12+ d)2— 1) (r+1/2 + df2)1* (8c)
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in units of Aw,. (For the odd-parity levels, similar change of indices can be made).

In the notation of the preceding paper, the various blocks in the partitioned form of
H'! may now be written in terms of ¢, [ and p.

Ps- NAYAN
(i) =G =G o) <9>

P; qs 2i s 2i >, (10)
s 2i —-2i+1

Ul= ps 2i—-2 0 )’ (11)
s 2i=-1 ps-—Zi—l

s+21 1 s+ 2i

< s+2i-1 ls+2i—l>’ (12)

s+21 1 ls+2i > . (13)

Ds+2i

3. Computation of ¢,

The remaining task is to compute g, the eigenvalue close to zero of the matrix H'. It will
be recalled—see (6)—that this is the residual to be added to H,,,, in order to obtain the
energy eigenvalue E,;. This is done by applying the theory of § 2 of our previous paper to
the matrix H' of (7) but H!, which is an infinite dimensional matrix, must first be
truncated. Suppose we truncate H' in such a way that the block at the top left hand
corner is Py, and the last one at the bottom right hand corner is Q} ., i.e., 2L rows above
(and columns to the left of) the ‘central’ element are retained as well as 2L rows below
(and columns to the right of) the central element. As L and L’ are both increased the
eigenvalues of the truncated matrix would approach those of the full matrix H'.
For the truncated matrix we have to set up and solve the equation (§ 2 of previous

paper)

e=f(e), (14a)
where
fe)=%,[1—0(&)B1 " [o(e)y. — $(e)x.]
+ [l — &(e)B1™* [6(e)x, — x(e)pu] (14b)
with
a(e) = P(e)Bx(e) | (14¢)

¢(e) being the 2 x 2 block at the bottom right hand corner of (4 — ¢I) ! and y(e) the top
left hand corner block (2 x 2) of (C — &I)™*. The matrices (4 — &l) and (C — ¢I) for the
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current problem are

T, Up-y
UL—I. TL——I .
A—el)- | (152)
( ) R
u, T, U,
U, T,
\
with (15b)
'.Tl:Pl_SI
and
R, U,
U, R, A
(C—el)= S (16a)
LRyoy Upo,
Up-1 R}
with
Ri=Qj—el ‘ (16b)

Xu Yu B, Py, Uy, @ and Uj are defined in (9) to (11). To compute ¢(e) for any particular ¢
we start with ¢, =T;' and use the recurrence relation ¢;=(T;,— U;¢;,., U;)"*
repeatedly till we get ¢, which is by definition ¢(¢). Similarly, we compute x(¢) = x, by
starting with y;. = (R}.)™! and using the recurrence relation xi=Ri— Ui, U)?
Having determined both ¢ and y, one is able to compute o(e) and finally f{(g).

In our computation we have used the iterative Newton-Raphson process

b1 =& — F(e)/[F'(&)], )

where F(g) = ¢ — f(g). Actually instead of F '(¢;), the slope of the tangent at ¢, the slope of
achord at g, namely [F(g; + 6;) — F(e,)] /0; was used with §; chosen as a small fraction of
(¢; — &;—,). The starting value of ¢ was taken as &0 = 0(since the root we are seeking is the
one near zero) and §, was taken as about one thousandth of the level spacing at the
energy level of interest. For large k, the dominant dependence of E,onkisas (k+3)*3,
from which the level spacing ~dE,/0k comes out to be 3E,/Ak ~ 3H,, /4k. It was
satisfactory to take §, = H,,/1000k for all kexcept k = 0. (For k = 0, we have used k + 1
instead of k in slope determination). The iteration was continued till (¢;,, —&,)/e;
became less than 1015, The converged value, which is the eigenvalue ¢,; of H,, added to
Hiyy, then gave the eigenvalue E,, sought. The value of H,,,, was itself calculated from
(5a), the value of v occurring therein being obtained by the numerical solution of 3).
Recalling that the matrix elements have been given in units of Aw,, one has to
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multiply the number obtained for E,, obtained as above (in Aiw, units) by 1/vin order to
convert to w units. The tabulated results are all of course in units of Aw.

The computations were all done on the IBM 370 computer system at IIT, Madras.
Tables 1 and 2 show the results obtained for the quartic AHOs in 2- and 3-dimensions
for a typical value p? =1 (equivalent to Agnerjec =2 X Ayonuon = 1) Of the degree of
anharmonicity.

Table 1. Two-dimensional quartic anharmonic oscillator.

k ! 2K,
0 0 0295 205 009 196 287 4 x 10!
1 1 0646 290 599 986 387 1 % 10
2 0 0-108 824 355 768 198 0 x 102
2 0-103 906 272 955 037 § x 102
5 1 0259 691 635 685 670 1 % 102
3 0-253 133 789 941 425 1 x 10
5 0240 331 661 934 708 4 x 10?
10 0 0-567 798 591 256 604 1 x 102
2 0-565 506 297 037 042 2 x 10?
4 0-558 667 656 239 447 8 x 10
6 0-547 392 009 847 857 0 x 102
8 0-531 845 576 281 474 7 x 102
10 0512 232 949 617 362 5 x 102
500 0 0-873 714 850 331 599 9 x 10*
100 0-868 858 853 774 934 6 x 10*
200 0-854 407 245 481 313 5% 10*
300 0-830 686 757 884 318 1% 10
400 0798 177 713 735 053 5% 10*
500 0757 445 991 396 957 9 x 10*

Table 2. Three-dimensional quartic anharmonic oscillator.

k I 2K,
0 0 0-464 881 270 421 207 7% 10!
1 1 0-838 034 253 010 158 4 x 10!
0 0-131 568 038 980 498 7 x 102
2 0-124 855 560 509 998 6 x 102
5 { 0286 777 321 755 446 9 x 10?
3 0278 984 177 600 082 5 % 102
5 0265 289 175 581 239 2 x 102
10 0 0:601 295 229 591 577 6 x 10
2 0597 951 856 023 007 6 x 10
4 0590 200 252 145 363 0 x 10?2
6 0-578 ‘153 165 006 542 5 % 102
8 0-561 971 823 628 909 6 x 107
10 0-541 849 846 104 544 2% 102
500 0 0-874 874 719 432 883 5 % 10¢
100 0-869 973 480 821 741 4% 10*
200 0855 483 846 575 847 9 x 10*
300 0831 732 675 434 741 5 x 10
0799 199 814 785 757 9% 10*

23

0-758 450 305 163 626 6 x 10*
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Table 3. Diagonal moments (d =1 and 3).

d=1 d=3

k <x2>k (x* <r2>k {0

0 0305 813 650 718 0260 241 446 698 0801 250 595 541 1-015 437 171 04
1 0801 250 595 541 1015 437 171 04 1214 551 385 74 1983 746 586 20
4 1750 939 501 76 4851 892 810 93 2014 067 745 28 6423 101 986 89
5 2014 067 745 28 6423 101 986 89 2280 362 022 97 8039 002 709 87
8 2721 984 850 99 11748 805 460 0O 2938 362 108 80 13696 095 096 0
9 2938 362 108 80 13696 095 096 0 3157 627 830 13 15671 952 878 9
49 9013 375 232 60 129391 415 659 9137 001 247 51 132912 815 791

50 9135 599 169 31 132928 354 982 9257 019 170 45 136489 257 660

Table 4. Matrix elements (d = 1 and 3).

d=1 d=3

(k.K) Ckix1k> Ckl X[k Ch,0Jr|k, 1 Ck, 0P|k, 1)

(0,1)  —0552 565 959 314 —0-456 180 404 562 —0-894 531 209 969 —1-109 701 170 41
(4,5)  —0970 612 527 510 —2-845 882 579 49 —1-133 864 353 35 —3-535 889 127 36
(8,9) —1189 039 213 30 —5257 173 256 06 —1-305 501 445 01 — 5960 803 769 52
(49,500 2-128 094 609 90 30281 934 134 3 2116 776 818 03 30779 760 079 8

Table 5. Two-dimensional sextic anharmonic oscillator.

k I - 2E,
0 0 0312 193 547 424 642 6 x 10!
1 1 0714 992 860 143 855 0 x 10!
3 1 0191 867 174 220 680 8 x 102
3 0-173 872 078 074 601 8 x 102
5 1 0-346 174 140 053 972 8 x 102
3 0331 490 551 728 027 4 x 102
5 0-300 188 806 321 731 4 x 102
50 0 0-829 060 129 057 987 9x 103
¢ 20 0-753 939 539 423 519 3 x 103
50 0-652 205 431 120 790 6 x 103
500 0 0-254 131 685 870 129 3% 108
200 0247 174 715 334 645 2 x 10°
500 0-197 191 328 911 524 0 x 105

4. Discussion

As indicated earlier, the method yields not only the eigenvalue but also the eigenvector
of the given level. While computing the matrix elements of H, one has to take into
account the fact that the matrix elements of x, for instance, connects states of different /
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Table 6. Three-dimensional sextic anharmonic oscillator.

k I 2E,,
0 0 0503 339 593 772 026 .6 x 10
1 1 0945 553 527 684 122 9 x 10!
3 1 0225 039 357 759 694 8 x 102
3 0203 386 103 330 132 5 x 102
5 1 0-387 053 868 023 440 6 x 10
3 0369 201 929 676 158 1 x 102
5 0-335 032 553 666 928 2 x 10?
50 0 0841 225 182 040 561 9% 10°
20 0764 642 675 743 970 4% 103
50 0661 692 230 608 347 6 x 103
500 0 0254 512 038 367 464 4% 10°
200 0247 517 254 044 689 8 x 10°
500 0197 486 186 403 443 8 x 10°

and n. Since the harmonic oscillator frequency w, depends on n and I we wiil be
calculating matrix elements in non-orthogonal basis set of functions. To avoid such
complications, we have chosen an oscillator basis with frequency midway between the
given nl and n'l' and computed the required numbers. It is well known that between a
given pair of states if one calculates the energy levels and the matrix elements of low
powers of x, the matrix elements of high powers of x can be computed by hypervirial
relations. In tables 3 and 4, we present the moments and the matrix elements for the 1-
and 3-dimensional AHOs between some typical pair of levels. Finally, we may mention
that the method can be extended in a straightforward manner to higher anharmonic-
ities. For instance, in the case of the sextic AHO H =4(p? + r? 4 r°), one has to deal
with para-3-diagonal matrices but they do not introduce any additional complication.
In tables 5 and 6, we present the energy eigenvalues for this case.
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