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On the problem of constraints in minimally coupled
relativistic wave equations for particles of unique mass
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Abstract. We study the problem of a possible change in the number of constraints
in linear relativistic wave equations (—if f 2+ m)p=0 for particles of unique mass,

on introduction of minimal coupling to an external electromagnetic field. Comple-
menting our earlier work in which we obtained conditions for non-loss of constraints
in equations characterised by the minimal B-algebra B,® = B,2 we derive here the
conditions for such theories not to generate more constraints than in the free case.
The results are illustrated by considering specific equations and a fallacy in certain
conclusions of Kobayashi and Shamaly on this problem is pointed out.
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1. Imtroduction

In recent years several authors have discussed a variety of pathologies afflicting
relativistic wave equations for high spin particles coupled to external fields. The
types of difficulties that have come to light in the course of investigation of specific
theories include (i) non-causal propagation in the presence of external fields (Velo and
Zwanziger 1969a, b), (ii) occurrence of modes of complex frequencies when high
magnetic fields are present (Tsai and Yildiz 1971; Mathews 1974; Seetharaman et
al 1975), (iii) appearance of extra constraints at particular values of the external fields
(Jenkins 1972, 1973), (iv) loss of constraints (Federbush 1961) and (v) unacceptable
changes in the (anti-) commutation rules for field components on introduction of
interactions (Johnson and Sudarshan 1961; Hagen 1971) in addition to (vi) the pro-
blem of possible indefiniteness of charge/energy in the free theory itself (Prabhakaran
et al 1975; Khalil and Seetharaman 1978 ; Nagpal 1973; Krajcik and Nieto 1975a, b).
It is also generally known that in every unique mass-spin equation of the Dirac-
Bhabha form

(—'iﬁ”%-{— m) ¢ =0,
(excepting the Dirac equation for spin —1), the wave function i must necessarily
have more components than are required for the particle of given spin and it is the
elimination of the unwanted components (through in-built constraints) that is at the

heart of most of the pathologies. While one or more of the diseases have been
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demonstrated to be present in specific wave equations, very few general studies have
been carried out to enunciate general theorems (applicable to a wide class of equa-
tions) for testing the occurrence or otherwise of one or more of the pathologies
(Amar and Dozzio 1972, 1975 ; Khalil 1977). In a recent paper (Mathews et al 1979)
we have carried out one such general study regarding the change in the number of
constraints on introduction of minimal electro-magnetic coupling in unique mass

theories.* We have established that in equations obeying Harish Chandra’s unique-
mass condition

Bs =852,

with n=4 the number of constraints in the presence of external e.m. interaction would
never be less than in the free case, but could be greater at a particular strength of the
external field. In the next higher case, namely By®=H,%, it turned out however that in
general there is a possibility of loss of constraints and we obtained general criteria
which would enable us to see from the free equation itself whether it is prone to loss
of constraints pathology. It is one of our objectives in this paper to extend the above
study and obtain conditions which ensure that extra constraints would not occur
either. As a direct application of our results we demonstrate that the theory of
Schwinger (1963) and Chang (1967) for spin-2 particles will ‘not lose constraints
(contrary to the recent claim of Kobayashi and Shamaly 1978) but will infact have
exira comstraints in certain critical fields.

The plan of the paper is as follows: In § 2 we consider the Schwinger-Chang theory
(which has By® = B,3 as the minimal algebra) and demonstrate the gain in the number
of constraints at a critical value of the external magnetic field. In § 3 we present a
general analysis of equations with this algebra, leading to general criteria for such
equations not to gain constraints at any external field strength. The familiar equations
coming under this algebra are analysed afresh in §4 in the light of our condition.

2. The Schwinger-Chang theory with minima] e.m, coupling

The Schwinger-Chang theory for spin-2 particles has g 30-component wave function,
made up of symmetric tensor huy and a third rank tensor H,, with the properties:

H;Lw\ = Hv,u,\:

Hox + Hyyy +- Hy,y =0, 1)

With minimal coupling to an external e.m, field the equations of motion are**

7y (HWE - Hivd) _ 950 (hrv — guv ) — g, ) (2a)

Horp — 3 (v Hx — g H,) — (m, hux — ) hyy) = 0, (2b)




Constraints in relativistic wave equations 175
where H, = H" pvand h = hE.
The metric is (—1,1,1,1) and =, = Py — e Ay, is the usual replacement for

minimal e.m. coupling. The equations of motion following from (2) when written
out explicitly have the form:

m, (% HoHY = — ary (HMYe - HmK) 4D 2 (B — 8% b, (3a)
my HOW = — ., (H™Ok | F[mes) 3 g ok, @3b
o by =7y Py i H + % 8 H,, (3¢c)
Ty hol =1 hoo + i Halo -{_ ‘% Hl' (3d)

Since the spin-2 particle needs only 10 degrees of freedom the equation must lead to
20 constraints. On examining equation (3) we see that twelve primary constraints
(Johnson and Sudarshan 1961) are already embodied therein. They are

Ty H™° — i m? h,,, =0, (42)
i Hyy — m, hoy 1y by =0, (4b)
§ Hipise — 1y B~ 71 Py — ;:wm H, — St Hy) =0. (40)

Further constraints (secondary, tertiary etc.) are to be obtained by differentiating
(4) with time (i.e. operating on them with m,) and climinating the time derivatives
through the equations of motion. This process applied to (4a) yields one (secondary)
constraint namely

- 2 :
o 1 XM 2 Fog HO™ - 1 hom—t-'%ﬂ; =0. (5a)

(Fup =8, 4y — 8, A,).

Not all the remaining equations in (4) lead to secondary constraints as some of them
involve time derivative terms which cannot be eliminated through the equations of
- motion contained in (2). It is not difficult to see that the equations (4b) and (4c)

together give rise to just three more secondary constraint relations. These can be
written as:

20wy, HOM 4 (2 8, - e Fp) By, = 0. (56)

Thus we have altogether 16 constraints at this stage.
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Differentiation of (5a) followed by eliminationn of time derivatives now leads to &
tertiary constraint, which is of the form (B is the magnetic ficld)

;(m4+e232)h00+.,,_=0, (6a)

where the dots stand for terms involving only those parts of the wave function for
which equations of motion are already available. But there is no equation of motion
for h,, and therefore no more constraint relation can be obtained from (6a). Turning
to the equations (5b) we can see readily that they lead to three mor. (tertiary) conse
traints which for B along the z-axis may be written in the form

3 .
-2-eBH111+1m2H,2,==...., (ﬁb}

. 3 .
lmsz—ieBHiz,=...., (6¢)

im*Hg =...., (6d)
These equations supply.the last three constraints needed to make up the required
gotal of ZQ. T.he situation is thesrefore satisfactory provided further differentiation
ino&;se not ﬁve rise ttf) newfconstramts. In fact, differentiation of equations (6) lead
neral to equations of moti ities /1, and K ich anpear o

the Lhs q otion for the quantities 4,, and H,,, which appear on
br;i:redés one \?liue of the Izield | B[, however at which this satisfactory situation
o ﬁneaﬂwg- en J?me ./3e the left hand sides of equations (6b) and (6c)
such a way t;ptendent, it is ev1dent.that these two constraints can then be written in

¥ that one of them contains none of Hy,.; and involves only quantities for

. Differentiati is equati
would then lead to an extry constraint * 1ation of this equation

Ou ing is i : . .
322;2?;£E§r:i Sm lconﬂlct with the claim of Kobayashi and Shamaly that when
a loss of constraints, In § 4 we discuss the source of this confusion,

3. General analysis of constraints

5 to : .
1o carry out a constraint analysis as above for any linear

» it would be of great
d reveal whether or not
the occurrence of extra constraints
This section is devoted
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in which B’s obey the algebra

B=8 . ®
For our purpose it is convenient to adopt for B, the canonical form*
A
B = o s &)

c

wherein 4 and C are blocks having the minimal equations 42=1 and C3=0. Makin g
a corresponding partitioning of ¢ and boost generators as

¥ = Col (fy ¥y ), (10a)
e s .
Ki Ky Ky

- e ‘

K=Ky Ky Ko |, (10b)
e
Ko Kg Kg

and using the well-known result that the f)s can be written as

—

. —
B=1[K, By, (11)
the equations of motion for iy, ¥, ¥, can be explicitly written down as follows

s = >
(Amy — m) ¥y — i [Kyy m, A] ‘/’1+1AK12"¢2

- > ~ >
+i(4 Kygmr— Kygm C) iy = 0, (122)
- - -> -
m¢z+iK21'7TA¢1+iK23'7TC¢’3=0, (12b)

> > -~
(Cmy —m) g — i Koy 4 — CKgim) iy +
- > - -
I CKgpmifyg — i [Kgzm, C] oy = 0. (12¢)

Equation (12b) is clearly a constraint, and C? times (12c) yields another. These are
the primary constraints. Derivation of secondary and tertiary constraints proceeds
in the usual fashion (see for example Mathews et al 1979). We obtain them to be

- -

(LD [ + Bo K- Bo K 7 — By (K - ) fo

4 imK -] § (x) =0 13)

*The algebra (8) admits of one more diagonal block B with the property B*=0 in the canonical
form. But we do not know of any wave equations wherein such a block finds a place, and so we
shall ignore this more general possibility.




178 M Seetharaman, T R Govindarajan and P M Matkews‘

(18 [ 4 mB M — il (K -+

o> > > > -

mig K mpo K 7 — iR mBaK m g () =.... (14)

The dots stand for terms involving parts of i for which equations of mot-ion are
available at this stage. M is matrix differential operator defined by the relation

T T

(1-8) B K- w K- m= (1 — ) B3 M B (15)

It may be noted incidentally that the secondary constraints (13) leads to the tertiary
constraint (14) only if an M satisfying (15) exists.* Operating on the right by
B3(1—p3) it becomes,

(1—)8;“;) ﬁ?, (K 190 Kj - KjﬁoKi)ﬁg (1"‘133) =0. (16)

While this condition ensures, as already shown in the paper of Mathews et al
(1979) that no constraints are lost, the possibility still remains that extra constraints
may appear in the presence of interactions. To see how this can come about, let us
look at the tertiary constraint equations (14) once again. If further constraints are
not to be generated from (14) then the matrix differential operator on the Lh.s. of
this equation must be such that it should never be possible to write it as NS, for some
Nie,

e e =

. 5 —_ > -
(=) [m® + mBE M — mfE (K-m)® & mfy K - m K +

> > =

— K 7B x K- u] # NB, (17)
Thi, condition is equivalent to
9 2 ) = > s
(1—83) [m® +- mBy M — mB} (K - =)® 4+ mpB, K - 7By K- m
e s
— i K af-7K-a] B2 (1—B2) # 0. (18)

It is not difficult to convince oneself that the last term on the Lh.s. of (18) can be
reduced using the relation '

(K, [ﬁj, Kk]] = Sjk 131- (19)
One finds then with P=(1—p2) B2 that
- > ie :
PK‘?'TB"/TK'WP=-2—FUP[2KIB()KJKi
—K; K, B, K; + 2K, By K K; - K; By K, K,

—K KBy K1 P = %EFU Rij m (say). - (20)

Y i S . L
W;‘;gnwl?‘ﬁ? ‘cl\t;s;eg: t\*f;aits ;%t(llnsl)iz;tslea r%i?%{;-o"dm the class of egs. (7) under st udy. Also the
referee for drawing our attention to this fact, o "O. Adect our conclusions. We thank the
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Similarly the terms with two #’s in (18) can be simplified to
2 ’ 9 2 —>2 —> -
(1'_' o) [BOM'_Bo(K") —{_ﬂOK.ﬂﬁoK.ﬂ]P
=i eF;; (1—Fg) [Bo Ki Bo K; —Bo Ky Ky By

+K, By K Bo] (1—BY) By = ieFy; Ty, (say). (1)

The condition (18) for non-generation of further constraints now becomes,

iem i
m¥(1—B) B+ =" Fy(Ty — T) + S Fy Ry — Ry m £0. (22)
The Lh.s. has a part involving the differential operator =;,, which evidently cannot
cancel with the remainder of the operator. Therefore in order to satisfy (22) for

arbitrary e.m. fields it is clearly necessary and sufficient that one of the two parts be
non-zro i.e. either

Ry — Ry, # 0 for some i, j, 4, (23a)
or B2 (1—B2) + 5’5{ Fyy (Ty—Ty) # 0. (23b)

Theories which satisfy condition (16) simultaneously with (23a) or (23b) are the ones
in which the number of constraints will remain unaffected by the introduction of
minimal e.m. interactions. We may note in passing that a sufficient condition for
(23b) to be valid for all Fj; is that (7;,—T;,) must be a nilpotent matrix.

4. Discussion

The present work completes the analysis of the constraints problem of unique-mass
theories with the minimal algebra B§=f3 in the presence of e.m. interactions. Of the
known relativistic wave equations, those due to Glass (1971), Schwinger and Chang
(see also Hagen 1971) and Shamaly and Capri (1973) are characterised by this algebra.
The Glass equation.is already known to suffer loss of constraints (Mathews et al
1979).

As for the Schwinger-Chang theory one sees on applying the conditions of the last
section that there could be no loss of constraints but that at a critical value of the

. magnetic field the number of constraints becomes excessive; the (R; ,1— Ryy) vanishes

for all i, j, / in this theory, and

7 . 2m?®
B2 (1 —By») + e F,; (T;;—T;;) vanishes when B = il
2m? 3e

This finding raises the question as to why a different conclusion was arrived at by
Kobayashi and Shamaly. Working in the second order formalism with §econd ranl;
symmetric tensor components h,; as the basic variables they start with the field

P.—6
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ti i and Shamaly (1978) and Velo
ions L.,=0 (see for notation etc., Kobayashi an :
??5?%?115 Ofp 1t)he te§1 constraints needed, eight are obtained as primary and secondary

constraints
Ly, = 0,
and Cy=mnk Ly =0.
The ninth constraiqt
x =mb v L,y -+ mt Lz=0,.

follows from % C,=0 after some manipulation. One more constraint is I}e'eded Zand_
it is to be sought from =, x=0. It turns out that m, x 1n.volves the quantities ) Bor
for which expressions in terms of lower order derivatives are not yet available.
However, such expressions are obtainable from =, C, =0 and can be used to
eliminate = ? A, from =y y=0 (thus reducing the latter to a constraint) exc.ept whf:n
the external field is a magnetic field of magnitude B = 2m?/3e. In this special
situation, only two of the three =2 A,, can be recovered from the equat‘ions 7y Cr=0,
and so w, x =0 is no longer a constraint. From this fact Kobayashi and. Sha'm-gly
conclude that there is a deficiency in the number of constraints for this critical
value of the field. However in drawing this conclusion they have overlooked'the
fact that in place of this particular lost constraint there is now one linear copbma-—
tion of the =y C, =0 which is a constraint. In fact it may be verified that differen-
tiation of this new-constraint leads to an extra constraint—one more than in the free
case. This extra constraint of the second order formalism is the equivalent of the
two extra constraints we have found in the first order formulation. ‘

We may conclude with the observation that to our knowledge this is the first time
a general matrix algebraic analysis of the constraint problem, applicable to a wide
variety of equations and encompassing earlier known results has been given.
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