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1. INTRODUCTION

Many stochastic problems arise in physics where we have to deal with integrals
or iterated integrals of random functions. The normal interpretation of such
integrals of random functions as put forward by Ramakrishnan (1955) is an exten-
sion of the idea of Riemann integration to random functions. Let z({t) be
the random variable representing a process and in any experiment if we ‘plot’ the
value of x(t) against ¢, we obtain a ‘realised trajectory’ of the process. The realised

T

value of the stochastic variable y(+) = #(") dr’ corresponding to the realised

0
curve of z(7') in the interval 0 < 7' < 7 is defined as the area enclosed by the tra-
jectory, the r-axis and the ordinates O and ¢. Iterated integrals of z(r) can be
defined similarly. If we wish to obtain the probability frequency function of y(7)
or of iterated integrals of w(+) we have at first to assign a probability measure to
the trajectory of x(7) in the interval (0, t) and this is known to be a very difficult
problem (see for example Doob, 1953) in all except simple cases. However, if we
confine ourselves to a random function z{r) which represents a ‘basic random
process’—a Markoff process, homogeneous with respect to -, whose typical tra-
jectory is characterised by a finite number of discrete transitions, the trajectory
remaining parallel to the r-axis between two transitions—it is quite easy to assign
a measure to its trajectory. In this paper we shall deal with the Poisson process,
the simplest B.R.P. (basic random process) available to us.

2. STATEMENT OF THE PROBLEM

In his recent work Ramakrishnan considered a class of stochastic processes
represented by the random variable y,,(f) defined symbolically as

Yult) = f¢u(7- dTmJ Pn-1(T-1)d7p -1 J $i(r)z(r)dry .. (1)

where ¢1(7), $a(7), . . ., du(r) are deterministic functions of + and x(r) represents
a basic random process. Equation (1) can be written in the form

yn(t) = f ¢m(7)yn—1(7)d”[
o 2

Yt =f $1(r)z(r)dr ]
1]
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showing that the p.f.f. (probability frequency function) of y,(t) can be obtained if
the joint p.f.f. of y,(¢) and y,_;(f) is obtained, and this in turn depends on the joint
pff of y, 1(¢) and y,_o(f) and so on.

In this paper we shall consider the case when () has a Poisson distribution.
In this case we deal with the more general integral

. 4 T Ty d
yu(t) = J ¢.(7m)d7-n f ¢u - l(fn l)d‘r- -1 J ¢0(70) _“ﬁ'_t_)_) dﬂ-ﬁ .- (3)
0 .

drg
0 0

t

Yolt) = J $o(7) d;f:) dr
0

where the random function i;? will be interpreted in Section 3. We recognise

(1) at once as the particular case of (3) when in the latter we put ¢o(r) = 1. Our
object is to find out the probability distribution of y,(f). In the following, we
derive an explicit expression for the Laplace transform of the p.f.f. of y,(f) and go
on to discuss particular cases of physical interest.

3. LAPLACE TRANSFORM SOLUTION OF THE PROBLEM

If z(7) is the random variable representing the number of ‘events’ ocecurring in
a Poissonian manner, in the interval (0, ), the probability that x(t) = « at ¢ (2(f) =
Oatt=0)is

mxt)=e (4%

-x A9

xz!
where A is the probability per unit ¢ that an event occurs. z can assume values
0,1, 2,........ The characteristic feature of the trajectory or curve of
growth of z(r) is that its ordinate jumps up by unity when an event occurs and
then remains constant till the occurrence of the next event. The realised value of
z(r) is given by

2R(7) = Z S P )
i=1
where ty, L5, . . ., ¢, are the points at which the events have occurred and H(x) is the
Heaviside unit function. The following interpretation can now be given to the
random variable d‘;(: ). The realised value of d%” in the interval (0, ¢) is given by
do(r) _ <
= — . .. .. . 6
= > sr—ty ®)

i=1
8 being the Dirac delta function.

Now consider equation (1) and the aggregate of random variables y;(: = 0, 1,
2,...m). We increase ¢ by A. If an event occurs between { and i+ A, the
random variables y; (i = 1, 2,. . .m) increase only by infinitesimal quantities of
0O(A). The increase in ¥y, is ¢o(t)+0(A). If no event occurs, the value of y, is

* Wo shall use the same symbols » and p to denote any p.f.f. and ite Laplace transform
respectively. The distinction between two functions will be apparent from the context.
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unaltered, while every other random variable y; (: =1, 2,. . . m) gets an incre-
ment equal to &; y;-; A+o(A). Hence, if 7{yg Ym-1,. . - Yo;-t) be the joint
pLf. of ¥p, Ym=1.- - - - Y1, Yo, it satisfies the equation
a" m> Im—1s + ¢ » oy ;t |
(y y 1at Yo ) = '—Aﬂ(yma Yn-15--. ., Y0; t)
+A7T(ym: Yn-1,+-+. y0—¢0(t) H t)
m
s Ym—1s - -« Yo3 b
TR CLal LS IERRRE (L A
t=1 y'

with the initial condition

T(Yms Ymels - -+« > Y03 0) = 8(Yn)O(Ym-1) - - . . 3(H0) .. .. (8)

Defining the m-fold Laplace transform of #(y,,, Yu=1, .- - - > Yo &) a8

p(sln m—1y -« ¢ SO:t)
= f f ‘f "T(ym, Ym—is v o v - > Yo t) eXp [—smym—sm—lym—l
—80Y0) WY n@Ym—1 - - - - dyo .. (9)
we obtain
ap(sms Sm~15 - - - -+ 8p; t) - < ap(sma Sm-1, -+ - 5805 t)
3 = iz:l sibi(t) Fra

_)\(l—e_s"%(t))p(sm, Spetr o83t .. (10)

(10) is a linear partial differential equation and therefore can be solved by the
standard method of characteristics. The subsidiary equations are given by

ét - ds,,,_]_ - ds,,,_2 _ - dé‘o (ll)
1 8m¢m(t) Sp-1 ¢m‘1(t) B 31¢l(t)
The characteristics are given by
at
¢n(t )dl + =‘/’n 1
Yo
pt w1
¢u—1(tm—1) {¢m‘1— J ﬁl’m(tn)dtm} dtm—l +§23'-_'2 = Y2
‘o 0 "
pt tm—g tm—1
¢m~2(tm-2) {'/’m—Z— J ¢n—1(tm -1) {l/‘m-l— [ ‘ﬁm(tm)dtm% dtm‘lg dtu—2
Yo 0 o
Sm-3
+T = ¢n—3 . (]2)
In principle we can solve for , 1, Y9, . . ., 1, by successively but we will

not need the explicit expressions here. Equatxon (10) may be solved now by
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making a transformation of the variables 89, 81, 82, . . . 8a_y YO o, 1, e, ...,
tu-1- The solution is finally obtained as

. ¢ '
D8, Sm—1, - - - » 81, 89 ; 1) = XD {—At+)\J exp { —3,¢0F,,} dto] .. (13)
Yo

where F, is given by

Yo riy 1
F,= 'ﬁo—f $1(t1)dt; [lﬁl—J ¢2(t2)dt2{'l‘z—' cen (‘ﬁ.—l—f ¢.(t.)dt.) } ] (14)
0 0

0

This completes the formal solution of (10). However we are interested in
7(Ya ; t), the p.L£1. of y,, alone and not the joint p.f.f. of the aggregate Yo Y1, - - -
Ya- We note that the Laplace transform of =(y, ; t) is p(s, 0, 0 . 0; ¢t) since

T (Yms ) = J [ [ T Yy Ymu-1> - - Y03 DY 19Y 2 . . . Yy
Ym~1 m—2 v ¥y

A simple expression for p(s, 0, 0,. . . 0; ¢) can be obtained from (14) if we put
=8 =...=8,.7=0, 8, =5 in (12) and solve for the ¥’s. In such a case
we find that '

[F-]s,,,=s;s,,_1=s,,,_2=...=30=0

£ H t
= J é1(t1)dty J' Po(tz)dts . . . [ bl dt, .. .. (15)

% i ¢ Il
which we shall denote by
f " (ty to)

Hence the Laplace transform of #(y,, ;t) is given by

H
p(s; t) = exp [—,\t+).f exp {—‘ﬁo(to)f,,(t, to)s} dto] .. (16)
0

Moments of y,, are obtained by making use of the relation,

é{y',;,(t)=[(—-g—\) &3 t)] } .. .. a7
=0

The first three moments are

Elva®)} = l\f bolto) fult, to)dto
0

¢ tm ty
= w(la)dt, me1(tme1)Bm—1 . o . . dty .. .. (18
Afoss (%) fozﬁ (tme1)tm 1 J'Oqso(to) ) (18)

6{y"(t)}=[é{y (t>}]2+A ft#(t ity . . .. .. (19)
™ m 0 o\Y0) S 4y r‘ 0
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&0} = ["5 tv.0} ]3 +3X8 UG $olto) fult, to)dto].
[ f | $5(ta) S (2, to)dto] +2A JJ St f3C to)dty .. .. .. (20)
° 0

4. PARTICULAR CASES OF THE STOCHASTIC PROCESS DEFINED BY (3)

(1) m = 0; The random variable yy(f) we are interested in is given by

yo(t)—_—quo(f)d;(:)&r O 1))
0

This random variable is of considerable importance in physics. A simple
example can be cited to illustrate (21). Let us consider the fluctuation of voltage
at the anode of a valve due to fluctuations in the number of electrons emitted per
unit time by the cathode (known as ‘shot effect’, cof. Schottky, 1918). Since the
average rate of emission of electrons remains constant, we may expect the number
z(t) of electrons emitted in an interval of time ¢ to form a homogeneous additive
process with a Poisson distribution. The equation governing the variation of

_ fluctuating voltage V(f) at the anode is then given by
v,V L de(t).. . .. .. (22)

@ TROTRO ™0 @

when it is assumed that the circuit between anode and earth is equivalent to a
resistance R in parallel with a capacity C. e is the charge of the electron. The

solution of (22) is

¢

V()R — Vg B(eHRC~ 1) = -J. 5"’%"’&/1?% C . (©93)

0
where ¥V, is the value of V at ¢ = 0.

The moments of ¥ of any order can immediately be obtained by the use of
equations (16) and (17). The mean square deviation of V for example is equal
to \e2R/20, a result obtained by Moyal (1949) by a different method.

(2) More generally, let us consider the random variable (21). If pulses occur
at random in accordance with the Poissonian law and if ¢o(r) is the response of a
system to a single pulse at a time = after the occurrence of the pulse,

3
J $oli—n) 20 g,
0

is the total response of the system at time ¢ to all the pulses occurring in the
interval (0, £). Ramakrishnan has proved that

¢
J bt 0 dr
0
represents a process ‘equivalent’ to that defined by

&),

Yolt) = j dolr)

0
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i.e. the two processes have the same p.f.f. at all ¢ though their ‘ curves of growth’ are
different. Therefore the moments of our response function are the same as those of
Yo(t), and the first two moments may be obtained directly from the general
expression (18) and (19).

¢
@{yo(t)}=,\f0¢0(f)df.. . .. (24)

i} = L& yolt) } P42 f $r)dr \* ... (25)
0

If in the above formulae we make ¢ — oo we obtain what are known as Campbell’s
Theorems, proof of which have been given and discussed by several workers (see,
for instance, Rowland, 1936; Whittaker, 1938; Bell, 1953). The method we have
developed here gives the proof in a very simple manner, and moreover provides an
extension of Campbell’s results even to the case when the system has not reached a
stationary state. '

{3) Put ¢o(r) = 1. The random variable y,,(f) now becomes .

ty
yult) = f St ¢m sty -+ f biltelt)dt, .. (26)
1]

so that we obtain iterated mtegrals of z(t) as a particular case of (1) and
their moments etc. may be written down immediately from equation (16) to (20).
(4) A particular case of interest is when m = 1, ¢y(r)=1.
If we take ¢1(¢) = 1 also, y;(t) is given by

£
yl(t) = f x(tl)dtl .. .. . . (27)
0
p(s; t), the Laplace transform of #(y;; t) is given by
p(8; t) = exp [—-/\t-!-%(l—e"“)] .. .. .. (28)
Inverting, we have
1 [e B2 A
Cf) e A (] -t ;
w(yy; t) = 21,5[ . exp [ ,\t+8 (1—e )+sy1] ds .. - (29)
g-t
ie.
1 ore - X Qa st)
e Ny AT (1—em T
w(yy; t) = 2m'J e 1 P ds .. .. {30)
o—tiw "=

Expanding (1 —e~¥)” binomially and remembering that

1 agtsx

57 on—

— — 5

2“’5] s"d8 ™ _1)'orz>0
o—i®

= 0 otherwise .. .. . .. (31)
we obtain

nlyn; ) = ¥ y1)+z et X Z (=1 (’:)iﬂl_%o,i Hp—rt)  (32)

Tr=0 (n
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n(yy; t) is continuous for all y; >0 except at y; =¢; at y; = ¢, n(yy; t) has
a finite discontinuity.

A simple example of processes represented by y,(t) would be the total age of
individuals generated in a Poissonian manner.

Ramakrishnan obtained the same probability distribution by a different

method. Writing
’3 ’2
J w(r)dr EJ d;‘:) (t—7)dr

0 0

he showed, by using the method of inverse trajectories, that the stochastic process

defined by
¢
J\ z(r)dr
0

¢
J )

0

i8 equivalent to that defined by

" whose p.f.f. satisfies the stochastic equation

—————aﬂ(%]é ) t) = —-/\'ﬂ(y]_ ; t)+A1T(y1—t; t) .. . . (33)

The solution of (33) is identical with the expression (32).
(5) Another case of interest is when m = 1, ¢o(tp) = 1, ¢1(t1) = e~ ; y1(t)
is then given by

3
yl(t) = J e~ .’v(tl)dtl .. .o ‘e 3 (34)
0

The Laplace transform of n(y;; t) in this case is

t
P(8;1t) = exp [—,\t+)«f es(‘-t"‘—T)df] - .. .. (35)
0
This solution can be arrived at from the equation
0 it : —— 0
M50 - gy s ) tatpn—T—e s 0o {yamlyss 0} .. (36)
ot ay1

obtained by Ramakrishnan by considering the equivalent process represented by
the symbolic integral

’
e’ Jo (e'—1) dxd/(:) dr

(6) Take ¢y(v) =1, 2 =0, 1, 2,. . . m. The random variable y,(t) is then

i tm 52
y‘(t) = j‘ dtm dtm—l e J‘ x(tl)dtl . . (37)
0

0 0
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and the p.f.f. of y,(¢) now has the Laplace transform.
2

"
p(8; t) = exp —-,\t+4\J\ exp § — ‘% 20 .. (38)
0 .
This is easily seen to be the Laplace transform solution of the equation
mltm s ) _ i t_"'.)
at‘o = —)\”(ym s t)+A7T(ym— m it . .. (39

obtained by Ramakrishnan by the method of inverse trajectories.

We observe that in (3) ¢g(ry) can be replaced by ¢g(7g) g (r1—7p) When g is
either a polynomial or an exponential function, since the essential feature of the
technique we have developed lies in the simple fact that we always find a finite set
of random variables y;(t) whose changes for an infinitesimal increment of the
parameter ¢ may be expressed solely in terms of variables belonging to the set y;(#).

As has been stated earlier the results of the present paper will find applications
in the solution of differential equations involving random functions of time, since
any solution of a linear differential equation can be represented as an iterated
integral. Previous methods for dealing with such problems were based on spectral
theory, but we hope that the interpretation of integrals of random functions given
by Ramakrishnan and the methods developed by us in this paper are more suitable
for the understanding of the problems from a phenomenological point of view.

We are deeply indebted to Dr. Ramakrishnan for suggesting the problem.
One of us (8. K. 8.) is grateful to the University of Madras for financial support
during the period of research and the other (P. M. M.} to the National Institute of
Sciences of India for the award of an 1.C.1. Fellowship.
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