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ABSTRACT

This study presents a complete treatment of the second order torques on the Earth due to the action of each of the three parts
of the degree 2 potential (V20: zonal; V21: tesseral; and V22: sectorial) on the deformations produced by the other parts, and the
consequent effects on nutation. The work of Mathews et al. (2002, J. Geophys. Res., 107, B4) contained a treatment of the action
of the tesseral potential on tidal deformations, taking into account the presence of the fluid core, and also of the contributions from
mantle anelasticity and ocean tides to the deformations. We extend that work to include the actions of the zonal and sectorial potentials
too. Our computations show that an almost complete cancellation takes place between reciprocal contributions; the largest net effect
reaches −35 µas on the in-phase 18.6-yr nutation in longitude. The total effect found on the precession is 0.1 mas/cy in longitude
and in obliquity. The cancellations would have been complete but for the fact that (i) the values of the compliances (deformability
parameters) are not the same for deformations excited by the three parts of the degree 2 potential even for a nondissipative Earth and
(ii) anelasticity and ocean tides make the contributions to the compliances complex (besides being unequal for the three parts) and
thus give rise to out-of-phase components in the response to tidal forcing.
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1. Introduction

The International Astronomical Union (IAU) has recommended
the use of the IAU 2000A nutation model, based on the work of
Mathews et al. (2002) (referred to as MHB in the following),
from 1 January 2003 in replacement of the IAU 1980 model
(see e.g., Seidelmann 1982). The new model takes advantage
of the advances of the past decade in the accuracy of theoreti-
cal computations on the nutations of the rigid Earth, as well as
in the precision of the observational estimates of nutation and
precession because of advances in very long baseline interfer-
ometry (VLBI) and the increasing length of the VLBI data-set.
Truncation levels of the rigid Earth nutation series of Roosbeek
& Dehant (1997), Bretagnon et al. (1997) and Souchay et al.
(1999) are all at 0.1 microarcsec (µas) or less. Uncertainties in
the VLBI estimates of the prograde and retrograde amplitudes
are now in the range from under 10 µas for nutations of short pe-
riods to 100 µas or less for prominent nutations of long periods.
Nevertheless, comparisons of the VLBI nutation time series with
IAU 2000A reveals rms differences of somewhat under 200 µas.
These residuals are the consequence of various mismodeled or
unmodeled influences in the observational strategy as well as in
geophysical processes (see e.g., Dehant et al. 2003).

A class of effects only partly taken into account in MHB is
due to the action of the degree 2 external and centrifugal poten-
tials on the deformations induced by these potentials. They will
be referred to as second-order effects in the following for obvi-
ous reasons, since computations of the nutations consider ordi-
narily the first-order effects, namely, the torque exerted by the

� On leave from US Naval Observatory, Washington, DC 20392,
USA.

tesseral tidal potential V21 on the ellipsoidal Earth, plus the iner-
tial effects of the deformations produced by V21 and by the cen-
trifugal potential associated with wobbles induced by the tesseral
potential. The torque is thus computed on the static shape of the
Earth, while the much smaller torque resulting from the action
of the potential on the variations induced by the potential in the
shape of the Earth is missing.

Several studies have investigated the second-order effects on
the Earth’s nutation due to the action of the tesseral potential V21
on the time dependent increments to the Earth’s flattening pro-
duced by the zonal part of the tidal potential. Studies by Souchay
& Folgueira (1999) yielded an estimated contribution of about
170 µas to the coefficient of the 18.6-yr nutation in longitude
from the zonal tidal deformations. Their approach was to com-
pute the increments to a rigid Earth nutation that would result
on adding to the ellipticity of the rigid Earth the time dependent
contributions to ellipticity from the zonal tidal deformations of
a nonrigid Earth. Both MHB and Lambert & Capitaine (2004)
made computations of the same effect based on deformable
Earth models with fluid core (with mantle anelasticity and ocean
tide contributions to deformation taken into account in the for-
mer) and obtained results of the same order; MHB considered
in addition the second order contribution to nutation from the
action of the tesseral potential on deformations produced by the
sectorial potential. Considering the precision of the nutation ob-
servations as well as the accuracies of the rigid Earth theories, it
is clearly important that second order contributions of the order
indicated above be carefully investigated and taken into account.

The torque exerted by the tesseral potential acting on tidal
deformations is not the only second order effect to be considered.
The torque due to the action of the zonal and sectorial parts of the
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potential on the deformations produced by other parts of the tidal
potential are equally important, as will be shown here. In fact,
Mathews (2003) had reported that the action of the zonal and
sectorial potentials on the deformations due to the tesseral po-
tential nearly cancels out the effects already considered by MHB
(see also Escapa et al. 2004). The present work aims to clarify
the influence of each second order term on precession-nutation.
The contributions of ocean tides to the second order torque are
systematically examined in this context.

The equations governing the perturbations of the rotational
motion are given in Sect. 2 while Sect. 3 provides the expres-
sions for the torque and explores the deformability of the Earth.
The dynamical equations are solved in Sect. 4 and the results are
discussed in Sect. 5.

2. The Earth’s rotation variations

The variations in rotation of the Earth are governed by the an-
gular momentum conservation law. In a frame attached to the
rotating Earth,

dH
dt
+ω × H = Γ (1)

where H is the angular momentum of the Earth, ω is the instan-
taneous angular velocity vector, and Γ the external torque.

H = Iω, (2)

where I is the inertia tensor. We use a reference frame with its
axes oriented along the Earth’s mean axes of inertia. Then the
inertia tensor is

I =

⎛⎜⎜⎜⎜⎜⎜⎝
A 0 0
0 B 0
0 0 C

⎞⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎝

c11 c12 c13
c21 c22 c23
c31 c32 c33

⎞⎟⎟⎟⎟⎟⎟⎠ (3)

where the ci j represent the contributions to the elements of the
inertia tensor from the deformations of the Earth due to vari-
ous causes (e.g., tidal forces, surface loading, centrifugal forces
due to Earth rotation variations). Following standard notation,
we write the components of the angular velocity vector as ω1 =
Ωm1, ω2 = Ωm2, ω3 = Ω(1 + m3) where Ω is the mean rotation
rate of the Earth.

We consider an Earth model consisting of an anelastic man-
tle and a fluid core. We ignore the solid inner core as its effect
on the second order contributions to nutations that we are seek-
ing to calculate will be far too small to matter. The equatorial
components (m1,m2), or equivalently, their complex combina-
tion m̃ = m1 + im2, represent the wobble of the mantle. We need
to use also the similar quantities (m1,f ,m2,f) or m̃f = m1,f + im2,f
to represent the differential wobble of the fluid core relative to
the mantle (the subscript f is for “fluid”); m3 and m3,f stand for
the fractional increment to the Earth’s axial rotation rate and to
that of the fluid core relative to the mantle. The equations for m̃,
m̃f , m3 and m3,f (Sasao et al. 1980; Mathews et al. 1991) are:

˙̃m − ieΩm̃ +
˙̃c + iΩc̃

A
+

Af

A
( ˙̃mf + iΩm̃f) =

Γ̃

AΩ
(4)

˙̃m + ˙̃mf − iefΩm̃f + iΩm̃f +
˙̃cf

Af
= 0 (5)

ṁ3 +
Cf

C
ṁ3,f +

ċ33

C
=
Γ3

CΩ
(6)

ṁ3,f +
ċ33,f

Cf
= 0 (7)

where e = (C − A)/A is the Euler frequency, ef = (Cf − Af)/Af
and c̃ = c13 + ic23, c̃f = c13,f + ic23,f , Γ̃ = Γ1 + iΓ2.

The nutation angles ∆ψ and ∆ε describing the motion of the
Earth’s figure axis in space are related to the solution obtainable
for m̃ from Eqs. (4) and (5) through:

∆ε̇ − i∆ψ̇ sin ε = −Ωm̃eiΦ (8)

where Φ is the sidereal rotation angle.

3. Torque on the tidal redistribution

3.1. The tidal potentials

We use for the lunisolar potential of spherical harmonic order l
and degree m a generalized form of the expression employed
by Sasao et al. (1980) for the degree 2 tesseral (l = 2,m = 1)
potential. At any point within the Earth at geocentric distance r,
terrestrial longitude λ and colatitude θ,

Vlm(r, θ, λ) = −1
3
Ω2r2Re(φlmYlm) (9)

where we define Ylm, following Sasao et al. (1980), by Ylm =
Plm(cos θ)exp (−imλ), and

φ20 = K
3 sin2 β − 1

2
, (10)

φ̃21 = φre
21 + iφim

21 = K sin β cos β eiΛ, (11)

φ̃22 = φre
22 + iφim

22 =
1
4

K cos2 β e2iΛ, (12)

where β and Λ stand for the latitude and longitude of position of
the perturbing celestial body referred to a terrestrial frame with
its x and y axes along the equatorial principal axes of inertia, and
K = 3GM/d3Ω2 is dimensionless (M and d are the mass and the
geocentric distance of the perturbing body, respectively).

The apparent motion of the perturbing body from south to
north of the equator and back (annual, in the case of the Sun and
close to once a month in the case of the Moon) determines the
frequency spectrum of φ20, which consists of low frequencies
(�Ω). The apparent westward motions of the Sun and the Moon
in the terrestrial frame causes eiΛ to have a frequency spectrum
centered at −Ω, the central frequency being due to the diurnal
rotation of the Earth and the other frequencies being the result
of the approximately periodic motions of the bodies in space.
Consequently the spectrum of φ̃21 is in the retrograde diurnal
band with frequencies σ centered at −Ω, and that of φ̃22 in the
retrograde semidiurnal band. In the following, we will have to
consider also φ̃∗21, which involves e−iΛ; its frequently spectrum
will evidently be in the prograde diurnal band, centered at +Ω. It
must be noted that the amplitudes φ̃21(σ) of the spectral compo-
nents of φ̃21(t) are real, and so the amplitude of the term with fre-
quency −σ in φ̃∗(t) is the same as that of the term of frequencyσ
in φ̃(t).

The zonal, tesseral and sectorial parts of the degree 2 poten-
tial correspond to (l = 2, m = 0), (l = 2, m = 1) and (l = 2,
m = 2) respectively. The associated Legendre functions of de-
gree 2 being:

P20(cos θ) =
3 cos2 θ − 1

2
, (13)

P21(cos θ) = 3 cos θ sin θ, (14)

P22(cos θ) = 3 sin2 θ, (15)
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one gets the following expressions for the potential in terms of
the Cartesian coordinates (x, y, z):

V20 = −Ω2φ20
2z2 − (x2 + y2)

6
, (16)

V21 = −Ω2(φre
21xz + φim

21yz), (17)

V22 = −Ω2(φre
22(x2 − y2) + 2φim

22 xy). (18)

3.2. Incremental torques

The incremental torque ∆Γlm on the Earth due to the action of
the potential Vlm on the density perturbation δρ arising from the
deformation produced by the potential is

∆Γlm = −
∫

r × ∇Vlmδρdv (19)

where the integral runs over the volume the Earth. For potentials
of degree 2, one can readily evaluate this integral: on substituting
from Eqs. (16)–(18) and noting that the increments ci j to the
elements of the Earth’s inertia tensor are defined by

ci j =

∫ (
r2δi j − xix j

)
δρdv (20)

where the Kronecker function δi j is unity if i = j and zero
otherwise, one finds readily that the equatorial parts ∆Γ̃2m =
∆Γ2m,1 + i∆Γ2m,2 of the torques ∆Γ2m are given by

∆Γ̃20 = −iΩ2φ20c̃, (21)

∆Γ̃21 = −Ω2φim
21(c33 − c22) + iΩ2φre

21(c33 − c11) (22)

+Ω2φ̃∗21c12,

∆Γ̃22 = 2iΩ2φ̃22c̃∗, (23)

where c̃ = c13 + ic23. The jth component of ∆Γ2m has been de-
noted above by ∆Γlm, j.

Note that the relative variations of the moments of inertia
ci j/C are typically 10−8.

3.3. Deformability of the Earth, and the increments
of inertia

The increment to the Earth’s own gravitational potential VE that
results from the redistribution of mass caused by the deforma-
tion of the Earth due to the direct action of an external potential
Vlm(r, θ, λ) is proportional to this potential. The proportionality
factor is the Love number klm which is a measure of the effect
of the deformability of the Earth on the Earth’s external gravita-
tional potential. One has, at points on the surface r = a, a being
the mean equatorial radius of the Earth,

δVE,lm = klmVlm. (24)

For l = 2, the redistribution potential δVE,2m is linked to the mo-
ments of inertia of the redistribution via McCullagh’s theorem
(McCullagh 1855; see also Munk & McDonald 1960). Indeed,
one has:

δVE(l=2) = − G

2r5
(ckkr2δi j − 3ci jxix j) (25)

wherein the xi pertain to any point outside the body.
Now, introduction of the V2m from Eqs. (16)–(18) into

Eq. (25) leads to expressions in terms of Cartesian coordinates
for the δVE,2m. Taking the sum over m and comparing the result-
ing expression to (24), one gets the increments of inertia due to

deformations caused by the direct action of the degree 2 tidal
potential:

c(d)
11 =

1
3
κ20Aφ20 − 2κ22Aφre

22, (26)

c(d)
22 =

1
3
κ20Aφ20 + 2κ22Aφre

22, (27)

c(d)
33 = −

2
3
κ20Aφ20, (28)

c(d)
12 = −2κ22Aφim

22 , (29)

c(d)
13 = −κ21Aφre

21, (30)

c(d)
23 = −κ21Aφim

21 , (31)

where κlm = klma2Ω2/3GA and the superscript (d) stands for
“direct”. The compliances κlm are real for an elastic Earth; they
become complex when mantle anelasticity is taken into account.
The ellipticity and rotation of the Earth as well as anelasticity
give rise to small differences among the values of the κ2m for
m = 0, 1, 2.

Indirect contributions to the inertia tensor arise from the
deformations caused by the centrifugal forces associated with
Earth rotation variations and by the redistribution of ocean mass
(ocean tides) produced by the potential. They will be considered
in the next section. The total ci j is the sum of the direct and indi-
rect effects; and it is the use of this ci j rather than c(d)

i j in Eq. (25)
that leads to the observable δVE(l=2).

It may be noted from Eqs. (26)–(31) that c11 and c22 get con-
tributions from both zonal and sectorial excitations:

c11 = cz
11 + cs

11 (32)

c22 = cz
22 − cs

22 (33)

cz
22 = cz

11 = −
1
2

c33 (34)

cs
22 = −cs

11 (35)

where the superscripts z and s identify the zonal and sectorial
parts. Each of the other elements is generated by the action of a
potential of a single order: c13 and c23 by the tesseral potential
only and c33 by the zonal part alone. These properties are evident
from the expressions given for the direct part of the ci j; they hold,
in fact, for the full ci j. Use of these relations enables us now to
rewrite ∆Γ̃21 of Eq. (22) as:

∆Γ̃21 =
3
2

iΩ2c33φ̃21 − iΩ2(cs
11 + ic12)φ̃∗21. (36)

Since c33 is generated solely by the zonal potential, the first term
in this expression represents the torque due to the action of the
tesseral potential on the deformation produced by the zonal po-
tential; Eq. (21) shows that that ∆Γ̃20 is the result of the recip-
rocal effect: the action of the zonal potential on the deforma-
tion caused by the tesseral potential. Similarly the second term
of (36) represents the interaction of the tesseral potential with
the deformation due to the sectorial potential, while the expres-
sion (23) for ∆Γ̃22 represents the reciprocal action.

We noted in Sect. 3.1 the nature of the spectra of zonal,
tesseral, and sectorial potentials. Furthermore, the deformation
caused by each type of potential has the same spectrum as the
potential. The product of c33, which is due to the zonal poten-
tial having a low frequency spectrum, with φ̃21 having a retro-
grade diurnal specturm evidently produces a retrograde diurnal
spectrum for the first term of the above expression for ∆Γ̃21;
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the same is true for the second term which is a product of ret-
rograde semidiurnal and prograde diurnal factors. One sees sim-
ilarly from Eqs. (21) and (23) that the spectra of ∆Γ̃20 and ∆Γ̃22
too are in the retrograde diurnal band. These statements need
to be qualified when the ocean tide contribution is also taken
into account, because the ocean tides generated by the retro-
grade diurnal/semidurnal potential waves contain prograde di-
urnal/semidiurnal waves too besides the retrograde ones, as will
be seen in Sect. 3.5. For example, the ocean tide contribution
to cs

11 + ic12 from the prograde part of the ocean tide raised by
the sectorial potential will be prograde semidiurnal, and when it
is multiplied by φ̃∗21 the resulting torque is prograde terdiurnal.
However the nutation produced by it is of negligible magnitude,
and so we need consider only the retrograde part of the ocean
tides. Similar statements hold for the effects of the ocean tides
produced by the potentials of other orders.

The sum of the three torques (21), (23), and (36) would re-
duce to zero, as observed by Mathews (2003) and Escapa et al.
(2004), if the ci j consisted of only the direct terms (26)–(31) and
if κ20, κ21, κ22 were all real and had equal values. Actually, the
values are complex and unequal as a consequence of anelastic-
ity, ellipticity, and the Coriolis force due to Earth rotation; and
the centrifugal and ocean tide contributions to the ci j give rise
to further frequency dependent differences. Therefore there ex-
ists a residual second order torque which leads to non-negligible
contributions to the nutations at certain periods and to the pre-
cession, as will be seen below.

3.4. Increments of inertia, including ocean tidal effects

We need to consider now the contributions to the incremental in-
ertia tensor ci j from the centrifugal forces due to Earth rotation
variations and from the deformation caused by ocean tidal load-
ing; these, taken together with the contribution from the direct
action of the potentials, shown in Eqs. (26)–(31), give us the to-
tal ci j. We take up these effects separately for the excitations due
to the three types of potentials.

The contribution from the effects of the tesseral potential
may be expressed as

c̃ = −A[κ21(φ̃21 − m̃) − ξ21m̃f] + c̃(OT), (37)

where the last term is the ocean tidal contribution (as is evi-
dent from the notation) and the other terms are as in Sasao et al.
(1980). The term involving φ̃21 represents the direct effect c̃(d),
while the terms proportional to m̃ and m̃f arise from the cen-
trifugal forces due to the wobble of the mantle and the differ-
ential wobble of the fluid core, respectively. The contribution of
these centrifugal terms is quite significant for some of the nu-
tations. While m̃ is small, of order eφ̃21, m̃f is about 200 times
m̃ for the wobble corresponding to the retrograde 18.6-yr nuta-
tion, and ξ/κ ≈ 0.22, and so its contribution comes to about 14%
of the direct term. (The existence of the Nearly Diurnal Free
Wobble eigenmode with the retrograde period of approximately
−430 days causes resonant enhancement of m̃ and far greater
enhancement of m̃f at nearby frequencies.) MHB expressed the
spectral components c̃(OT)(σ) of the ocean tide contribution, fol-
lowing Sasao & Wahr (1981), as c̃(OT)(σ) = −A∆κ(OT)φ̃21, and
obtained the ocean tidal increments to κ21, namely ∆κOT, with
the help of available data on the ocean tidal angular momentum.
We have employed this method to evaluate c̃(OT)(σ) for frequen-
cies of interest to our calculation of second order contributions to
the nutations. We have also used programs of MHB to evaluate
the the square-bracketed factor in Eq. (37) for these frequencies,
thereby completing the evaluation of c̃.

For a sectorial excitation, one has cs
11 = −cs

22, where the su-
perscript s stands for the sectorial deformations only. Rotation
variations produced by the sectorial potential are proportional to
the triaxiality parameter which is of order 10−5, and therefore the
associated centrifugal effects are quite ignorable. Consequently
one may drop the superscript (d) from terms involving the sec-
torial potential in Eqs. (26), (27), and (29). On combining them,
we have:

cs
11 + ics

12 = −2κ22Aφ̃22 + (cs
11 + ics

12)(OT). (38)

We have used the data (from the CSR4 ocean tide model) on the
amplitudes C±s,22 and S ±s,22 of the spectral components of ocean
tides of spherical harmonic type (l = 2,m = 2) raised by the sec-
torial potentials of various frequencies to arrive at the spectral
amplitudes of the ocean tide part of the above expression. The
relations of the c(OT)

i j to the tide height amplitudes are presented
in the next section. The value used for κ22 was obtained by con-
version (multiplication by a2Ω2/3GA) from the nominal value
k22 = 0.30102−0.00130 i shown in the IERS Conventions 2003,
Chapter 6.

As for the deformations excited by zonal tides, a direct
measure of c33 is provided by the deviation m3Ω of the axial
rotation rate from the mean rate Ω, which is reflected in the
length-of-day (LOD) variations. Accurate modeling of the LOD
variations (e.g., by Defraigne & Smits 1999) recognizes the non-
participation of the core in the axial rotation variations and also
takes account of the contributions of anelasticity and ocean tides.
One has then m3 = cm,33/Cm where the subscript m refers to the
mantle; the increment c33 for the whole Earth may therefore be
expressed, following MHB, as

c33 = −Ceffmz
3, (39)

Ceff =
Cm

1 − γ20Cf/κ20C
, (40)

where Cm = C − Cf is the axial moment of inertia of the man-
tle, and κ20 and γ20 represent compliances of the whole Earth
and the core, respectively, for the zonal tidal potential. (It turns
out that Ceff = 1.2711 Cm.) The spectral amplitudes of m3Ωmay
be found listed in Chapter 8 of the IERS Conventions 2003; we
have used them along with the above equations to compute the
spectral components of c33. Incidentally, the centrifugal contri-
bution to c33 is (4/3)Aκ20m3, which is only about 10−4 times the
direct part given by Eq. (31) and its effect on nutation is entirely
negligible.

3.5. Ocean tidal increments to geopotential coefficients
and the cij

The ocean tide raised by the tidal potential involves a redistri-
bution of the ocean water mass. The loading of the crust by this
incremental mass distribution (which is nonzero only over the
oceans), as well as the attraction of the matter in the Earth’s in-
terior by this mass, causes deformations which affect the inertia
tensor of the Earth and the core regions, and the resultant pertur-
bations of the Earth’s gravitational field.

The ocean tidal contribution to the (lm) part of the Earth’s
gravitational potential VE is:

∆V (OT)
E,lm = −

GM
a

Re
[ (
∆C(OT)

lm + i∆S (OT)
lm

)

× Plm(cos θ)e−imλ
]
. (41)
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Expressions relating the ocean tidal increments ∆C(OT)
lm and

∆S (OT)
lm to the geopotential coefficients are given in Chapter 6

of IERS Conventions (2003) in terms of the spectral amplitudes
C±slm and S ±slm of the cosine and sine parts of the tide height for
the tidal constituent s:

∆C(OT)
lm + i∆S (OT)

lm = Llm

∑
s(lm)

[
(C+slm + iS +slm)e−iΘs

+ (C−slm − iS −slm)eiΘs
]

(42)

where Θs is the argument of the tidal constituent s, and

Llm =

(
4πGρw

g

) (
1 + k′lm
2l + 1

)
Klm (43)

with

Klm =

(
(2l + 1)(l − m)!(2 − δm0)

(l + m)!

)1/2

(44)

where ρw is the density of sea water. The part containing the
factor eiΘs represents a prograde wave with a prograde diurnal
spectrum. As was explained in the last section, this part is ignor-
able for our purposes. The amplitudes that we need then are C+slm
and S +slm; their values may be taken from tables of ocean tide
models (e.g., CSR4). The OT contributions to the increments of
inertia can then be deduced from the equations above using the
relationships between c(OT)

lm and the increments ∆Clm that they
produce to the geopotential coefficients:

cs(OT)
11 + ic(OT)

12 = −2Ma2(∆C(OT)
22 + i∆S (OT)

22 ), (45)

c̃(OT) = −Ma2(∆C(OT)
21 + i∆S (OT)

21 ), (46)

c(OT)
33 = −2

3
Ma2∆C(OT)

20 . (47)

Note that the tabulated OT data are with reference to the terres-
trial frame with its x axis in the Greenwich meridian, while our
dynamical equations are expressed in the frame defined by the
principal axes of inertia. The latter frame is rotated to the West
by 14.◦95 relative to the former (see Bretagnon et al. 1997). We
have taken account of this difference between the two frames
in making our calculations relating to the sectorial tides. As was
mentioned in the last section, the OT increments in the zonal and
tesseral cases were calculated by other means.

As may be seen from MHB paper, the amplitude of the com-
bined contribution ∆κ for the 18.6-yr term due to anelasticity
and oceanic tides is about 8% of the amplitude of the elastic
value of κ (the real part only accounts for about 4%), so that
these effects are comparable in magnitude to the resonance ef-
fects mentioned earlier.

4. Solution of the dynamical equations

To make the dynamical Eqs. (4) and (5) for m̃ and m̃f more ex-
plicit, we substitute for c̃ and c̃f the expressions c̃ = −A[κ(φ21 −
m̃) − ξm̃f ] and c̃f = −A[γ(φ21 − m̃) − βm̃f], where the former
is of the same form as (37) but now with κ = κ21 + ∆κ

(OT) (κ21
itself being taken for the anelastic Earth), and the expression for
the incremental inertia of the fluid core is analogous. When the
equations which emerge after the substitutions are written in the
frequency domain, we obtain:

α1mm̃(σ) + α2mm̃f(σ) = Γ̃(σ) + σ′κφ̃21(σ), (48)

α1fm̃(σ) + α2fm̃f(σ) = σγφ̃21(σ), (49)

Table 1. Frequency bands (in cycle per day) in the terrestrial frame of
the variable quantities involved in the expressions (21), (36), and (23)
for the torques ∆Γ̃20,∆Γ̃21 and ∆Γ̃22. Boxes for cross terms which are
not present in these expressions are left blank. 0 stands for the long
period band.

φ20 φ̃21 φ̃∗21 φ̃22

0 −1 +1 −2

φ20, m̃z
3 0 −1

φ̃21, m̃, m̃f −1 −1
φ̃∗21, m̃∗, m̃∗f +1 −1
φ̃22 −2 −1

where

α1m = σ + κσ′ − e, α2m = σ
′(ξ + Af/A), (50)

α1f = σ(1 + γ), α2f = σ
′ + βσ + ef . (51)

Here σ′ = σ + Ω is the frequency in the space-fixed reference
frame.

Let us suppose that Γ̃(σ) in the above equations is the usual
first order torque. Incrementing it by ∆Γ̃(σ) (which is the spec-
tral component of a second order torque ∆Γ̃(t)) causes the so-
lutions for the wobbles of the mantle and the core to be incre-
mented by amounts δm̃(σ) and δm̃f(σ) respectively. It is evident
that they satisfy the equations

α1mδm̃(σ) + α2mδm̃f(σ) = δΓ̃(σ), (52)

α1fδm̃(σ) + α2fδm̃f(σ) = 0. (53)

What is of interest to us for computing the increments to the
nutation amplitudes is δm̃(σ), which is trivially obtained from
the above equations:

δm̃(σ) = − iα2f

α2fα1m − α1fα2m
∆Γ(σ). (54)

We may now take for ∆Γ̃(t) either ∆Γ̃20(t) or ∆Γ̃22(t) or either
of the terms in the expression for ∆Γ̃21(t) from Eqs. (21), (23),
and (36). Each of these is a product of the form p(t)q(t). So its
spectral component having frequency σ is

∑
σ′ p(σ′)q(σ − σ′).

It may be observed that one of the two factors relates to incre-
ments of inertia and the other factor to the amplitude φ̃ of one or
the other of the three types of tidal potentials. The spectral com-
ponents of the relevant increments of inertia were evaluated as
explained in Sect. 3.4. The spectral amplitudes of the tidal poten-
tials were computed using the lunar theory ELP 2000 (Chapront-
Touzé & Chapront 1983) and the solar system semi-analytical
solution VSOP87 (Bretagnon & Francou 1988). We have used
the recommended standard values (IERS Conventions 2003) for
other parameters. The mean obliquity of the ecliptic at J2000.0
is ε0 = 86431.′′406.

The values used for the compliances in Eqs. (50) and (51)
were: κ = 0.0010340, γ = 0.0019662 which are the esti-
mates from MHB, and ξ = 0.0002222 and β = 0.0006160
from Mathews et al. (1991). While the increments to these from
anelasticity and ocean tides are important in the calculation of
∆Γ̃(σ), they are of no significance in the evaluation of δm̃(σ)
from Eq. (54), since the factor ∆Γ̃(σ) is already of the second or-
der. Once δm̃(σ) is evaluated for various frequencies, the second
order corrections to the (prograde/retrograde) nutations having
the corresponding frequencies σ′ are obtained as

δη̃(σ′) = − 1
σ′
δm̃(σ). (55)
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Table 2. Contribution in the nutation (µas) due to the interaction between different type of tides and potentials. Boxes with values below 1 µas are
left blank. EL: Elastic Earth, AE: Anelastic Earth, OT: Ocean Tides.

EL EL+AE+OT

Period ∆ψ ∆ε ∆ψ ∆ε

l l′ F D Ω (days) sin cos sin cos sin cos

Zonal potential on Tesseral tides

0 0 0 0 1 −6798.4 171 −8 168 −8
0 0 0 0 2 −3399.2 5 −3 5 −3
0 0 2 −2 2 182.6 4 4

Tesseral potential on Zonal tides

0 0 0 0 1 −6798.4 −172 8 −206 −2 10
0 0 0 0 2 −3399.2 −5 3 −6 3
0 0 2 −2 2 182.6 −4 −5
0 0 2 −2 3 187.7 −1

Tesseral potential on Sectorial tides

0 0 0 0 1 −6798.4 65 −63 65 −64
0 0 2 −2 2 182.6 17 −8 17 −8
0 0 2 0 2 13.7 2 −1 3 −1
0 0 0 2 0 14.8 −2 −2
0 0 2 −2 1 177.8 2 −1 2 −1
1 0 0 0 0 27.6 −1

Sectorial potential on Tesseral tides

0 0 0 0 1 −6798.4 −64 62 −63 61
0 0 2 −2 2 182.6 −17 8 −17 8
0 0 2 0 2 13.7 −2 1 −2 1
0 0 0 2 0 14.8 2 2
0 0 2 −2 1 177.8 −2 1 −2 1
1 0 0 0 0 27.6 1 1

Total

0 0 0 0 1 −6798.4 −35 −4 −1
0 0 2 −2 3 187.7 −1

Table 3. Contribution in the precession (µas/cy) due to the interaction
between different type of tides and potentials. Boxes with values below
1 µas are left blank. EL: Elastic Earth, AE: Anelastic Earth, OT: Ocean
Tides.

EL EL+AE+OT

Potential Tides ψ ε ψ ε

Zonal Tesseral −4104 −4045 9

Tesseral Zonal 4110 4910 12

Tesseral Sectorial −27 312 −27 588 47

Sectorial Tesseral 27 009 26 618 58

Total −297 −105 127

The contributions to the nutation coefficients in longitude and
obliquity are obtained in the usual fashion from the amplitudes
of the corresponding pair of prograde and retrograde amplitudes.

Results of the computation are expressed as series of peri-
odical terms. The phase of each term is a linear combination of
Delaunay’s fundamental arguments (l, l′, F, D, Ω). Second or-
der contributions larger than 1 µas to the nutation coefficients
are gathered in Tables 2 (nutation) and 3 (precession). Note
that most of the out-of-phase terms are not displayed for the
anelastic plus OT part, since, for each individual tidal spectral

component, they are only at the level of a few tenths of microarc-
second. However, their cumulated effect reaches 4 µas.

5. Conclusion

This study investigates the effects resulting from the coupling of
each part of the degree 2 potential to deformations due to other
parts of the potential. It is clear that the net effect is very small
as a result of reciprocal cancellations: the effects of the tesseral
potential on zonal deformations are nearly canceled out by the
reciprocal effects of the zonal potential on tesseral deformations.
In the same way, the effects of the tesseral potential on sectorial
tides are almost canceled out by the effects of the sectorial po-
tential on tesseral tides. The reasons for incomplete cancellation
are that (i) the value of the compliance κ differs for tides of dif-
ferent orders (0, 1, 2) even for a nondissipative Earth, and (ii) for
an anelastic Earth with oceans, the contributions from these to κ
are not only frequency dependent (with a different dependence
in different frequency bands) but also complex, meaning that the
response to tidal forcing is out of phase with the forcing.

The net effect on the nutation reaches −35 µas on the 18.6-yr
nutation in longitude and comes mainly from the oceanic tides.
The effects found on the precession are consistent with those
in MHB (−21 mas/cy for the cumulated effects of the tesseral
potential on zonal and sectorial tides). The total effect on the
precession is of the same order of magnitude (0.1 mas/cy) in
longitude and in obliquity.
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