A model for cell type-specific differential gene expression during heterocyst development and the constitution of aerobic nitrogen fixation ability in *Anabaena* sp. strain PCC 7120

SHREE KUMAR APTE[†] and G NARESHKUMAR*

Cell Biology Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India *Department of Biochemistry, M S University of Baroda, Vadodara 390002, India

MS received 16 October 1995; revised 7 March 1996

Abstract. When deprived of combined nitrogen, aerobically-grown filaments of *Anabaena* sp. strain PCC7120 differentiate specialized cells called the heterocysts. The differentiation process is an elaborate and well orchestrated programme involving sensing of environmental and developmental signals, commitment of cells to development, gene rearrangements, intricate DNA-protein interactions, and differential expression of several genes. It culminates in a physiological division of labour between heterocysts, which become the sole sites of aerobic nitrogen fixation, and vegetative cells, that provide photosynthate to the heterocysts in return for nitrogen supplies. We propose a model, to describe the chronology of the important events and to explain how cell type-specific differential gene expression is facilitated by DNA-protein interactions leading to the development of heterocysts and constitution of nitrogen-fixing apparatus in *Anabaena*.

Keywords. Anabaena; heterocyst development; nitrogen fixation; differential gene expression.

1. Introduction

Heterocystous cyanobacteria, such as *Anabaena, Nostoc,* have the unique ability to simultaneously carry out mutually exclusive processes of the O₂-evolving photosynthesis and the highly oxygen-sensitive nitrogen fixation, during aerobic growth (Stewart 1980). They do so by separating these phenomena in space, i.e., under aerobic conditions photosynthesis occurs in the vegetative cells (90-95% cells of the filament), while nitrogen fixation is restricted to 5-10% specialized cells called the heterocysts (Haselkorn 1978). The vegetative cells provide heterocysts with photosynthetically generated carbohydrate which acts as a source of reductant and of ATP needed for nitrogen fixation. In turn, heterocysts fix and assimilate nitrogen as glutamine which is then released to the neighbouring vegetative cells down the filament (Wolk 1982). At the level of prokaryotes this probably forms the best instance of a "physiological division of labour" (Apte 1992, 1993).

Heterocysts differentiate from vegetative cells when the filaments are subjected to nitrogen deficiency (hereafter referred to as nitrogen stepdown) during aerobic growth. Elegant structural and biochemical modifications aimed at optimising conditions for N₂ fixation occur in heterocysts during differentiation (Haselkorn *et al* 1990; Wolk 1991; Buikema and Haselkorn 1993). Photosynthetic machinery is broken down in differentiating cells, resulting in (i) loss of phycocyanin responsible for photolytic O₂

[†]Corresponding author (Fax 022-5560750)

evolution from water (Thomas 1972), (ii) degradation of carboxysomes which house the prime CO₂ assimilating enzyme ribulose 1,5-bisphosphate carboxylase (Rubisco), and (iii) repression of *rbcLS* operon (encoding Rubisco) and Rubisco synthesis. Heterocysts gain a new envelope consisting of additional wall layers of novel glycolipids and polysaccha- rides, impervious to most gases and solutes. As a consequence heterocysts are adequately protected from oxygen but become totally dependent on vegetative cells for photosynthate. Other important gains in heterocysts, which support efficient nitrogen fixation, include (i) synthesis of nitrogenase proteins, (ii) enhanced synthesis of oxidative pentose phosphate pathway enzymes and heterocyst-specific ferredoxins to provide reductant to nitrogenase, (iii) enhanced levels of glutamine synthatase for rapid assimilation of NH⁴, and (iv) additional enzyme systems (such as uptake hydrogenase, superoxide dismutase etc...) to scavenge O₂ (see Apte 1992, 1993, for a review).

An important episode in hetereocyst development is the occurrence of three developmentally regulated gene rearrangements late during heterocyst differentiation (> 18 h) which result in creation of three functional Operons. Two of these belong to nitrogen fixation (nif) genes (Golden et al 1985,1988) and the third occurs in a gene that encodes an uptake hydrogenase (Carrasco et al 1995). These Operons do not express in vegetative cells but only express subsequent to their rearrangement in heterocysts. Several genes that express during heterocyst development or in the mature heterocysts and certain regulatory proteins which appear to bring about cell-specific differential gene expression have been identified in the last 5 years by very elegant techniques and novel experimental approaches. Although these have revealed some exciting facets of the phenomena involved, they have also raised several interesting questions. Prominent among these refer to the perception of environmental/developmental signals, nature of commitment of cells to differentiation, chronology of the various molecular events, nature and regulation of DNA-protein interactions and the overall co-ordination of the structural and functional differentiation. This article proposes a model to explain the molecular basis of various events that occur subsequent to nitrogen stepdown and lead to the establishment of aerobic nitrogen fixation in Anabaena.

2. Genes encoding structural and biochemical components associated with nitrogen fixation in heterocysts

The prominent genes/operons associated with nitrogen fixation in heterocysts are (nif H, D, K), (nif B, J dxN, nif S, U), f dxH, (hupSL), devA, hepA, hglK and gln A (table 1). The genes in the nifH, D, K operon encode structural proteins, the dinitrogenase and dinitrogenase reductase, that together constitute the nitrogenase complex. The nif B product contributes to the synthesis of FeMoco—the active site of dinitrogenase, the f dxN encodes a heterocyst-specific ferredoxin of unknown function (Mulligan et al 1988), while nifS, U gene products probably aid the maturation of dinitrogenase (Haselkorn et al 1990, 1993). The f dxH gene encodes a heterocyst specific ferredoxin (Bohme and Haselkorn 1988) that acts as the terminal electron donor to nitrogenase complex during catalysis (Scrautemeier and Bohme 1985).

The *hupL* gene encodes a heterocyst-specific uptake hydrogenase (Carrasco *et al 1995*) that recycles H₂, evolved by nitrogenase as a byproduct, and helps to scavenge oxygen inside heterocysts (Houchins 1984). A barrier against oxygen from the environment is provided in heterocysts by products of the *hep A*, *hglK* and *devA* genes. The

Table 1. Genes expressed in different cell types of *Anabaena* PCC 7120 following nitrogen stepdown.

Gene/ protein	Probable function	Expression time (h)	Mutant phenotype	Reference
hetR/HetR	Counteracts N repressor, expresses selectively in heterocysts	2 (12–24)	No heterocysts formed	Buikema and Haselkorn 1991a, b; Black et al 1993
patA/PatA	NtrC-like transcriptional regulator, affects pattern of heterocysts	6 (6–12)	Terminal heterocyst, unaffected by the HetR	Liang et al 1982
hetP/HetP	Unknown	6 (6–24)	No heterocysts formed	Fernandez-Pinas et al 1994
sigA/SigA	Principle σ-factor	6 (12-24)	Not attempted	Brahamsha and Haselkorn 1991
sigB/SigB	Alternate σ-factor during nitrogen stepdown	12 (12–18)	Altered morphology of colonies, Het ⁺ , Nif ⁺	Brahamsha and Haselkorn 1992
sigC/SigC	Alternate σ-factor during nitrogen stepdown	6	Altered morphology of colonies, Het ⁺ , Nif ⁺	Brahamsha and Has e lkorn 1992
devA/DevA	Periplasmic permease (like traffic ATPases) of heterocysts	6 (6-24)	Heterocysts lack envelope polysaccha- rides and glycolipids Nif in air	Maldener et al 1994
hepA/HepA	Deposits heterocyst envelope polysaccha- rides	7 -8 (12-24)	No mature heterocysts	Holland and Wolk 1990; Wolk et al 1993
hglK/HglK	Heterocyst glycolipid	-	Defective heterocysts	Buikema and Haselkorn 1993
patB/PatB	Fnr-like transcriptional regulator, affects pattern of heterocysts	12 (12-24)	Slow development of heterocysts, HetR byepasses phenotype	Liang et al 1993
ntcA/NtcA also BifA	Transcription regulator of $glnA > xisA > rbcLS$ > $nifH$, and $hetR$, $ORF1$, $devA$ etc.	12 (12–36)	Het ⁻ , Nif ⁻ , lack the 11 kb and 55 kb element rearrangements	Wei et al 1993, 1994; Ramasubramanian et al 1994
Factor 2	Positive regulator of rbcLS operon, found only in the vegetative cells	_	_	Ramasubramanian et al 1994
ginA/GS 1·7 kb mRNA	Glutamine synthetase, prime ammonia assimi- lating enzyme, expresses from "nif-like" promoter in heterocysts	18 (18–36)	Excretes NH ₄ in the growth medium	Tumer et al 1983; Wei et al 1994
<i>xisA/X</i> isA	Site-specific recom- binase, rearranges the 11 kb element	24 (24–36)	Het ⁺ , Nif ⁻ , lacks 11 kb rearrangement	Lammers et al 1986 Golden and Wiest 1988
xisF/XisF	Site-specific recombinase, rearranges the 55kb element	24 (24–36)	Het ⁺ , Nif ⁻ , lacks 55 kb rearrangement	Carrasco et al 1994

Table 1. (Continued)

Gene/ protein	Probable function	Expression time (h)	Mutant phenotype	Reference
xisC/XisC	Site-specific recom- binase, rearranges 10.5 kb element	24 (24–42)		Carrasco et al 1995
hupL/HupL	Uptake hydrogenase of heterocysts, recycles H ₂	24 (24–30)	Expected to decrease N ₂ fixation	Carrasco et al 1995
nif HDK/ Nif HDK	Nitrogenase in hetero- cysts, facilitates N ₂ fixation	18 (18–42)	Nif ⁻ , unable to grow in N-free media	Golden <i>et al</i> 1991 Wei <i>et al</i> 1994
nifB, f dxN nif S, U	Involved in synthesis of FeMoco and processing of nitrogenase in heterocysts	18 (18–36)	~	Golden et al 1988 Golden et al 1991
ORF1	Contributes to nitrogen fixation in an unknown way	18 (18–30)	Grow poorly in combined nitrogen-free media	Borthakur et al 1990
fdxH/FdxH	Heterocyst ferredoxin, acts as terminal electron donor to nitrogenase	18	-	Schrautemeier and Bohme 1985; Bohme and Haselkorn 1988
rbcLS/ Rubisco	Prime CO ₂ fixation enzyme of vegetative cells, absent in heterocysts	Always present	-	Madan et al 1993

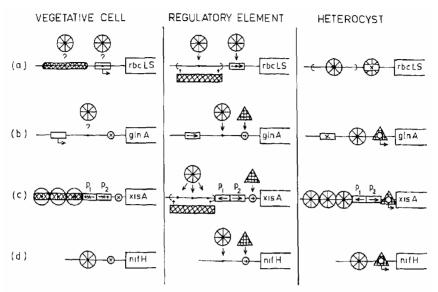
hepA gene codes for a heterocyst-specific polysaccharide that forms the outermost layer of heterocyst envelope (Holland and Wolk 1990; Wolk et al 1993), while the hglK codes for a heterocyst-specific unique glycolipid which forms a layer internal to the polysaccharide layer (Buikema and Haselkorn 1993). A heterocyst-specific periplasmic permease, the devA protein, facilitates the transport of the hglK and hepA products to create heterocyst envelope (Maldener et al 1994).

The first and foremost ammonia assimilating enzyme in *Anabaena* is glutamine synthetase or GS (Thomas *et al* 1975). The *glnA* gene which codes for GS, expresses both in the vegetative cells as also in the heterocysts but a novel 1.7 kb *glnA* mRNA transcript is found only during nitrogen stepdown (Wei *et al* 1994). The *glnA* gene has several promoters (Tumer *et al* 1983) and the 1.7 kb transcript emanates from a "*nif*-like" promoter which is reportedly expressed only in the heterocysts (Wei *et al* 1994).

3. Genes responsible for the developmental gene rearrangements

Three genes involved in N₂ fixation in *Anabaena* are interrupted by large intervening DNA elements. Thus, an 11 kb element is found in the *nifD* gene (Golden *et al* 1985), a 55 kb element in the *fdxN* gene (Golden *et al* 1988) and a 10.5 kb element in the *hupL* gene (Carracso *et al* 1995). The (*nif HDK*) and (*nif B, fdxN, nif S, U*) operons are located next to each other while the *hupSL* operon is located > 700 kb away on *Anabaena*

chromosome (Kuritz *et al* 1993). The interrupting sequences are precisely removed late during heterocyst differentiation (see Apte and Prabhavathi 1994, for a review) by means of three independent site specific recombination events, resulting in gene rearrangements and creation of three functional Operons. Thus, during development of heterocysts three large circular DNAs of 11 kb, 55 kb and 10·5 kb are excised from the chromosome to generate three functional Operons. The excised circles persist in the heterocysts with no discernible function (Haselkorn 1992). The mechanisms underlying these rearrangements have been reviewed extensively (Haselkorn 1992; Apte and Prabhavathi 1994).


The aforesaid gene rearrangements in Anabaena PCC 7120 are brought about by three different excisases, the XisA, XisF and XisC, encoded by three independent genes, namely the xisA (Lammers et al 1986), xisF (Carrasco et al 1994) and xisC (Carrasco et al 1995), respectively (table 1). Interestingly each of these genes resides near the left border of the same DNA element which it excises during development, i.e., the 11 kb element harbours xisA, the 55 kb element harbours the xisF and the 10.5 kb element contains the xisC. The 11 kb element is flanked by a 11 bp direct repeat (GCCTCAT-TAGG) and the 55 kb by a 5 bp direct repeat (TATTC) at each end (Golden et al 1987) while the 10.5 kb element has a 16 bp direct repeat (CACAGCAGTTATATGG) at the left and right borders (Carrasco et al 1995). Each excisase carries out a site-specific recombination event involving the respective direct repeats resulting in the excision of the DNA contained within the direct repeats (Haselkorn 1992). The xisA and xisF are essential genes for nitrogen fixation since mutating them results in Nif phenotype and inhibits diazotrophic growth (Golden and Wiest 1988; Carrasco et al 1994) (table 1). Mutation in xisC have not been obtained yet, but such mutations are expected to only decrease the efficiency of N₂ fixation (Carrasco et al 1995).

All the three excisase genes are developmentally regulated, i.e., they do not express in the vegetative cells. Neither the transcripts nor the protein products of these genes have been visualized in Anabaena, so far. The exact transcription start sites are not known and the functional promoters have not been mapped (Brusca et al 1990; Carrasco et al 1994). The only way to measure their activity has been to screen for the respective gene rearrangements. Based on such studies, the xisA, xisF and xisC seem to express at low levels and only transiently, late during heterocyst differentiation (nearly 18 h after nitrogen stepdown). (Haselkorn 1992; Carrasco et al 1994). The putative promoter region of xisA (- 100 bp to - 170 bp upstream of the second ATG) contains two divergent promoters P₁ and P₂ (Lammers et al 1986). The P₁ promoter is stronger than P₂ and can cause transcription away from the ORF. As a consequence, it can create a strong interference for xisA transcription. A negative regulatory element (NRE) located between — 65 bp to — 192 bp strongly controls expression of xisA (Brusca et al. 1990). At least two DNA-binding proteins, BifA (now NtcA) and factor 2, associate with the NRE (between — 152bp to — 223 bp) and regulate its expression (Ramasubramanian et al 1994). When the NRE was deleted completely, the xisA could be expressed from a strong tac promoter even in vegetative cells (Brusca et al 1990). Deletions up to — 123 bp (which remove binding sites for both BifA and factor 2) caused only low level expression while deletions extending to — 65 bp (which also removes the P₁ promoter) caused high level expression (Brusca et al 1990). Thus, xisA expression in vegetative cells appears to be blocked both by transcriptional interference as well as by binding of regulatory proteins at NRE. Additionally, the xisA gene also contains a "nif-like" promoter (TCTAC at - 57 bp and CAAATAT at - 97 bp). As we shall describe later (see §5 below), in the heterocysts an expression from this "nif-like" promoter may overcome the repression of transcription of this gene. The features likely to be responsible for the developmental regulation of xisF and xisC genes are completely unknown, at this point.

4. Genes encoding heterocyst-specific regulatory proteins

Prominent genes in this group include the hetR, patA, patB, sigB, sigC and ntcA (table 1). The hetR gene controls heterocyst development and is also autoregulatory. The hetR mutants do not form heterocysts while the hetR overexpression produces multiple heterocysts even during nitrate-supplemented growth (Buikema and Haselkorn 1991b). Expression of hetR commences within 2h after nitrogen stepdown (Buikema and Haselkorn 1991b; Black et al 1993) at low levels in all the cells and by 3.5h is localized to differentiating cells only. During the peak expression period (6-24h) the gene expresses abundantly, mainly in the heterocysts (Black et al 1993). A repressor of heterocyst development is believed to prevent heterocyst differentiation in the presence of combined nitrogen as also prevent cells adjacent to a heterocyst from differentiating in Anabaena (Wolk 1991). The nature of such repressor is unknown but some recently characterized genes hetN, hetM and hetI appear to be involved in production of a regulatory secondary metabolite (cyclic peptide?) that inhibits heterocyst formation or their spacing (Black and Wolk 1994). In some way, the HetR protein appears to interfere and titrate out such a hypothetical repressor. The expression of at least one heterocyst specific gene hepA has been shown to depend on hetR (Wolk et al 1993). The predicted HetR protein possesses no structural motifs typical of transcription factors (Buikema and Haselkorn 1991b), and its precise function is not known.

Two independent genes patA and patB have been implicated in pattern formation in Anabaena PCC 7120 (table 1). The patA mutant develops only terminal heterocysts (Liang et al 1992) while in the patB mutant heterocysts develop very slowly but eventually there are many more closely spaced heterocysts compared to the wild type (Liang et al 1993). The patA sequence resembles that of cheY and ntrC (Liang et al 1992), which belong to the well known two component signal sensing/response regulating systems of bacteria (Stock et al 1989). It has been suggested that patA product may be the response regulator (transcriptional activator) of a pair of environment-sensing (nitrogen levels?) system that controls some aspect of heterocyst differenttiation (Buikema and Haselkorn 1993). The PatB protein is equally interesting in that it has a 4Fe-4S bacterial-type ferredoxin domain near the N-terminus and a helix-turnhelix DNA-binding motif at the C-terminus. This structure resembles transcriptional regulators like Fnr in bacteria or the LIM domain in eukaryotes (Liang et al 1993). The PatB may, therefore, function as a sensor of redox state or of iron levels in the cells and may regulate transcription of certain heterocyst-specific genes. Recently, iron levels have been shown to be important for certain heterocyst-specific events such as gene rearrangements and nitrogen fixation (Razquin et al 1994). Interestingly, hetR overexpression has no effect on the phenotype of patA mutation but byepasses that of patB mutation (Buikema and Haselkorn 1993). While the intricacies of their interactions remain to be elucidated, the hetR, patA and patB offer themselves as possible candidates for triggering heterocyst differentiation in response to appropriate environment.

CELL TYPE-SPECIFIC DIFFERENTIAL GENE EXPRESSION IN ANABAENA PCC 7120

Figure 1. A scheme to explain cell type-specific differential gene expression in Anabaena PCC 7120. Important differentially expressed genes are shown in the middle column along with their upstream regulatory elements denoted by (\square), a constitutive "E. coli-type" promoter; (O), a "nif-like" promoter; (●), a NtcA-binding site; and , a factor 2-binding site. Of the three DNA-binding proteins, NtcA/BifA (*) is present in both cell types, the factor 2 (*) only in the vegetative cells, and the σ_{nif} (\triangle) is proposed to be present only in the heterocysts. The downward arrows (\downarrow) point to the binding sites, the horizontal arrows (\leftarrow , \rightarrow) indicate the direction of transcription, while the arrow (\hookrightarrow) signifies induction of transcription. The *rbcLS* expression in vegetative cells is activated by factor 2 by outcompeting the NtcA repressor, in heterocysts NtcA represses rbcLS in the absence of factor 2. The glnA expresses in vegetative cells from "E. coli-type" promoter; in heterocysts NtcA represses expression from "E. coli-type" promoter and induces expression from "nif-like" promoter in conjunction with σ_{nif} . The xisA does not express in vegetative cells due to divergent P_1/P_2 promoters and repression by binding of NtcA and factor 2; in heterocysts the NtcA and σ_{nif} induce xisA expression from the "nif-like" promoter. The nifH does not express in the vegetative cells due to non-availability of σ_{nif} which induces its expression in the heterocysts in combination with the NtcA.

It has been estimated that nearly 15-25% of the genome (> 1000 genes) may selectively express in the *Anabaena* heterocysts (Lynn *et al* 1986). This prompted efforts aimed at identifying heterocyst specific σ -factors among other transcriptional factors (Buikema and Haselkorn 1993). Expression of at least two alternate σ -factor genes, the *sigB* and *sigC*, commences within 6 h of nitrogen stepdown and is maximal between 12 to 18 h—the peak period for heterocyst differentiation, gene rearrangements etc (Brahamsha and Haselkorn 1992). Although, these alternate σ -factors express only under nitrogen deficiency, individual mutants in *sigB/sigC* or a double mutant lacking both SigB and SigC, do not affect nitrogen fixation in *Anabaena* sp. strain PCC 7120 (Brahamsha and Haselkorn 1992). The target genes of these σ -factors and their possible role remains unknown at present.

A global nitrogen control gene *ntcA* was initially identified in a unicellular adiazotroph, *Synechococcus* sp. strain PCC 7942 (Vega-Palas *et al* 1990,1992). In parallel the gene was also cloned and identified as *bifA* (DNA-binding factor A, earlier called the

vegetative cell factor or VF1) in Anabaena sp. strain PCC 7120 (Chastain et al 1990; Wei et al 1993). In Anabaena, the BifA protein was found to bind the target sequence TGT-N₁₀-ACA which is also the target sequence of NtcA in Synechococcus. The sequence was found located upstream of several genes known to be differentially expressed in different cell types (Ramasubramanian et al 1994). Among the target genus of BifA (NtcA) are the rbcLS (two binding sites: between —493 to — 516 bp and between —547 to — 558 bp) encoding ribulose 1,5-bisphosphate carboxylase and expressed only in the vegetative cells, the xisA (three binding sites: located between — 152 to — 205 bp) which expresses only transiently in differentiating cells, *nifH* (no clear binding site) expressed only in heterocysts (Elhai and Wolk 1990) and glnA (one binding site: —125 to — 148 bp) which expresses both in the heterocysts and the vegetative cells (figure 1). The NtcA binding to these genes was found to decrease in the following order glnA > xisA > rbcLS > nifH (Chastain et al 1980; Ramasubramanian et al 1994). A perfect TGT-N₁₀-ACA sequence is also present 1 kb upstream of the hetR gene (see the sequence reported by Buikema and Haselkorn 199 1b) and at — 88 bp in the upstream region of an unnamed gene, the orfl (Borthakur et al 1990). NtcA may positively regulate the transcription of both hetR and orf1 genes, which are expressed only during nitrogen stepdown and specifically in heterocysts. The ntcA gene itself possesses the target sequence, indicating that it may be autoregulated in Anabaena sp. strain PCC 7120 (Frias et al 1993).

The target sequence of NtcA is the same as that of Nif A, the transcriptional activator of nif Operons in all diazotrophs, except that nifA and its product have never been identified in cyanobacteria so far and NtcA controls many genes other than nif in cyanobacteria (Vega-Palas et al 1992; Frias et al 1993; Carrasco et al 1994). Based on the known expression patterns of the genes it binds to, it was thought that NtcA could act both as activator as well as repressor of different target genes (Wei et al 1993) —a common characteristic of the Crp family of regulators (Vega-Palas et al 1992). Recently, a ntcA null mutant has been obtained in Anabaena sp. strain PCC 7120 which has profound negative effects on diazotrophic capabilities of the strain (Carrasco et al 1994). The mutant does not grow in combined nitrogen-free media, does not produce heterocysts, fails to rearrange the nifD and fdxN elements and lacks nitrogenase activity. The mutant also does not express the 17kb glnA transcript which emanates from a "nif-like" promoter (at — 90 bp) (Carrasco et al 1994). However, it does not affect rbcLS expression. These results project NtcA as a transcriptional activator of xisA and 1.7kb glnA transcript. The inability of ntcA mutant to develop heterocysts suggests that NtcA is a global nitrogen regulator affecting both heterocyst development (through expression of hetR?) and nitrogen fixation, as well as nitrate assimilation. By analogy, therefore, it appears to be a functional equivalent of NtrC in enteric bacteria such as Klebsiella (Merrick 1988).

Another DNA-binding protein, termed the factor 2, has also been shown to bind upstream sequences of both the *rbcLS* and *xisA* gene, but not the *glnA* gene, based on gel retardation assays (Ramasubramanian *et al* 1994). More interestingly in the case of *xisA*, its binding domain (—156 to —223bp) completely overlaps the three binding domains (from — 152 to — 205 bp) for NtcA (or BifA). Similarly the binding domain of factor 2 on *rbcLS* (—519 to —581 bp) also completely overlaps one of the two binding domains (—493 to —516 bp and —547 to —558 bp) of NtcA. The corresponding gene for factor 2 has not yet been cloned. The protein is reportedly found only in the vegetative cells but not in the heterocysts (Ramasubramanian *et al* 1994). This contrasts with

NtcA which occurs both in the vegetative cells as well as in the heterocysts (Ramasubramanian *et al* 1994). This suggests interesting possibilities of differential interaction between these two DNA-binding proteins in different cell types.

5. A model to explain the chronology of events and cell type-specific differential gene expression in *Anabaena*

The principle environmental signal that initiates heterocyst differentiation in Anabaena is nitrogen deficiency (Haselkorn 1978; Wolk 1991). Completion of differentiation and formation of mature heterocysts depends on the presence of oxygen in the environment (Rippka and Stanier 1978; Apte 1993; Apte and Prabhavathi 1994). One chronological arrangement of all the important events that eventually result in heterocyst differentiation and constitution of N₂ fixation in Anabaena sp. strain PCC 7120 is listed in table 2. How the change in nitrogen levels in the surroundings is sensed in Anabaena is still not understood. But in the unicellular cyanobacterium Synechococcus sp. Strain PCC 7942 the P_{II} protein, analogue of the well known sensor of nitrogen status in the enteric bacteria, has been identified (Tsinoremas et al 1991) and shown to be activated by its phosphorylation (Forchhammer and Tandeau de Marsac 1994). Kinases which can serve this purpose exist in Anabaena sp. strain PCC 7120 and are expressed quickly (within 2h) following nitrogen stepdown (Zhang 1993). The hetR is one of the earliest genes expressed (2 h) subsequent to nitrogen stepdown and may function as one of the partners in a two-component nitrogen status sensor-transducer system that works early on. The aforesaid early events (table 2) in some way induce certain specific proteases which begin to degrade intracellular nitrogen reserves, especially the hypothetical N repressor of development. Degradation of gene products of hetN, hetM and het I is likely to occur around this time and HetR may play an important role (Buikema and Haselkorn 1991b). Proteases involved are not known but are unlikely to be Ca²⁺-dependent proteases since inactivation of genes encoding them does not affect heterocyst differentiation (Maldener et al 1991). The HetR and/or the proteases, thus, may help in adjudging the cells (with least content of repressor?) destined to be differentiated (table 2). Soon (3.5 h) hetR expression becomes restricted to specific cells—the first visible sign of commitment of cells to differentiation (Black et al 1993).

Once the intracellular optimal nitrogen status has been reached (by 6 h) (table 2), expression of NtrC-like transcriptional factors, such as PatA, may occur in committed cells (Liang et al 1992). At the same time at least two nitrogen stepdown-specific alternate σ_B and σ_c factors also appear but their functions are not yet known (Brahamsha and Haselkorn 1992). Some of these transcriptional factors trigger expression of heterocyst-specific structural components such as products of hepA (envelope polysaccharide) (Wolk et al 1993), hglK (envelope glycolipid) (Buikema and Haselkorn 1993) and devA gene (Maldener et al 1994). Expression of another important gene, hetP, is also induced at 6h and precedes that of hepA; the function of HetP is unknown except that the hetP mutants do not differentiate heterocysts (Fernadez-Pinas et al 1994). Through the continuing action of proteases, proheterocysts lose the blue phycobiliprotein, phycocyanin (Apte and Prabhavathi 1994), and begin to look pale or greenish. Laying of oxygen-impervious heterocyst walls and loss of phycocyanin results in an anerobic milieu in these cells (table 2). A molecular event that signifies this development is the expression and activation of the Fnr-like transcriptional activator, the

Table 2. Chronology of important events related to nitrogen fixation occurring in *Anabaena* PCC 7120. after nitrogen stepdown.

Time (h)	Important events				
0-2	Low nitrogen status is sensed probably by P_{π} type of protein which is activated by phosphorylation. Hypothetical repressor of development and N_2 fixation is degraded. The <i>hetR</i> expresses in all cells and titrates out the repressor.				
3 5	 First sign of commitment of certain cells (with least amount of the N repressor?) to differentiation is visible. HetR expression localized to such committed cells of the filament. Nitrogen reserves in comitted cells are degraded due to induction of specific proteases. 				
6-12	 HetR expression increases further. Expression of patA (a "Ntrc-like" transcriptional activator) begins. Expression of hepA (coding heterocyst wall polysaccharide) starts. Expression of alternate o-factor genes sigB and sigC starts. Expression of hetN, hetM, hetl genes is shut-off and probably helps to consolidate the nature of commitment of differentiation. Proheterocysts begin to lose phycocyanin and O₂ evolving capacity and become morphologically discernible. The devA (coding periplasmic permease) expresses and trafficking of wall layer components to heterocyst walls starts. Expression of patB coding a "Fnr-like" transcriptional activator starts. 				
12-18	 Heterocyst envelopes are formed and mature heterocysts appear. PatB activated since optimal redox state is reached in proheterocysts. HetR, SigB and SigC express abundantly. HepA and HglK (coding heterocyst wall glycolipid) express abundantly. The patA expression decreases. The ntcA gene is expressed strongly. Expression of alternate σ_{ng} capable of interacting with "nif-like" promoters probably occurs at this stage. 				
18-24	 HetR increases 20-fold. SigB, SigC and PatB express maximally. The three excisase genes (xisA, xisF, xisC) are expressed causing gene rearrangements and creating three functional Operons. The 1 7 kb gln A transcript appears. Fully developed mature heterocysts are morphologically discernible. Nitrogenase activity commences. 				
> 24	 Heterocyst frequency reaches a maximum (about 10%). SigB, SigC and PatB disappear. Expression of HetR, DevA, HepA and HglK decreases. NtcA expresses abundantly. nifHDK, hupL, glnA express maximally. Nitrogen fixation reaches a peak at 36-40 h. The rbcLS expression is repressed in the heterocysts. 				

Developmental programme is completed; physiological division of labour is enforced.

PatB, around 12h after nitrogen stepdown (Liang *et al* 1993). The ensuing 6h period witnesses active synthesis of HetR, SigB, SigC, HepA, HglK and DevA but decreased expression of *patA*.

A major development around this time is the strong expression of ntcA product (Wei et al 1994), which has NifA-like DNA-binding properties and NtrC-like global functions. We propose that another (yet to be found) alternative σ -factor (tentatively called

the σ_{nif} is also expressed around 18h in *Anabaena* sp. strain PCC 7120 heterocysts (table 2). It is an interesting coincidence that NtcA arrives on the scene just when the NtrC-like PatA departs. Appearance of NtcA and σ_{nif} sets in motion the functional differentiation, i.e., the closure of carbon fixation, rearrangements of *nif* and *hup* genes and organization of the nitrogen-fixing apparatus in the mature heterocysts. The important events include expression in heterocysts of the three excisase genes (*xisA*, *xisF* and *xisC*), followed by all the *nif* genes, the *hupL*, *fdxH*, *fdxN* and a new mRNA species of *gln A*. Concomitant repression of *rbcLS* completes the story (table 2).

The global effects of ntcA seem to arise from its ability to bind upstream sequences of several genes (figure 1), but its exact role is somewhat enigmatic. Its binding upstream of hetR, xisA, nifH, orfI, and glnA strongly suggest it to be an activator of transcription while its binding upstream of rbcLS befits that of a repressor. This suitably explains the expression of these genes in heterocysts but fails to explain their non-expression in the vegetative cells. The cell-specific expression of these genes appears to be controlled by interactions between the NtcA, another DNA-binding protein factor 2 and the proposed σ_{nif} . The late expression of these genes (after 18h) seems to a consequence of late appearance of NtcA on the scene (> 12 h). The possible scheme and chronology of events underlying the constitution of nitrogen fixation apparatus in Anabaena heterocysts is outlined in figure 1.

To explain the scheme, we propose that NtcA transcriptionally (i) activates the "nif-like" promoters of several genes, especially the xisA, nifH and glnA in combination with the σ_{nif} and (ii) represses expression of *rbcLS* in *Anabaena* sp. strain PCC 7120. NtcA may also affect expression of hetR, orfl and possibly the xisF and xisC genes, though they lack "nif-like" promoters. This suggestion is based on (i) the presence of a target sequence (TGT-N₁₀-ACA) upstream of most of these genes (Borthakur et al 1990; Chastain et al 1990; Buikema and Haselkorn 1991b; Ramasubramian et al 1994), (ii) observed physical binding of NtcA to several of these genes (Chastain et al 1990; Ramasubramanian et al 1994), and (iii) the Het, Nif phenotype of the ntcA mutant which also lacks the 11 kb and 55 kb rearrangements (Wei et al 1994). It may be recalled that a clear NtcA target sequence is not found upstream of nifH, though it binds to NtcA (possibly when $\sigma_{nif.}$ is also available). The location of the NtcA-binding site upstream of glnA suggests a possible dual role (figure 1), i.e., as an inducer of the "nif-like" promoter (at — 90 bp) giving rise to the 1.7 kb transcript typical of nitrogenfixing cultures, and as repressor of the "E. coli-type" promoter (at — 155 bp). The former role appears to be facilitated by σ_{nif} in the heterocysts, there is no evidence that NtcA actually represses glnA transcription from the "E. coli-type" promoter either in vegetative cells or in the heterocysts. Of the two NtcA-binding sites upstream of rbcLS, the one between — 493 to — 416 bp would clearly block the expression from this promoter (at - 504 bp). NtcA, thus, should act as repressor of rbcLS operon (Ramasubramanian et al 1984) (figure 1).

The factor 2 protein, present only in the vegetative cells, is mainly a positive regulator of the rbcLS expression (Ramasubramanian et~al~1994). We propose that in the vegetative cells, factor 2 may counteract the actions of NtcA by interfering with its binding upstream of rbcLS (figure 1). Indeed, Ramasubramanian et~al~(1994) found that in the presence of factor 2, BifA did not bind well to rbcLS. It may be emphasised here that factor 2 has very high affinity for rbcLS than for xisA while the ntcA binding follows the order glnA > xisA > rbcLS > nifH. It seems very likely, therefore, that factor 2 can outcompete NtcA in its binding to rbcLS and cause constitutive expression

of the operon in the vegetative cells. In the heterocysts, which lack the factor 2, the NtcA binds to *rbcLS* and effectively shuts off its transcription (figure 1). That a *ntcA* mutation does not affect the total *rbcLS* expression in *Anabaena* sp. strain PCC 7120 filaments (Wei *et al* 1994) also substantiates the above suggestion.

The reasons for non-expression of xisA in vegetative cells appear to be several, viz., transcriptional interference from divergent P_1 and P_2 promoters (Lammers $et\ al\ 1986$), repression by binding of factor 2 and/or NtcA at the NRE (Chastain $et\ al\ 1990$), and the non-availability of σ_{nif} in the vegetative cells. It seems unlikely that factor 2 can prevent NtcA from binding to xisA (as proposed for rbcLS above) since (i) NtcA binds to xisA much more strongly than factor 2, and (ii) no interference or synergy in binding of either proteins to xisA has been reported, so far (Ramasubramanian $et\ al\ 1994$). We, therefore, attribute the heterocyst-specific expression of xisA, nifH and the l-7kbmRNA of glnA primarily to the presence of σ_{nif} exclusively in the heterocysts, and to its absence in the vegetative cells (figure 1). The glutamine synthetase can be synthesized in the vegetative cells from the " $E.\ coli$ -type" promoter and in the heterocysts from the "nif-like" promoter.

An important lacuna in the proposed scheme is that the detection and isolation of the proposed σ_{nif} has hitherto evaded several laboratories. More serious attempts in this direction, probably with different methods, would be necessary in future. For example, mobility shift assays with purified DNA-binding proteins using *Anabaena* "nif-like" promoter sequences as substrates may prove to be useful. Certain other aspects of the model also need to be corroborated by unambiguous experimental evidence. Thus, the suggested patterns of binding of NtcA and factor 2 to rbcLS and also xisA (figure 1) can be ascertained in gel retardation assays by setting up competetion between NtcA and factor 2 for binding with these targets. Of particular relevance will be the binding patterns observed at the physiological ratios of these proteins found in the vegetative cells. Another clinching evidence needed to confirm the model is the cell type-specific (vegetative cells versus heterocysts) expression of factor 2 as also of ntcA. Studies would also be necessary to fill up the gaps in our understanding of the chain of events (as described in figure 1), especially how the expression of so many transcriptional factors is coordinated in time and linked to the expression of their target genes.

Acknowledgements

We thank Gyaneshwar Prasad and Mrs Anuradha Alahari for useful discussions.

References

- Apte S K 1992 Molecular Biology of Cyanobacterial Nitrogen Fixation: Recent Advances; *Indian J. Microbiol.* 32 103-106
- Apte S K 1993 Cyanobacterial Nitrogen Fixation: Molecular Genetic Aspects; Proc. Indian Natl. Sci. Acad. 59 367-386
- Apte S K and Prabhavathi N 1994 Rearrangements of nitrogen fixation (nif) genes in the heterocystous cyanobacteria; J. Biosci. 19 579-602
- Black T A, Cai Y and Wolk C P 1993 Spatial expression and autoregulation of *hetR*, a gene involved in the control of heterocyst development in *Anabaena*; *Mol. Microbiol.* **9** 77-84
- Black T A and Wolk C P 1994 Analysis of a Het mutation in *Anabaena* sp. strain PCC 7120 implicates a secondary metabolite in the regulation of heterocyst spacing; *J. Bacteriol.* **176** 2282-2292

- Bohme H and Haselkorn R 1988 Molecular cloning and nucleotide sequence analysis of the gene coding for heterocyst ferredoxin from the cyanobacterium *Anabaena* PCC 7120; *Mol. Gen. Genet.* **214** 278-285
- Borthakur D, Basche M, Buikema W J, Borthakur P B and Haselkorn 1990 Expression, nucleotide sequence and mutational analysis of two open reading frames in the *nif* gene region of *Anabaena* sp. strain PCC 7120; *Mol. Gen. Genet.* **221** 227-234
- Brahamsha B and Haselkorn R 1991 Isolation and characterization of the gene encoding the principle sigma factor of the vegetative cell RNA polymerase from the cyanobacterium *Anabaena* sp. strain PCC 7120; *J. Bacteriol* 173 2442-2450
- Brahamsha B and Haselkorn R 1992 Identification of multiple RNA polymerase sigma factor homologs in the cyanobacterium *Anabaena* sp. strain PCC 7120: cloning, expression, and inactivation of the *sigB* and *sigC* genes; *J. Bacteriol.* **174** 7273-7282
- Brusca J S, Chastain C J and Golden J W 1990 Expression of the *Anabaena* PCC 7120 xisA gene from a heterologous promoter results in excision of the nifD element; J. Bacteriol. 172 3925-3931
- Buikema W J and Haselkorn R 1991a Isolation and complementation of nitrogen fixation mutants of the cyanobacterium *Anabaena* sp. strain PCC 7120; *J. Bacteriol.* 173 1879-1885
- Buikema W J and Haselkorn R 199 1b Characterization of a gene controlling heterocyst differentiation in the cyanobacterium *Anabaena* 7210; *Genes Dev.* **5** 321-330
- Buikema W J and Haselkorn R 1993 Molecular genetics of cyanobacterial development; *Annu. Rev. Plant Physiol. Plant Mol. Biol.* **44** 33-52
- Carrasco C D, Buettner J A and Golden J W 1995 Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts; Proc. Natl. Acad. Sci. USA 92 791-795
- Carrasco C D, Ramaswamy K S, Ramasubramanian T S and Golden J W 1994 Anabaena xisF gene encodes a developmentally regulated site-specific recombinase; Genes Dev. 8 74-83
- Chastain C J, Brusca J S, Ramasubramanian T S, Wei T F and Golden J W 1990 A sequence specific DNA-binding factor (VFI) from *Anabaena* sp. strain PCC 7120 vegetative cells binds to three adjacent sites in the *xisA* upstream region; *J. Bacteriol.* **172** 5044-5051
- Elhai J and Wolk C P 1990 Developmental regulation and spatial pattern of expression of the structural genes for nitrogenase in the cyanobacterium *Anabaena*; *EMBO J.* **9** 3379-3388
- Fernandez-Pinas F, Leganes F and Wolk C P 1994 A third genetic locus required for the formation of heterocysts in Anabaena sp. strain PCC 7120; J. Bacteriol. 176 5277-5283
- Forchhammer K and Tandeau de Marsac N 1994 The P_{II} protein in the cyanobacterium *Synechococcus* sp. strain PCC 7942 is modified by serine phosphorylation and signals the cellular N status; *J. Bacteriol.* 176 84-91
- Frias J E, Merida A, Herrero A, Martin-Nieto J and Flores E 1993 General distribution of the nitrogen control gene *ntcA* in cyanobacteria; *J. Bacteriol.* **175** 5710-5713
- Golden J W, Carrasco C D, Mulligan M E, Schneider G J and Haselkorn R 1988 Deletion of a 55-kilobase-pair element from the chromosome during heterocyst differentiation of *Anabaena sp.* strain PCC 7120; *J. Bacteriol.* 170 5034-5041
- Golden J W, Mulligan M E and Haselkorn R 1987 Different recombination site specificity of two developmentally regulated genome rearrangements; *Nature (London)* **327** 526-529
- Golden J W, Robinson S J and Haselkorn R 1985 Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobaclerium *Anabaena*; *Nature (London)* **314** 419-423
- Golden J W and Wiest D R 1988 Genome rearrangements and nitrogen fixation in *Anabaena* blocked by inactivation of xisA gene; Science 242 1421-1423
- Golden J W, Whorff L L and Wiest D R 1991 Independent regulation of nif HDK operon transcription and DNA rearrangement during heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120; J. Bacteriol. 173 7098-7105
- Haselkorn R 1978 Heterocysts; Annu. Rev. Plant Physiol. 29 275-284
- Haselkorn R 1992 Developmentally regulated gene rearrangements in prokaryotes; Annu. Rev. Genet. 26 113-130
- Haselkorn R, Basche M, Bohme H, Borthakur D, Borthakur P B, Buikema W J, Mulligan M E and Norris D
 1990 Nitrogen fixation in filamentous cyanobacteria; in *Nitrogen fixation: Achievements and objectives* (eds) P Gresshoff, L E Roth, G Stacey and W E Newton (New York: Chapman and Hall) pp 497-504
- Holland D and Wolk C P 1990 Identification and characterization of hetA, a gene that acts early in the process of morphological differentiation of heterocysts; J. Bacteriol. 172 3131-3137
- Houchins J P 1984 The physiology and biochemistry of hydrogen metabolism in cyanobacteria; *Biochim. Biophys. Acta* **768** 227-255

- Kuritz T, Ernst A, Black T A and Wolk C P 1993 High-resolution mapping of genetic loci of *Anabaena* PCC 7120 required for photosynthesis and nitrogen fixation; *Mol. Microbiol.* **8** 101-110
- Lammers P, Golden J W and Haselkorn R 1986 Identification and sequence of a gene required for a developmentally regulated DNA excision in *Anabaena*; Cell 44 905-911
- Liang J, Scappino L and Haselkorn R 1992 The pat A gene product, which contains a region similar to CheY of Escherichia coli, controls heterocyst pattern formation in the cyanobacterium Anabaena 7120; Proc. Natl. Acad. Sci. USA 89 5655-5659
- Liang J, Scappino L and Haselkorn R 1993 The patB gene product, required for the growth of cyanobaeterium Anabaena sp. strain PCC 7120 under nitrogen limiting conditions, contains ferredoxin and helix-turn-helix domains; J. Bacteriol. 175 1697-1704
- Lynn M, Bantle J A and Ownby J D 1986 Estimation of gene expression in heterocysts of *Anabaena variabilis* by using DNA-RNA hydridization; *J. Bacteriol.* **167** 940-946
- Madan A P and Nierzwicki-Bauer S A 1993 In situ detection of transcripts for ribulose-1,5-bisphosphate carboxylase in cyanobacterial heterocysts; *J. Bacteriol.* **175** 7301-7306
- Maldener I, Fieldler G, Ernst A, Fernandez-Pinas F and Wolk C P 1994 Characterization of *devA*, a gene required for the maturation of proheterocysts in the cyanobacterium *Anabaena* sp. strain PCC 7120; *J Bacteriol.* **176** 7543-7549
- Maldener I, Lockau W, Cai Y and Wolk C P 1991 Calcium-dependent protease of the cyanobacterium *Anabaena:* molecular cloning and expression of the gene in *Escherichia coli*, sequencing and site-directed mutagenesis; *Mol. Gen. Genet.* 225 113-120
- Merrick M J 1988 Organisation and regulation of nitrogen fixation genes in *Klebsiella* and *Azotobacter*, in *Nitrogen fixation: Hundred years after* (eds) H Bothe, F J deBruijn and W E Newton (Stuttgart: Gustav Fischer) pp 293-302
- Mulligan M E, Buikema W J and Haselkorn R 1988 Bacterial-type ferredoxin genes in the nitrogen fixation regions of the cyanobacterium *Anabaena* sp. strain PCC 7120 and *Rhizobium meliloti; J. Bacterial.* **170** 4406-4410
- Ramasubramanian T S, Wei T F and Golden J W 1994 Two *Anabaena* sp. strain PCC 7120 DNA-binding factors interact with vegetative cell- and heterocyst-specific genes; *J. Bacteriol.* 176 1214-1223
- Razquin P, Schmitz S, Fillat M F, Peleato M L and Bohme H 1994 Transcriptional and translational analysis of ferredoxin and flavodoxin under iron and nitrogen stress in *Anabaena* sp. strain PCC 7120; *J. Bactenol.* 176 7409-7411
- Rippka R and Stanier R Y 1978 The effects of anaerobiosis on nitrogenase synthesis and heterocyst development by Nostocacean cyanobacteria; *J. Gen. Microbiol.* **105** 83-94
- Scrautemeier B and Bohme H 1985 A distinct ferredoxin for nitrogen fixation isolated from heterocysts of the cyanobacterium *Anabaena variabilis*; *FEBS Lett.* **184** 304-308
- Stewart W D P 1980 Some aspects of structure and function in N₂-fixing cyanobacteria; Annu Rev. Microbiol. 34 497-536
- Stock J B, Ninfa A J and Stock A M 1989 Protein phosphorylation; Microbiol. Rev. 53 450-490
- Thomas J 1970 Absence of the pigements of photosystem II of photosynthesis in heterocysts of a blue-green alga; *Nature (London)* **228** 181-183
- Thomas J, Wolk C P, Shaffer P W, Austin S M and Galonsky A 1975 The initial organic products of fixation of ¹³N-labelled nitrogen gas by the blue-green alga *Anabaena cylindrical Biochem. Biophys. Res. Commun.* **67** 501-507
- Tsinoremas N F, Castets A M, Harrison M A, Allen J F and Tandeau de Marsac N 1991 Photosynthetic electron transport controls nitrogen assimilation in cyanobacteria by means of posttranslational modification of the *glnB* gene product; *Proc. Natl. Acad. Sci. USA* 88 1565-1569
- Turner N E, Robinson S J and Haselkorn R 1983 Different promoters for the *Anabaena* glutamine synthetase gene during growth using molecular or fixed nitrogen; *Nature (London)* **306** 337-342
- Vega-Palas M A, Flores E and Herrero A 1992 NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulators; Mol. Microbiol. 6 1853-1859
- Vega-Palas M A, Madueno F, Herrero A and Flores E 1980 Identification and cloning of a regulatory gene for nitrogen assimilation in the cyanobacterium Synechococcus sp. strain PCC 7942; J. Bacteriol. 172 643-647
- Wei T F, Ramasubramanian T S and Golden J W 1994 *Anabaena* sp. strain PCC 7120 *ntcA* gene required for growth on nitrate and heterocyst development; *J. Bacteriol.* **176** 4473-4482
- Wei T F, Ramasubramanian T S, Pu F and Golden J W 1993 Anabaena sp. strain PCC 7120 bifA gene encoding a sequence-specific DNA-binding protein cloned by in vivo transcriptional interference selection; J. Bacteriol. 175 4025-4035

- Wolk C P 1982 Heterocysts; in *The biology of cyanobacteria* (eds) N G Carr and B A Whitton (Berkeley: University of California Press) pp 359-386
- Wolk C P 1991 Genetic analysis of cyanobacterial development; Curr. Opininon Genet. Dev. 1 336-341
- Wolk C P, Elhai J, Kuritz T and Holland D 1993 Amplified expression of a transcriptional pattern formed during development of *Anabaena*; *Mol. Microbiol.* **7** 441-445
- Zhang C 1993 A gene encoding a protein related to eukaryotic protein kinases from the filamentous, heterocystous cyanobacterium *Anabaena* sp. strain PCC 7120; *Proc. Natl. Acad. Sci. USA* **90** 11840-11844