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We describe the zero-temperature phase diagram of a model of bosons, occupying sites of a linear
chain, which obey a hard-exclusion constraint: any two nearest-neighbor sites may have at most
one boson. A special case of our model was recently proposed as a description of a “tilted” Mott
insulator of atoms trapped in an optical lattice. Our quantum Hamiltonian is shown to generate the
transfer matrix of Baxter’s hard-square model. Aided by exact solutions of a number of special cases,
and by numerical studies, we obtain a phase diagram containing states with long-range density-wave
order with period 2 and period 3, and also a floating incommensurate phase. Critical theories for
the various quantum phase transitions are presented. As a byproduct, we show how to compute the
Luttinger parameter in integrable theories with hard-exclusion constraints.

I. INTRODUCTION

In recent years, the study of quantum models with
multiple competing ground states has emerged as an im-
portant theme in the study of strongly-correlated many-
body quantum systems. For example, in the cuprates it
is clear that states with density-wave order at a variety
of wavevectors play an important role in the physics at
low carrier concentrations.

In this paper, we introduce a simple one-dimensional
quantum model which displays a multiplicity of ground
states. Despite its simplicity, it exhibits (i) gapped states
with commensurate density-wave order (with periods of
2 and 3 lattice spacings), (ii) gapless regions with “float-
ing” incommensurate, quasi-long-range density-wave cor-
relations, and (iii) gapped states which preserve transla-
tional symmetry. A special case of our model appeared
in a recent study [1] of atoms trapped in optical lattices
[2], and so an experimental study of the phase diagram
presented here may be feasible. More generally, we of-
fer our model as a simple laboratory, with many exactly
solvable cases, for the interplay of density-wave orders
with multiple periods in quantum systems.

Our model is expressed in terms of the bose operator
dj , which annihilates a boson on site j, and the boson
number operator

nj ≡ d†jdj . (1)

The “hard” boson condition allows no more than 1 boson
on any pair of nearest-neighbor sites, and hence all states
obey the constraints

nj ≤ 1 ; njnj+1 = 0. (2)

In the study of Mott insulators in optical lattices [1],
the dj boson represents a dipole excitation, consisting
of a particle-hole pair bound on nearest neighbor sites of
the optical lattice. This microscopic dipole interpretation

will not be crucial to our analysis here, and so we will
refer to dj simply as a boson.

The boson Hamiltonian we study is

H =
∑

j

[
−w

(
dj + d†j

)
+ Unj + V njnj+2

]
(3)

Note that the total number of bosons is not conserved,
and it is possible to create and annihilate bosons out of
the vacuum. This is natural in the dipole interpretation
of the boson, as a particle-hole pair can be created or
annihilated from the background Mott insulator. There
is also no explicit boson hopping term; as was shown in
Ref. 1, boson hopping is generated by the combination
of the constraints in (2) and single-site terms already in
H, and so it is not necessary to include an explicit hop-
ping. U is a chemical potential for the bosons, while V is
a “nearest”-neighbor interaction, “nearest” meaning two
sites apart, the closest two bosons can come. One can of
course rescale out one of the couplings to obtain a two-
parameter Hamiltonian, but it will be convenient to keep
all three. The case V = 0 of H was studied in Ref. 1;
we have also streamlined the earlier notation of the cou-
pling constants to a form suitable for our analysis here.
Without the constraints (2), the Hamiltonian would be
trivially solvable. With them, its analysis becomes quite
intricate.

The ground state of our Hamiltonian (3) can exhibit
several kinds of order, depending on the couplings. The
Hamiltonian will favor having bosons on every other site
if we have an attractive “nearest”-neighbor interaction,
or a chemical potential favoring the creation of parti-
cles. We will show that this leads to a regime of Ising-
type order, with a spontaneously broken Z2 symmetry,
translation by one site. If the chemical potential still
favors creating particles, but there is a repulsive “near-
est” neighbor potential, then the ground state will favor
having a particle on every third site. This sort of order
breaks a Z3 symmetry, translation by one or two sites.

http://arXiv.org/abs/cond-mat/0309438v2
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When the the two kinds of ordered states have nearly the
same energies, we will show that there exists an incom-
mensurate phase. In the incommensurate phase, bosons
appear on every other or every third site.

The one-dimensional quantum Hamiltonian (3) looks
unusual because of the single-particle creation and an-
nihilation operators. However, it in fact has already
appeared in a very different context: it arises from
taking the (Euclidean) time continuum limit of a two-
dimensional classical statistical-mechanical model, the
hard-square model [3]. This model describes the statis-
tical mechanics of square tiles placed on the sites of a
square lattice. Each square tile is rotated by 45◦ from
the principal axes of the square lattice, and the area of
each tile is twice the area of a single plaquette of the
lattice. Tiles are not allowed to overlap, so this means
nearest-neighbor sites cannot both be occupied: putting
a tile on every other site of the square lattice covers all
of space.

It is easy to see that the Hilbert space of our one-
dimensional quantum theory is identical to the space of
states along a line of the hard-square model. In the quan-
tum theory, the Hilbert space consists of bosons which
are restricted one to a site and forbidden to be nearest
neighbors. In the two-dimensional classical theory, the
squares appear at most one to a site, and are forbidden
to be nearest neighbors. It is less obvious that one can
obtain the quantum Hamiltonian (3) by taking a limit of
the classical transfer matrix. We show in the Appendix
how to do this, by taking the (Euclidean) time direction
to be along the diagonals of the square lattice. Roughly
speaking, the chemical potential U and interaction V cor-
respond to a chemical potential and interaction strength
for the squares. The precise relations are derived in the
Appendix.

The phase diagram of the hard-square model has been
studied in Ref. 4. We will explain in section II how
these results apply to the ground state of our quantum
Hamiltonian. An extremely useful result is that the hard-
square model is integrable for some values of the Boltz-
mann weights [3]. In terms of the Hamiltonian (3), this
amounts to two lines in our two-parameter space of cou-
plings:

w2 = UV + V 2. (4)

There is a single critical point along each of these lines;
they are in the universality classes of the Ising tricritical
point and of the three-state Potts model critical point.
We will show how these critical points describe transi-
tions to and from the Z2 and Z3 ordered phases.

In section II we discuss the different regions of phase
space. In section III we discuss in depth the phase with
order of period 3, the phase with spontaneously-broken
Z3 symmetry. We present numerical results to support
the analytic arguments. In sections IV and V, we discuss
the incommensurate “floating” phase in depth. In section
IV we derive an effective Hamiltonian for this region, and
prove that an incommensurate phase exists by bosonizing
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chiral transition

integrable

Ising second order
Ising first order

incommensurate region

Z   ordered
2

disordered

U/w

Z   ordered
3

V/w

tricritical point M 2

Potts critical point M
3

FIG. 1: Ground-state phase diagram of H as a function of
U/w and V/w. Schematic representations of the ground states
with density waves of period 2 and 3 are shown. The dotted
lines indicate the positions of the integrable lines in (4). The
critical points along these lines (6,8) are labeled M2,3. The
extent of the incommensurate region has been greatly exag-
gerated for clarity: it is drawn to scale in Fig 8. There could
also be an incommensurate region adjacent to the chiral tran-
sition line about M3, but we have no direct evidence for this
possibility.

it. In section V we calculate the size of this phase by
using the Bethe ansatz to compute the effective Luttinger
parameter exactly. This enables us to find the region
in which vortex-type perturbations are irrelevant and do
not destroy the incommensurability. Unfortunately, this
region occupies a fairly small region of parameter space,
so it is not possible to see this result numerically.

II. PHASE DIAGRAM

Our main results are summarized in the phase diagram
shown in Fig 1. We discuss the phases and phase tran-
sitions in this figure by considering a number of limiting
cases.

A. Z2 order

First we consider the case V = 0, which was stud-
ied earlier in Ref. 1. Although the Hamiltonian looks
simple in this limit, the prohibition of nearest-neighbor
bosons means that this case is not solvable except as
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U/w → ±∞. For large positive U/w we obtain a fea-
tureless ground state with a small density of bosons and
which breaks no translational symmetry, as is easily seen
from H. This is a disordered, or liquid, phase. Similarly,
for U/w large and negative, the energy is minimized by
states with a maximal density of bosons: there are 2 de-
generate states of this type, each with every second site
occupied; in other words, there is a density wave of period
2, and translational symmetry is spontaneously broken.
It was shown numerically in Ref. 1 that there is a second-
order Ising critical point which separates these phases at
U/w = −1.308 . . ..

One can also find the location of the transition from
Ising order to disorder easily in the limit V → −∞ and
U ≈ −V . With |U | and |V | both large, we can ignore
the w term, and then H becomes a model of classical par-
ticles. The empty state with no particles has energy 0,
while the maximally occupied states with density waves
of period 2 have energy per lattice site of (U + V )/2.
There is therefore a first-order transition between these
states at U = −V . Actually, it is quite easy to find the
position of this first-order transition to order (w/V )2.
Using standard second-order perturbation theory in w,
the energy per site of the empty state is −w2/U . Simi-
larly, the energy per site of the maximally occupied state
is (U +V )/2+w2/(2(U +2V )). Equating these two ener-
gies we estimate the position of the first-order transition
to be

U

V
= −1 +

w2

V 2
(5)

The integrability of the model along the lines (4) lets us
understand how this transition occurs at finite V and w.
In fact, the condition (5) coincides precisely with one of
the integrable lines in (4). Indeed, the arguments of Huse
[4] and the exact results [3, 5] imply that integrable line is
precisely along the co-existence line of these two phases,
and hence the first-order boundary is given exactly by
(5), with no corrections at higher order in w/V .

At the value

V

w
= −

(√
5 + 1

2

)5/2

(6)

there is a critical point along the integrable line. Thus
the first-order transition line must terminate. Huse ar-
gued that this integrable quantum critical point was a
tricritical point separating a first-order boundary from a
line of second-order Ising transitions. Indeed, the com-
putation of exact critical exponents at this point [3, 5]
shows that this critical point in the hard-square model
is in the same universality class as the tricritical point
in the Ising model. This tricritical point in the contin-
uum limit is described by the minimal conformal field
theory with central charge c = 7/10 [6]. Therefore, the
line of first-order transitions determined by (5) is present

for V/w < −((
√

5 + 1)/2)5/2, where it terminates at the
Ising tricritical point M2 shown in Fig 1. There is a line

of second-order Ising transitions on the other side of M2,
but this is not on the integrable line (4); this second-order
line clearly passes through the point (6) discussed above.
The exact computations show that the integrable line for
0 > V/w > −((

√
5 + 1)/2)5/2 is in the Z2 ordered phase

[3, 5]. This is consistent with the finite value (6) of Uc

for V = 0; at V = 0 the integrable line is at U = −∞.

B. Z3 order

Consider the case V → ∞, |U | ≪ V . The large posi-
tive value of V now prohibits bosons separated by 2 lat-
tice spacings, and hence we effectively have the constraint

njnj+2 = 0 (7)

along with the constraints (2). The physics in this re-
gion can be understood using reasoning parallel to that
in Section II A. As before, for large positive U/w, we
obtain a featureless ground state with a small density of
bosons, which breaks no lattice symmetry. For U/w large
and negative, the ground state has a maximal density of
bosons: with the constraints (2) and (7) there are now 3
degenerate states of this type, each with every third site
occupied. Here we thus have a density wave of period 3.

To study this phase with spontaneously-broken Z3

symmetry at finite V , we can use results for the other
integrable line, where V/w > 0 in (5). Along this line
there is a quantum critical point at [3]

V

w
=

(√
5 + 1

2

)5/2

. (8)

This critical point is in the universality class of the three-
state Potts model [3, 5]. In the continuum limit this is
described by the minimal conformal field theory with cen-
tral charge 4/5 [6]. For w/V smaller than this value and
along this line, the exact results indeed show that the
Z3 translation symmetry is broken. For w/V larger than
this value and along this line, there is no order. Thus
along the integrable line, the transition is in the univer-
sality class of the usual order-disorder transition in the
three-state Potts model; similar Z3 quantum criticality
occurs in an XXZ chain in a staggered field [7]. However,
as opposed to the Ising case, the transition away from
this integrable line is not of the usual type [4]: it is re-
lated that of the chiral clock model [8]. We will discuss
the nature of the transition between these states as a
function of U/w in Section III, including the possibility
of additional intermediate states with incommensurate
periods.

C. Competing orders

The most complicated and interesting limit is V → ∞,
U ≈ −3V . where there is competition between density-
wave orders of period 2 and period 3. Initially, as in
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Section II A, we anticipate that with |V/w| and |U/w|
both large, we can neglect quantum effects and consider
a model of classical particles. The period-2 and period-3
density-wave states then have energies per site (U +V )/2
and U/3 respectively, so that the ground states become
degenerate at U = −3V . In fact, at U = −3V in this
limit, there are many degenerate states: any state where
successive particles are separated by either 2 or 3 lattice
spacings is within the ground state manifold. This results
in an extensive classical entropy at U = −3V . This ex-
tensive degeneracy is lifted only by quantum effects, and
perturbation theory in w is therefore highly non-trivial.
The analysis of quantum effects in this regime will be
presented in Sections IV and V. We will establish that
there is an intermediate gapless phase with incommen-
surate spin correlations. We will show as well that the
gapped state with no broken symmetry also intervenes
between the period-2 density-wave state and the incom-
mensurate phase, as shown in Fig. 1.

We will argue in Section III that there also should be
an incommensurate phase near the Potts critical point
M3. The simplest and most plausible possibility is that
this phase and the one for −U ≈ 3V ≫ 1 are the same.
We have drawn the phase diagram in this fashion.

III. DENSITY-WAVE ORDER OF PERIOD 3

The density-wave state of period 3 appears when V
is large and positive, so that bosons with separations of
both 1 and 2 lattice spacings are suppressed. This section
and the next will discuss the manner in which quantum
fluctuations destroy this period-3 order.

It is useful to begin with the limit V → ∞, noted
above in Section II B. At first glance, there appear to
be only two distinct possibilities for the ground states: a
featureless, low density state at large positive U/w, and
a density-wave state of period 3 at large negative −U/w.
We might also anticipate that these states are separated
by a second-order critical point in the universality class of
the 3-state Potts model. However, the situation is more
subtle [4].

It is useful to introduce order parameters, Ψp, which
characterize density-wave orders of period p (in general,
p need not be an integer):

Ψp =
∑

j

nje
i2πj/p (9)

For p = 2, the Ising order parameter Ψ2 is real. However,
for the p = 3 case we consider in this section, the Potts
order parameter Ψ3 is complex. Clearly, the state with
density wave order of period 3 has 〈Ψ3〉 6= 0, while the
featureless, low density state has 〈Ψ3〉 = 0.

Using the usual symmetry criteria, we can write down
a continuum quantum field theory describe the onset of
Potts order. The action should be invariant under trans-
lations, under which Ψ3 → ei2πℓ/3Ψ3, with ℓ integer. A

crucial point, noted by Huse and Fisher [9] in a different
context, is the behavior under spatial inversion:

x → −x , Ψ3 → Ψ∗
3 (10)

where x is the continuum spatial co-ordinate. Finally, we
note that Ψ3 is invariant under time reversal. These sym-
metry constraints lead to the following proposed effective
action for the quantum field theory (τ is imaginary time):

S3 =

∫
dxdτ

[
iαΨ∗

3∂xΨ3 + c.c + |∂τΨ3|2 + v2|∂xΨ3|2

+ r|Ψ3|2 + vΨ3
3 + c.c. + . . .

]
(11)

The critical point associated with this field theory occurs
at α = r = 0, and is in the same universality class as
the critical point in the three-state Potts model. This is
described by a conformal field theory of central charge
4/5, and the dimensions of all the operators are known.

The exact results show that the integrable critical
point M3 indeed is in the universality class of the three-
state Potts model [3, 5]. It separates a state with density-
wave order of period 3 from the gapped translationally-
invariant state [3, 6]. Just because the critical point is
in the same universality class as the three-state Potts
model does not mean that all the physics in the region of
the critical point is the same. The key difference is the
presence here of the linear spatial derivative proportional
to α, which is clearly allowed under the symmetries (10).
This term is chiral, in that it breaks rotational symmetry.
The exact results show no evidence of chiral behavior, so
the effective theory describing the integrable line presum-
ably corresponds to α = 0. Varying r at α = 0 therefore
moves one along the integrable line, and describes the
usual physics of the three-state Potts model: a second-
order transition between Z3 order and disorder.

When one moves off the integrable line (taking α 6= 0 in
the effective theory), the theory in the universality class
of the chiral clock model [8]. The chiral perturbation,
α, is known to be relevant at the ordinary Potts critical
point [10], with scaling dimension 1/5; the perturbing op-
erator has dimensions 9/5 and breaks Lorentz invariance.
Thus for α 6= 0, the quantum phase transition associated
with the vanishing of density-wave order of period 3 is
in general not in the same universality class as the usual
order/disorder transition in the ordinary 3-state Potts
model. The integrable point M3 is an isolated multicrit-
ical point; all other points on the phase boundary of the
period-3 state must have α 6= 0, and display the physics
of the chiral clock model. Note the contrast with the cor-
responding transition associated with density-wave order
of period 2: this transition is in the Ising universality
class because Ψ2 is real, and then the term proportional
to α is a vanishing total derivative.

The chiral clock model is generally believed to exhibit
an incommensurate phase [8, 9, 10]. In the region near
the multicritical point M3, this occurs when the chiral
perturbation (α 6= 0) dominates over the thermal per-
turbation (r 6= 0). This region is therefore quite narrow,
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because α, of dimension 1/5, is much less relevant than
r, which is of dimension 6/5. Thus r must effectively
vanish for the effects of the chiral perturbation to be felt.
In the next section, we will show that the incommensu-
rate phase does have a finite (albeit small) width far from
the multicritical point, where |U | and V are large, with
U =≈ V/3. There is no indication that any more new
physics intervenes in between this region and the incom-
mensurate region near M3, so we presume that these two
phases are the same, as we have indicated in Fig. 1.

In the remainder of this section we will describe our nu-
merical study of the physics in the limit V → ∞, which
corresponds to being on the portion of the phase bound-
ary of the period-3 state above the multicritical point M3

in Fig 1. Our numerical results here are inconclusive, as
we see little deviation from the pure 3-state Potts physics
for the system sizes examined. We will study the portion
of the phase boundary below M3 in Section IV, and there
we shall definitively establish the existence of a gapless
incommensurate phase, driven by the presence of the chi-
ral perturbation; the ordering wavevector, K = 2π/p, of
this incommensurate phase obeys K > 2π/3. A simple
fluctuation analysis of S3 indicates that K −2π/3 is pro-
portional to α. As α vanishes at M3 where K = 2π/3,
these results suggest the conjecture that there is a small
intermediate, gapless, incommensurate phase also above
the point M3, but with a change in sign of α leading to
an ordering wavevector K < 2π/3. Our numerical stud-
ies below, however, do not show any specific evidence
in support of this conjecture. This is possibly because
the scaling dimension of the chiral perturbation is quite
small, and very large system sizes are needed before its
effects are perceptible. Furthermore, we shall find in the
study of the portion of the phase boundary below M3 in
Section IV that the region of incommensurate spin cor-
relations is extremely small, and it is likely that a similar
feature holds in the above M3 region being studied here.

The numerical analysis for large V is simplified by sim-
ply eliminating all states with an energy determined by
V . This is equivalent to extending the constraints (2) to

nj ≤ 1 ; njnj+1 = 0 ; njnn+2 = 0, (12)

and working with the simplified Hamiltonian

Hs =
∑

j

[
−w

(
dj + d†j

)
+ Unj

]
(13)

The exact diagonalization of Hp can then be carried out
for system sizes N ≤ 21.

First, we searched for the preferred values of p in a
system of size N = 21. We applied a small external
cosine potential on the bosons of magnitude 10−4 and
wavevector 2π/p, and measured the resulting values of
〈Ψp〉 as a function of U/w. The results are shown in
Figs 2 and 3. Fig. 2 shows that value of Ψ3 is much
larger than the response at another nearby wavevector.
Figure 3 shows similar data, but with a greatly expanded
vertical scale. The response at periods p 6= 3 is always

<Ψ3>

<Ψ21/8>

FIG. 2: Density-wave order, 〈Ψp〉, induced by an external
potential at wavevector 2π/p and magnitude 10−4. There
appears to be onset of spontaneous density-wave order with
period p at the smaller values of U/w.

<Ψ21/8>

<Ψ21/6> <Ψ21/9>

FIG. 3: As in Fig. 2, but with a greatly expanded vertical
scale. All of the periods shown above show no sign of spon-
taneous order.

much smaller, and so we see no sign of spontaneous or-
der at any other wavevectors. Interestingly, the largest
secondary response is at the wavevector 16π/21. This
is contrary to our expectations earlier based on the in-
fluence of the chiral perturbation in (11), where we an-
ticipated incommensurate order at wavevectors smaller
than 2π/3. However, given the very small susceptibility,
and the small system sizes considered we are not able to
interpret any of this data in support of an incommen-
surate phase. Any such phase, if present, must be over
an extremely small parameter regime, as is found in Sec-
tion IV
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FIG. 4: Plot for the energy gap ∆ as a function of U for
different system sizes. The data for different system sizes
cross at Uc/w = −1.852.

Ignoring the presence of a possible intermediate in-
commensurate phase, we now see if our data can be in-
terpreted in the context of a direct transition from the
gapped density-wave state of period 3, to a gapped “liq-
uid” state which does not break any translational sym-
metries. We expect such a transition to be in the Potts
universality class. Indeed, we now show that our data
are in complete accord with such an assumption, with
excellent agreement to the expected values of the critical
exponents. This is again consistent with an as yet unde-
tected influence of the chiral perturbation in the present
analysis (the chiral perturbation is more clearly detected
in Section IV).

First, let us determine the position of a presumed crit-
ical point from the period-3 (Potts) density-wave state to
a disordered state using finite size scaling analysis. Near
the quantum critical point, the energy gap ∆ is expected
to obey the scaling relation

∆ = N−zΦ
(
N1/ν(U − Uc)

)
(14)

where Φ is an universal scaling function, z is the dynamic
critical exponent, and ν is the correlation length expo-
nent. Fig. 4 shows a plot of N∆/w vs U/w which exhibits
a clear crossing point at

Uc

w
= −1.852. (15)

From Eq. 14, we thus conclude that z = 1. Fig 5 shows
a plot of N∆/w vs N1.2(U − Uc)/w. We find that the
data for all N collapses for Uc/w = −1.852, giving ν =
0.833. The numerical values of ν and z obtained here are
in excellent agreement with the known analytical values
z = 1 and ν = 5/6 for the three-state Potts model [17].

As a final test of the three-state Potts universality
class, we calculate the equal-time structure factor of the

FIG. 5: Scaling plot for the energy gap ∆. The data for dif-
ferent system sizes collapse for ν = 0.83 and Uc/w = −1.852.

FIG. 6: Plot of the equal-time structure factor S2π/3 for dif-
ferent system sizes. The data for different system sizes cross
at Uc/w = −1.852 for η = 0.27

Potts order parameter Ψ3 (Eq. 9) given by

S2π/3 =
1

N
〈Ψ∗

3Ψ3〉 . (16)

The structure factor is expected to scale as N2−z−η near
the critical point. A plot of S2π/3/N

0.73 vs U/w, as
shown in Fig. 6, shows excellent crossing at Uc/w =
−1.852. From this, knowing z = 1, we identify η = 0.27,
which is again in good agreement with the known exact
value η = 4/15 [17].
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IV. COMPETITION BETWEEN

DENSITY-WAVE ORDERS OF PERIODS 2 AND

3: THE INCOMMENSURATE STATE

We noted in Section II C that in the classical limit
(w = 0), the period-2 and period-3 states become de-
generate for U = −3V . Here we shall study the quan-
tum physics near this degeneracy point. As will become
clear, the physics is quite complicated, but we are able
to obtain a complete picture by a combination of pertur-
bation theory, bosonization, and Bethe ansatz methods.
Our primary result is that the gapped period-2 and pe-
riod 3 are separated by 2 intermediate phases, and all
these phases are separated by 3 second-order quantum
phase transitions (see Fig. 1). Above the period-2 phase
is the gapped, translationally invariant state, accessed
by a conventional Ising transition. Above this is a gap-
less, incommensurate phase reached across a Kosterlitz-
Thouless transition. Finally, we reach the gapped period-
3 phase via a Pokrovsky-Talapov transition [11].

We will establish these results by a careful study of the
region of the phase diagram where

0 < w, |U + 3V | ≪ |U |, V (17)

It will become clear from our analysis that the non-trivial
region of the phase diagram is where

|U + 3V | ∼ w2

V
. (18)

So we introduce the new dimensionless coupling σ, and
parameterize

U ≡ −3V

[
1 +

(w

V

)2

σ

]
. (19)

The above conditions on the interesting regime can now
be restated as follows

0 < w ≪ V ; σ ∼ 1 (20)

We shall follow the physics as σ is tuned from large neg-
ative to large positive values, while maintaining (17).

A. The effective Hamiltonian

As we mentioned in Section II C, under the condition
(20), the important states are those in which successive
dj bosons are separated by either 2 or 3 lattice spacings.
We denote such a state by the sequence of lattice spacings
e.g. | . . . 23323233 . . .〉; see Fig. 7. We wish to develop an
operator formalism for describing such states. We shall
introduce two distinct formalisms below, but it should al-
ways be kept in mind that both describe identical Hilbert
spaces with identical spectra.

In the first approach, we describe the states in terms
of ‘defects’ or ‘domain walls’, or ‘kinks’ in the ordered
period-2 density-wave states. This description focuses

FIG. 7: The state | . . . 23322 . . .〉. Filled circles are dj bosons,
and empty circles have no bosons.

on the 3’s in a background of 2’s. We view each 3 as

a new boson, created by the operator t†ℓ , located at the
center of the 3 defect. Note that the ℓ sites lie at the
midpoints of the links of the j sites of the original model
H. Thus the state | . . . 2223222 . . .〉 represents a single
t boson. An arbitrary state in the low-energy subspace
can be described by a configuration of t bosons. The
resulting t boson states obey some constraints: there can
only be at most one t boson per site, and successive t
bosons must be separated by 3, 5, 7, 9, 11 . . . sites.

Second-order perturbation theory also allows us to ob-
tain the effective Hamiltonian for the t bosons to order
(w/V )2. It is useful to first tabulate the energies of dif-
ferent configurations of the original d bosons in different
environments, to order (w/V )2. For a d boson between
22 bonds we have

E22 = U + V +
w2

U + 2V
.

Similarly for a d boson between 33 bonds we have

E33 = U +
w2

U
.

Finally for a d boson between 23 bonds we have

E23 = U +
V

2
+

w2

U + V
.

From these expressions, we can obtain the energy of a t
boson well-separated from all other t bosons:

Et = 2E23 −
5

2
E22

= V

[
3(1 + σ)

2

(w

V

)2

+ O
(w

V

)3
]

Similarly, we obtain the interaction energy of two adja-
cent t bosons

Et,int = 2E23 + E33 − 4E22 − 2Et

= V

[
−1

3

(w

V

)2

+ O
(w

V

)3
]

Finally, moving on to the t boson hopping amplitude, a
similar perturbation theory shows that it is w2/(U + V ).
Collecting all these results, we can now write down the
effective Hamiltonian for the t bosons, valid in the regime
(20). On a system of N sites the Hamiltonian H in (3)
is effectively

Ht

V
= −N

2

(
2 + (1 + 3σ)

(w

V

)2
)

+
(w

V

)2∑

ℓ

[
−1

2

(
t†ℓ+2tℓ + t†ℓtℓ+2

)
(21)

+
3

2
(1 + σ)t†ℓtℓ −

1

3
t†ℓ+3tℓ+3t

†
ℓtℓ

]
+ O

(w

V

)3
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We reiterate that Ht must be solved under the constraints
that there can only be at most one t boson per site, and
successive t bosons must be separated by 3, 5, 7, 9, 11 . . .
sites. To this order in w/V the Hamiltonian conserves
the number of t bosons. Except for the latter constraint,
this Hamiltonian is very much like that of an XXZ mag-
net. The hopping term in (22) is akin to spin exchange,
the chemical potential is like an effective magnetic field
heff = 3(1+σ)/2, and the interaction is akin to the SzSz

interaction between neighboring sites. The analogous
(ferromagnetic) XXZ model has anisotropy Jz/Jx = 1/3,
so it is in a gapless regime. We shall show in sect. V
that this model is as well, for appropriate values of the
effective magnetic field.

Before turning to analysis of Ht, it is useful to intro-
duce a complementary analysis of the physics valid under
the conditions (20). Now, we consider defects or kinks
between ordered states with period 3. So we treat the
2’s as bosons moving in background 3’s. Such bosons are
created by the operator pj , and note that this boson re-
sides on the sites of the original lattice. The energy of
an isolated p boson is

Ep = 2E23 −
5

3
E33

= V

[
−
(

σ +
4

9

)(w

V

)2

+ O
(w

V

)3
]

Also, the interaction energy of two adjacent p bosons is

Ep,int = 4E23 + E22 − 4E33 − 3Ep

= V

[
−1

3

(w

V

)2

+ O
(w

V

)3
]

Finally, the hopping matrix element of the p bosons is
the same as that of the t bosons. Collecting these re-
sults yields the following effective description of H in the
regime (20):

Hp

V
= −N

3

(
3 +

(1 + 9σ)

3

(w

V

)2
)

+
(w

V

)2∑

j

[
−1

2

(
p†j+3pj + p†jpj+3

)
(22)

−
(

σ +
4

9

)
p†jpj −

1

3
p†j+2pj+2p

†
jpj

]
+ O

(w

V

)3

.

The constraints on the p bosons are that each site can
have at most one p boson, and successive p bosons can
only be separated by intervals of 2, 5, 8, 11, 14, . . .. Note
that except for the constraints, this description also re-
sembles a (ferromagnetic) XXZ model with the same
anisotropy ∆ = Jz/Jx = 1/3.

It is important to note that the Hilbert space and spec-
tra of Ht in (22) and Hp in (23) should be identical,
although this is by no means obvious. Some simple con-
sistency checks can however easily be performed: the vac-
uum state of Ht with no t bosons should have the same
energy as the state of Hp with the maximal number of

-1 0σ

Z3

ordered

Z2 

ordered

disordered

incommensurate

-2

FIG. 8: Ground states of H, Ht, or Hp as a function of σ,
under the conditions (20). The dimensionless coupling σ is de-
fined in (19); so the horizontal axis above corresponds to mov-
ing downward along the extreme left of Fig 1. The transition
from the Z2 ordered state to the disordered state at σ = −1/3
is in the Ising universality class, and has dynamic exponent
z = 1. The Z3 ordered state first undergoes a z = 2 transi-
tion to an incommensurate phase in the Pokrovsky-Talapov
universality class at σ = −13/9, which is then followed by a
z = 1 Kosterlitz-Thouless transition at σ = −1.422... (this
last number is determined from the Bethe ansatz analysis in
Section V).

p bosons. The reader can easily check that this require-
ment, and its converse, do indeed hold. More generally,
we can easily see from the manner in which we defined
the states that if a state has Nt t bosons under Ht, then
the same state has Np p bosons under Hp where

2Np + 3Nt = N, (23)

and N is assumed to be a multiple of 6.
Some simple considerations now allow us to deduce

some important properties of Ht and Hp. Consider first
the case σ ≫ 1. A glance at Ht shows that each t bo-
son costs a large positive energy, and so the ground state
is the t boson vacuum (which also happens to be the
state with the maximal number of p bosons). This vac-
uum state is clearly the state with density state of period
2. The lowest excited state consists of a t boson excita-
tion (a kink), at zero momentum, which has an energy
(w2/V )(1 + 3σ)/2 above the ground state. So we con-
clude that the ground state remains a density wave of
period 2 provided

σ > −1

3
→ period-2 density-wave order (24)

This conclusion is illustrated in Fig. 8, which displays
the final phase diagram emerging from the analysis of
this section.

A similar argument can be applied to determine the
stability of the period-3 density-wave state. From Hp,
this is stable for σ ≪ −1. The energy of a single p boson
excited state at zero momentum is −(w2/V )(13 + 9σ)/2,
and so the ground state remains a density wave of period
2 provided

σ < −13

9
→ period-3 density-wave order (25)

This is also shown in Fig. 8.
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B. Stability of the incommensurate phase

It now remains to understand the physics for −13/9 <
σ < −1/3. The above considerations suggest that this
intermediate region has a finite density of both t and p
bosons obeying (23). If this is a compressible phase, then
we expect the ground state to be a Luttinger liquid, and
the corresponding correlations of the density of the un-
derlying d bosons to be incommensurate. Furthermore,
the transition σ = −13/9 involving the onset of a non-
zero density of the p bosons would be a transition of the
Pokrovsky-Talapov type [11], with dynamic critical expo-
nent z = 2 [12], and an effective free fermion description
near the critical point. Similar considerations can be ex-
pected to apply to the transition at σ = −1/3, associated
with the onset of a finite density of t bosons.

However, the validity of such a conclusion requires the
absence of additional perturbations, at higher order in
w/V , which could disrupt the stability of the Luttinger
liquid phase. Of particular importance here is the pos-
sible generation of ‘vortex operators’ [13, 14, 15] which
violate the conservation of the total number of t or p
bosons obeyed by the terms so far included in Ht,p. A
simple analysis of the processes at higher orders in w/V
in terms of the b bosons shows that such processes do
indeed appear: the domain walls in the period-2 density-
wave state, the t bosons, can be annihilated or created
in pairs. Similarly for the period-3 state, there are pro-
cesses in which 3 p bosons can be annihilated or created.
We will examine the consequences of such processes by a
combination of bosonization and Bethe ansatz methods.
We will find that the vortex perturbations are indeed ir-
relevant at the σ = −13/9 critical point, so that there
is a direct z = 2 transition from the gapped period-3
density-wave state, to a stable, gapless incommensurate
phase. However, the vortex perturbations are found to
be relevant at the σ = −1/3 critical point, implying that
the gapless incommensurate phase does not extend all the
way up to the period-2 density-wave state (see Fig. 8).

Here we study the stability of the Luttinger liquid
phase of Ht,p postulated above within the framework of a
long-wavelength bosonization analysis. This will allow us
to place general conditions on the Luttinger parameters
required for stability. This analysis will allow us to de-
termine the values of the Luttinger parameters in some
important limiting cases, and show there indeed exists
an incommensurate phase stable to perturbation. The
analysis does not allow us to determine the Luttinger
parameter in general — this we will do in the following
section by a Bethe ansatz analysis.

First, let us carry out the analysis using Ht, and let us
assume the value of σ is such that we are in a compressible
Luttinger liquid region. We follow the notation of Ref. 16,
and introduce the continuum field θt with the action

St =
Kt

2πv

∫
dxdτ

[
(∂τθt)

2 + v2(∂xθt)
2
]

(26)

Here v is a velocity and Kt is a Luttinger parameter,

normalized so that free fermions have free fermions have
K = 1. In terms of this field

t ∼ e−iθt . (27)

Now the vortex operator V ∼ t2 ∼ e−2iθt is seen to have
scaling dimension 1/Kt under the action St, and hence
the vortices are irrelevant, and the compressible phase is
stable, as long as

Kt <
1

2
. (28)

We will determine the value of Kt as a function of σ
in the following subsection, but here we note a simple
where Kt can be determined exactly. This is the limit
where the density of t bosons becomes vanishingly small
as we approach the period-2 density-wave state with σ ր
−1/3. In this low density limit near a z = 2 quantum
transitions, it can be shown that the t particles behave
like free fermions [12], and so we must have Kt = 1. The
same argument can also be used to determine v and so
we have the important result

v = (w2/V )
√
−1 − 3σ ; Kt = 1 as σ ր −1/3. (29)

Notice that Kt does not obey (28), and hence vortices are
always relevant at the boundary of the period-2 state, as
we claimed above. As these vortices correspond to cre-
ation of pairs of the free fermions, the resulting fermion
model is easily seen to be equivalent to the fermionized
Ising model. This implies that we have an Ising tran-
sition at σ = −1/3 directly from the gapped period 2
ordered state to a disordered gapped state that does not
break any symmetries, as shown in Fig 8.

Next, a complementary bosonization analysis can be
applied to Hp. We express the low energy physics using
a Luttinger field θp with the action

Sp =
Kp

2πv

∫
dxdτ

[
(∂τθp)

2 + v2(∂xθp)
2
]

(30)

As Ht and Hp have the same spectrum, the velocity v
should be the same as that in (26). However, the Lut-
tinger parameter Kp is now different because the inter-
pretation of the field θp differs from (27):

p ∼ e−iθp (31)

Now the vortex operator V † ∼ p3 has scaling dimension
9/(4Kp), and hence the vortices are irrelevant, and the
compressible phase is stable, as long as

Kp <
9

8
(32)

Again, determination of the values of Kp and v requires a
Bethe ansatz analysis, but exact results can be obtained
in the limit σ ց −13/9, where the density of p bosons be-
comes vanishingly small. The same arguments as applied
above for the t bosons now show that

v = (w2/V )
√

2(13 + 9σ)/9 ; Kp = 1 as σ ց −13/9.
(33)
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Now Kp does obey the stability condition (32), and hence
vortices are always irrelevant at the boundary of the tran-
sition to the period-3 density-wave state. So, as claimed
earlier, we have established the existence of a gapless,
incommensurate state in this region. At some interme-
diate value of σ, the vortices will become relevant and
will drive a Kosterlitz-Thouless transition to a gapped,
disordered phase.

We conclude this subsection by noting that the rela-
tionship (23) implies a simple, general relationship be-
tween the Luttinger actions in (26) and (30). Indeed,
the standard connection between particle density and the
θ field in bosonization theory [16], combined with (23),
leads to the condition

θp

θt
= −2

3
. (34)

This result is also consistent with our expressions for the
vortex operator V noted below (27) and (31). Using (34)
in (26) and (30), we also obtain the exact relationship

Kt

Kp
=

4

9
, (35)

which shows, not surprisingly, that the conditions (28)
and (32) are the same.

V. THE SIZE OF THE INCOMMENSURATE

PHASE

To establish the boundaries of the incommensurate
phase, we will show that the effective Hamiltonian (22)
(or equivalently, (23)) can be solved using the Bethe
ansatz. We will then use this to determine the Luttinger
parameter anywhere in the incommensurate phase. The
computation is a generalization of that done in [20] to
cases with a “hard-core” constraint. Bethe ansatz anal-
yses have been done in several related cases, the XXZ
model with a hard core (not allowing down spins to be
adjacent)[18], or a model of hard-core fermions arising in
a supersymmetric chain [19]. The details of the computa-
tion of the Luttinger parameter have not been presented,
however, so we describe the calculation in generality here.

A. The Bethe ansatz

The t boson in the effective Hamiltonian (22) is a kink
which separates the two density-wave states. We denote
the Ising-ordered state with no kinks as |0〉, so that an
eigenstate of the Hamiltonian (37) with Nt ≤ N/3 kinks
is

φ(Nt) =
∑

{ij}

ϕ(i1, i2, . . . if)t†i1 t
†
i2

. . . t†if
|0〉 (36)

The ij are ordered so that 1 ≤ i1 < i2 < . . ., and more-
over we require that ij+1 − ij = 3, 5, 7, . . .; the Hamilto-
nian preserves this restriction. To simplify the analysis

in this section, we shift away the constant term in Ht,
multiply by a constant, and define the effective chemical
potential ht = −3(1 + σ)/2. This yields

H = −
∑

ℓ

[
1

2

(
t†ℓ+2tℓ + t†ℓtℓ+2

)
+ htt

†
ℓtℓ +

1

3
t†ℓ+3tℓ+3t

†
ℓtℓ

]
.

(37)
This Hamiltonian has the same eigenvectors as the orig-
inal. For simplicity, we also assume periodic boundary
conditions.

Bethe’s ansatz is that the state φ(Nt) is of the form

ϕ(i1, i2, . . . iNt
) =

∑

P

AP µi1
P1µ

i2
P2 . . . µ

iNt

PNt
. (38)

for some numbers µj and AP , where j = 1, . . . , Nt and
P ≡ (P1, P2, . . . , PNt) is a permutation of the integers
(1, 2, . . . , Nt). With periodic boundary conditions, we
can construct eigenstates of the translation operator T ,

which sends T t†i1t
†
i2

. . . = t†i1+1t
†
i2+1 . . .. A state obeying

Bethe’s ansatz is an eigenstate of T if the amplitudes AP

are cyclically related as

APNt,P1,P2,...P (Nt−1) = µN
PNt

AP1,P2,...PNt
. (39)

If we define the bare momenta kj via µj ≡ e−ikj , the
eigenvalue eiktot of T is then given by

ktot = −i ln




Nt∏

j=1

(µj)
−1


 =

Nt∑

j=1

kj (40)

The relation (39) then can be thought of as the quanti-
zation of the momentum of a particle in a box.

The µi and the amplitudes AP are found by demanding
that φ(Nt) be an eigenstate. It is simplest to illustrate this
in the case of two kinks. The Bethe ansatz is that

ϕ(i1, i2) =
∑

P

AP µi1
P1µ

i2
P2

= A12µ
i1
1 µi2

2 + A21µ
i1
2 µi2

1

Requiring φ(2) be an eigenstate of T means that

A12 = A21µ
N
1 ,

with e−iktot = µ1µ2. Operating with the Hamiltonian
(37) on φ(2) yields

Hφ(2) = Etφ
(2) +

N∑

i=1

Xit
†
i t

†
i+3

where

Et = −htNt −
1

2

[
µ2

1 + µ2
2 + (µ1)

−2 + (µ2)
−2
]
.

and

Xi = −2

3
ϕ(i, i + 3) + ϕ(i, i + 1) + ϕ(i + 2, i + 3).
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The Bethe equations are derived by requiring that all the
Xi vanish, so that φ(2) is an eigenstate. With the Bethe
ansatz, this means that

Xi = −
∑

P

AP µi
P1µ

i
P2

(
2∆µ3

P2 − µP2 − µ2
P1µ

3
P2

)
= 0

where ∆ = 1/3. Each of these vanishes if

A21

A12
= −µ2

µ1

µ2
2µ

2
1 + 1 − 2∆µ2

2

µ2
2µ

2
1 + 1 − 2∆µ2

1

.

Combining this with the periodic boundary conditions
(39) yields

A12

A21
= µN

1 = −µ1(µ
2
1µ

2
2 + 1 − µ2

1)

µ2(µ2
1µ

2
2 + 1 − µ2

2)
.

Let νj = µ2
j . Then using the fact that e−iktot = µ1µ2

gives the Bethe equation

ν(N−2)/2
m e−iktot = −νmνj + 1 − νm

νmνj + 1 − νj
,

which holds for (m, j) = (1, 2) and (2, 1). One solves
these two equations for ν1 and ν2 subject to the con-
straint e−2iktot = ν1ν2. Then the corresponding eigen-
state is found (up to an overall constant) by substituting
the values of νi into the equation for A21/A12.

This computation can be generalized to any number
of kinks Nt. The constraint that φ(Nt) be an eigenstate
is basically the same as the two-kink case: one requires
that

0 = 2∆ϕ(..., i, i + 2, ...) − ϕ(..., i, i + 1, ...)

−ϕ(..., i + 1, i + 2, ...)

for any choice of i1, i2, . . . iNt
and i. The trick to make

this vanish is to consider the permutation P ′, which dif-
fers from P only in that Pm and P (m + 1) are reversed,
i.e. P ′ = P1P2 . . . P (m−1)P (m+1)PmP (m+2) . . .PNt.
Therefore φ(Nt) is an eigenstate if for all P and m

AP ′

AP
= g(νP (m+1), νPm) (41)

with

g(a, b) ≡ −
√

a(ab + 1 − 2∆a)√
b(ab + 1 − 2∆b)

.

One can think of g as the bare S-matrix describing the
phase shift when two kinks are interchanged. The fact
that g(a, a) = −1 means that the wavefunction vanishes
if two of the bare momenta kj are identical. To find the
νj , we impose the boundary condition (39). Note that

APNt,P1...P (Nt−1)

AP1,P2,...PNt

=
AP1,PNt,P2...P (Nt−1)

AP1,P2...PNt

g(νPNt
, νP1)

=

Nt∏

j=1

g(νPNt
, νPj)

The condition (39) must hold for all PNt, and hence all
j. Putting this all together yields the Bethe equations
for the µj or νj :

ν
N/2
j =

Nt∏

m=1

g(νj, νm).

This is thus a coupled set of polynomial equations for the
µi. Using the explicit form of g, and the expression (40)
for the translation eigenvalue eip, the Bethe equations
simplify to

ν
(N−Nt)/2
j e−iktot = (−1)Nt−1

Nt∏

m=1

νjνm + 1 − 2∆νj

νjνm + 1 − 2∆νm
.

(42)
These are a set of Nt coupled polynomial equations for
the νj = e2ikj , j = 1 . . .Nt. Solving these for a set of
kj , one then finds the corresponding eigenstate (up to an
overall normalization) by using (41). This eigenstate has
energy

Et = −htNt −
Nt∑

j=1

cos(2kj) (43)

These are precisely the Bethe equations and energy one
obtains for the XXZ model at ∆ = Jz/Jx = 1/3 with
(N − Nt)/2 sites, if one imposes twisted boundary con-
ditions resulting in the factor of e−iktot in (42). The
twist and the different number of sites result from the
excluded-volume effect (the restriction that t bosons
must be 3, 5, 7, . . . sites apart), and the fact that t bosons
hop two sites instead of one.

In the next subsection we will use these Bethe equa-
tions to find the size of the incommensurate phase. Since
we saw by using bosonization that the incommensurate
region is closer to the Z3-ordered phase than to the Z2-
ordered phase, the density of p bosons in the incommen-
surate phase will be much smaller than that of the t
bosons. It is thus useful to derive the Bethe equations in
the p boson basis. The analogous wavefunction ϕ̃ must
obey

0 = 2∆ϕ̃(..., i, i + 2, ...) − ϕ̃(..., i, i − 1, ...)

−ϕ̃(..., i + 3, i + 2, ...)

with, crucially, the same ∆ = 1/3 as for the t bosons.
Going through a virtually-identical calculation yields

e3iktot =

Np∏

j=1

ωj

Ep = −hpNp − 1

2

Np∑

j=1

[
ωj + ω−1

j

]
(44)

ω
(N+Np)/3
j eiktot = (−1)Np−1

Np∏

m=1

ωjωm + 1 − 2∆ωj

ωjωm + 1 − 2∆ωm
.

(45)
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where the effective chemical potential here is hp = σ +
4/9. Note that the right-hand-side of the Bethe equa-
tions here are identical to those for the t bosons (and for
the corresponding XXZ model); only the left-hand-side
changes.

B. Calculation of the Luttinger parameter

Since a great deal of discussion of the size of the in-
commensurate phase has appeared in the literature (see
e.g. [13, 14, 15]), we feel it is worth discussing in detail
a case where the answer can be determined exactly via
the Bethe ansatz. In this subsection we therefore derive
explicitly the size of the incommensurate phase by find-
ing the range of σ where the vortex operators are irrele-
vant. We do this by computing the Luttinger parameters
Kp = 9Kt/4 of the effective Hamiltonian. The dimension
of operators can be computed directly by using either
the asymptotics of the correlator [21] or finite-size effects
[22], but the result is identical. In this subsection, we
will generalize Haldane’s computation of the Luttinger
parameter [20] to the case at hand. The computation
we do here is more complicated because the exponent on
the left-hand-side of (42) or (45) depends on the number
of kinks in the system. This is a consequence of the re-
strictions on the locations of the particles: more particles
effectively reduces the size of the system.

The XXZ spin chain at ∆ = 1/3 is in a gapless phase.
The vortex operators are forbidden from occuring be-
cause of the U(1) symmetry of the spin chain; if one
breaks this symmetry by allowing e.g. Jx 6= Jy, then
the resulting XYZ chain is indeed gapped. One can show
using the above Bethe ansatz computation that Hamilto-
nians (22) and (23) are also in a gapless phase: the slight
difference in Bethe equations does not change this result.
This difference, however, does complicate the computa-
tion of the dimension of the vortex operators. It also
means that as opposed to the XYZ model, there is a
gapless phase with broken U(1) symmetry and irrelevant
vortex operators. In a gapless phase, the Luttinger pa-
rameter Kp is defined by the general relation [16]

πv

Kp
=

∂2Ep

∂N2
p

(46)

where Ep is given in (44), and v is the velocity of the
excitations. Using the fact that 3Nt + 2Np = N means
that Kp = 9Kt/4, as noted above.

To do this computation, it is convenient to rewrite
the Bethe equations in terms of “rapidity” variables θj .
These are defined by the relation

ωj ≡ e−3ik(θj) ≡ − sinh(θj + iγ/2)

sinh(θj − iγ/2)

where γ = cos−1(−∆); for our models, ∆ = 1/3. This
relation also defines k as a function of θ, i.e. kj ≡ k(θj).
This change of variables from momentum to rapidity is

useful because it puts the Bethe equations (45) in differ-
ence form: taking the log of both sides gives

(2Mj + 1)π = RNk(θj) − λktot +

Np∑

m=1

L(θj − θm) (47)

where Mj is an integer, and

L(θ) = i ln

[
sinh(θ + iγ)

sinh(θ − iγ)

]
.

We have defined the parameters R and λ to make the
analysis apply to general models with hard-core con-
straints. For the p bosons we have R = 1 + Np/N and
λ = 1. For the t bosons, we have R = 1 − Nt/N and
λ = −1. The usual XXZ model has R = 1 and λ = 0.
The cases discussed in [18, 19] can also be written in this
form.

Each kink is characterized by an different integer Mj; if
one were to have Mj = Mm for j 6= m, then θj = θm, and
we showed above that identical bare momenta results in
the Bethe ansatz wavefunction vanishing. Summing (47)
over j and using the fact that L(θ) = −L(−θ) means
that the total momentum is

ktot =
1

N

∑

j

(2Mj + 1)π. (48)

The θj in the ground state are all real, and lie in the
region |θj | ≤ Λ, where Λ depends on the chemical poten-
tial h. There is one particle in the ground state for each
solution of (47) with |θj | ≤ Λ; removing any particle in
this region increases the energy.

To make any more progress, one needs to go to the
thermodynamic limit, where there are many particles,
and the rapidities are closely spaced together. We then
define the density of particles ρ(θ) so that Nρ(θ)dθ gives
the number of particles in the ground state with rapidities
between θ and θ + dθ. In the ground state, there is a
particle associated with each integer Mj , as long as the
rapidity is below Λ. For |θ| < Λ, the equations (47)
therefore become

2πρ(θ) = Rk′(θ) +

∫ Λ

−Λ

dθ′ Φ(θ − θ′)ρ(θ′) (49)

where Φ(θ) ≡ L′(θ). The integral equation (49) deter-
mines the ground-state density ρ(θ) for a particular Λ.
The maximum rapidity Λ depends on hp, and is deter-
mined by minimizing the energy (44), subject to ρ(θ)
obeying (49). In the thermodynamic limit, the ground-
state energy is

Ep = N

∫ Λ

−Λ

dθ ρ(θ)ǫ0(θ) (50)

where the bare energy of a kink is

ǫ0(θ) = −hp − ∆ − sin2(γ)

cosh(2θ) − cos(γ)
.
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The minimum value of the last term in ǫ0 is −(1+cos γ) =
∆ − 1, so if hp ≤ −1, it becomes energetically favorable
to have an empty ground state. Converting back to the
original variables, this is the Pokrovsky-Talapov transi-
tion occuring at σ = −13/9.

Even though the density ρ(θ) and the largest rapidity
Λ completely characterize the system at zero tempera-
ture, extracting the Luttinger parameter requires further
work. We first compute the velocity v of the excitations.
We define Ehole(θh) and khole(θh) as the energy and mo-
mentum change in the system resulting from removing a
particle of rapidity θh from the ground state. The veloc-
ity is then

v =
∂Ehole

∂khole

∣∣∣∣∣
θh=Λ

=
∂Ehole/∂θh

∂khole/∂θh

∣∣∣∣∣
θh=Λ

Say we remove the particle associated with integer Mh

and rapidity θh. Because the particles are coupled, the
momenta of all of them changes when a particle is re-
moved. However, the integers Mj do not change, so from
(48), we see that khole = −(2Mh +1)π/N. Using (47), we
can rewrite this in the thermodynamic limit in terms of
the rapidities. After a few manipulations, we have

∂khole

∂θh
= −2πρ(θh) (51)

just as in the case without hard cores.
The energy of a hole of rapidity θh is

Ehole(θh) = −ǫ0(θh) +
∑

j 6=h

ǫ′0(θj)δθj .

where δθj is the change in rapidity of particle j when the
hole is created. Because the integers Mj do not change,
(47) requires that

0 = RNk′(θj)δθj + λk(θj) − λkhole − L(θj − θh)

+
∑

m 6=h

Φ(θj − θm)(δθj − δθm).

Taking the thermodynamic limit and using (49) simplifies
this to an integral equation:

2πNρ(θ)δθ(θ; θh) = L(θ − θh) − λk(θ) + λkhole(θh)

−N

∫ Λ

−Λ

dθ′Φ(θ − θ′)ρ(θ′)δθ(θ′; θh).

Note that δθ is a function of both θ and θh. Let us define
the function τ(θ) as the solution of the integral equation

2πτ(θ) = −Φ(θ − Λ) +

∫ Λ

−Λ

dθ′Φ(θ − θ′)τ(θ′). (52)

We then have

N
∂

∂θh
[ρ(θ)δθ(θ; θh) − ρ(−θ)δθ(−θ; θh)]

∣∣∣∣∣
θh=Λ

= τ(θ) − τ(−θ)

because khole(θh) is odd in θh. Because ǫ′0(θ) is odd in θ,
we use this with expression for hole energy to get

∂Ehole

∂θh

∣∣∣∣∣
θh=Λ

= −ǫ′0(Λ) +

∫ Λ

−Λ

dθ ǫ′0(θ)τ(θ) (53)

As with khole, this is the same as in the case without
hard cores. Combining this with (51) gives the velocity
of the excitations. We can check this by noting that as
σ → −13/9, there are no p bosons in the ground state.
This means that Λ → 0, so it follows from (53), (51) and
(49) that v → ǫ′0(0)/k′(0) = 0. The quasiparticles here
have dispersion Ehole ∝ k2

hole, as expected at a z = 2
Pokrovsky-Talapov transition.

The computation of the Luttinger parameter (46) is
affected by the hard-exclusion effects. In particular, be-
cause R = (1 + Np/N)/3 in (49) depends on the number
of particles Np, ∂R/∂Λ 6= 0. First we compute how the
number of particles changes when Λ is varied. It is con-
venient to define the rescaled density ρ̃ = ρ/R, so that
for fixed Λ, ρ̃ is independent of R. Then if we define χ(θ)
as the solution of the integral equation

2πχ(θ) = L(θ−Λ)+L(θ+Λ)+

∫ Λ

−Λ

dθ′Φ(θ−θ′)χ(θ′) (54)

it is straightforward to show that

∂ρ̃(θ)

∂Λ
=

ρ̃(Λ)

1 − χ(Λ)

∂χ(θ)

∂θ
.

Because

N

∫ Λ

−Λ

dθ ρ̃(θ) =
Np

R
=

Np

1 + Np/N
,

we have

N ′
p ≡ ∂Np

∂Λ
= NR2 2ρ̃(Λ)

1 − χ(Λ)
.

To compute the Luttinger parameter, it is convenient

to also define a rescaled energy Ẽ = Ep/R. A little
algebra then yields

∂2Ep

∂N2
p

=
1

RN ′
p

∂

∂Λ

(
Ẽ′R2

N ′
p

)

where Ẽ′ ≡ ∂Ẽ/∂Λ. Computing Ẽ′ is then similar to the
R = 1 case of [20], yielding

∂2Ep

∂N2
p

=
1

RN ′
p

∂

∂Λ

(
ǫ0(θ) −

1

2

∫ Λ

−Λ

ǫ′0(θ)χ(θ)

)
.

Since none of the quantities inside the derivative depends
on R, we can use the calculation of [20] to get

∂2Ep

∂N2
p

=
1

R3

(1 − χ(Λ))2

2ρ̃(Λ)

(
ǫ′0(θ) −

∫ Λ

−Λ

ǫ′0(θ)τ(θ)

)
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where τ(θ) is defined above via (52). Combining this
with our computation of the velocity above yields finally
the Luttinger parameter

Kp =

(
1 + Np/N

1 − χ(Λ)

)2

(55)

The effect of the hard-core constraints ends up being the
(1 + Np/N)2 in the numerator.

We have seen that when the coupling σ = −13/9, there
are no p bosons in the ground state. The equation (55)
gives the correct Kp = 1, because χ(0) = 0 and Np = 0
here. As σ is increased, p bosons with |θ| ≤ Λ fill the
ground state. For some value of σ, Λ → ∞. We can find
out how many bosons there are here, because in this limit
we can solve the equation (49) by Fourier transformation.
Actually, to just get Np(Λ → ∞), we do not need to go
to the trouble: we know from the XXZ model that

lim
Λ→∞

∫ Λ

−Λ

dθ ρ̃(θ) =
1

2
.

Thus in our case, we have Np(Λ → ∞) = N/5. The
equation (55) for the Luttinger parameter is therefore
valid only for values of chemical potential such that only
solutions of the Bethe equations with all bare momenta
real are present in the ground state. In other words,
(55) is valid only for σ such that Np ≤ N/5. To find the
Luttinger parameter for the remaining range of σ, we can
repeat the above analysis for the t bosons. This yields

Kt =

(
1 − Nt/N

1 − χ(Λt)

)2

, (56)

where Λt is the maximum rapidity of a t boson in the
ground state. By the same argument, this expression is
valid for Nt ≤ N/5.

Because 2Np + 3Nt = N , the expressions for the Lut-
tinger parameter are both valid at exactly one point:
where Λ = Λt = ∞, Np = Nt = 1/5. This pro-
vides a good check on our result: at Λ = Λt = ∞,
Np = Nt = 1/5, comparing the expressions (55) and
(56) yields Kt = 4Kp/9, as noted in general in (35). In
fact, we can find the exact value of Kp at this point, by
either a Weiner-Hopf analysis [21], or by appealing to the
XXZ model, where the answer is known. Either way, one
finds that

lim
Λ→∞

(1 − χ(Λ))2 = 2 cos−1(∆)/π

For our case of ∆ = 1/3, we have therefore Kp = 1.83754,
so vortices are relevant here. Another check on our re-
sults is to note that the computation of the velocity v
must give the same answer at this point whether com-
puting with the t bosons or the p bosons. Indeed, we
see from (51) and (53) that both are independent of R
and λ, only depending on Λ; since Λ is the same for both
pictures, we do get the same answer.

The incommensurate regime is characterized by having
Kp < 9/8. We cannot analytically find the value of σ

1

1.2

1.4

1.6

1.8

2

2.2

-1.4 -1.2 -1 -0.8 -0.6 -0.4

Kp

σ

Luttinger parameter

vortices irrelevant

vortices relevant

FIG. 9: Bethe ansatz results for Kp as a function of σ. Recall
that Kt = 4Kp/9.

where Kp = 9/8, but it is straightforward to solve the
above integral equations numerically. First, one must
determine the value of Λ for a given σ by solving (49)
for ρ(θ) and Λ while demanding that the energy (50)
be minimized. Integrating ρ(θ) yields the ground-state
particle density Np/N as well. Knowing Λ then allows
one to solve (54) for χ(θ) and hence χ(Λ). Plugging this
into (55) then yields the Luttinger parameter. We find
that Kp = 9/8 when σ = 1.422.... This leads to our final
result for the phase diagram: the incommensurate phase
exists only for

1.422 < σ < 1.444 .

The incommensurate region is also very narrow near the
Potts critical point M3, so it is likely that it occupies
a very small region of parameter space. We plot Kp as
obtained above in Fig 9.

VI. CONCLUSION

The primary purpose of this paper was to provide a
thorough study of the very simple one-dimensional boson
model in (3). This model was originally motivated by
the studies of ‘tilted’ Mott insulators of atoms in optical
lattices. Despite its simplicity, our model has a rich phase
diagram, shown in Fig 1, with a many competing ordered
phases and possibilities for exact solutions.

Our solutions shed additional light on the nature of the
phase transition in the chiral clock model. Over a certain
regime of parameters, we provide definitive evidence for
a gapless, floating incommensurate phase adjacent to the
gapped Z3 ordered phase with a period-3 density wave.
However, the size of this incommensurate phase was re-
markably small, making it unlikely that it will ever be
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observed in experimental or numerical studies. We also
obtained specific realizations of two of the exactly solu-
ble multi-critical points identified by Andrews et al. [23],
which are now known to be part of the series of minimal
conformal models [6]. It is likely that our analysis could
be generalized to this series; it would be interesting in
particular to see if the incommensurate phases existed in
general.
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APPENDIX: CONNECTION TO BAXTER’S

HARD SQUARE MODEL

In this appendix we show that the quantum Hamilto-
nian H in (3) generates precisely the transfer matrix of
the classical, two-dimensional hard-square model intro-
duced by Baxter [3].

It is useful to note that the hard-square model, as de-
fined in the Introduction, can also be interpreted as a cer-
tain ‘interface’ or ‘height’ model. In particular, it is iden-
tical to the so-called A4 restricted-solid-on-solid (RSOS)
[23]. To see the connection with the RSOS model, we
need to associate each tile configuration with a corre-
sponding set of heights. On one sublattice of the square
lattice, associate each site with a tile present with height
1, and a vacancy with height 3. On the other sublat-
tice, associate each tile with height 4, and a vacancy
with height 2. Then the hard-square restrictions are sim-
ply encoded in a set of constraints on heights on nearest
neighbor sites: height 1 can only be next to 2, 2 can be
next to 3 or 1, 3 can only be next to 2 or 4, and 4 can only
be next to 3. These height restrictions are conveniently
summarized in the A4 Dynkin diagram, and hence the
terminology. Like the hard-square case, the general An

RSOS models are solvable along two lines, with one crit-
ical point on each. These critical points are multicriti-
cal points with known conformal-field-theory descriptions
[6].

Here, we continue to use the terminology of hard
squares. We consider the diagonal-to-diagonal transfer
matrix of the hard square model. In the orientation of
Fig. 11, this transfer matrix acts on the space of states
of a zig-zag line of lattice sites as shown in Fig. 10.

There are three interaction parameters: L and M are
the interaction strength of adjacent tiles, while z is the
fugacity for each tile. The grand canonical partition
function can then be written as the sum of products of

��@@��@@��@@��@@��@@��@@��@@

FIG. 10: Zig-zag line defining the space of states upon which
H acts.

Boltzmann weights. The Boltzmann weight of a plaque-
tte is shown in Fig. 11 where the heights a, b, c and d

a

b

@@ ��
d@@��

c

= z(a+b+c+d)/4eLac+Mbdt−a+b−c+d

FIG. 11: Boltzmann weight of a plaquette of the square lat-
tice. The tiles are centered on the vertices of this plaquette,
and a, b, c, d = 0, 1 indicates absence/presence of a tile.

are 0 or 1; 1 denotes a tile, so the restriction is that
ab = bc = cd = da = 0. The extra parameter t cancels
out of the partition function and so is arbitrary. The pure
hard square model is obtained by setting L = M = 0,
but we will need the full range of values of these cou-
plings to explore the parameter space of H. The hard-
hexagon model (on a triangular lattice) is obtained by
setting L = 0 and M → −∞.

We will now take the so-called τ -continuum limit of
this transfer matrix, so that we may obtain the corre-
sponding Hamiltonian which evolves the states in a con-
tinuous imaginary time. To take this Hamiltonian limit,
we define t = exp(L/4) and z = e−L(1 − ζ). Then
the Boltzmann weights for all the allowed possible states
around each plaquette are shown in Fig. 12.

When ζ = M = 0 and L → ∞, the vertical trans-
fer matrix is the identity. The Hamiltonian is found by
expanding around this limit. The small parameters are
then ζ, M and e−L/2. Note that to get back to the orig-
inal Hilbert space, we need to break the transfer matrix
into two pieces. The first evolves the lower of the two
rows of sites in the above zig-pattern, and then the sec-
ond evolves the upper row. The full transfer matrix is
then

T1T2 ≈ (1 − ζH1)(1 − ζH2) ≈ (1 − ζH), (A.1)

where H = H1 + H2. Let d†j be a boson creation opera-
tor which creates a tile on site j. We identify these tiles
with the bosons of (3). It is easy to see that the con-
straints of the hard square model correspond precisely to
the constraints (2). Moreover, here we obtain the same
Hamiltonian in (3) (up to an arbitrary overall energy
scale) with the couplings

U

w
= eL/2ζ ;

V

w
= −MeL/2 (A.2)

Note that M > 0 means attractive next-nearest-neighbor
interactions.
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0
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1

0

@@ ��
0@@��
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0
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@@ ��
1@@��

0

= (1 − ζ)1/4

1

0
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0@@��

0

= (1 − ζ)1/4e−L/2

0

0

@@ ��
0@@��

0

= 1

FIG. 12: Boltzmann weights for the possible states of a pla-
quette of the hard square model

Baxter [3] showed that the hard-square model is inte-
grable for

z =
(1 − e−L)(1 − e−M )

eL+M − eL − eM
. (A.3)

In the Hamiltonian limit, this condition is equivalent to
(4). Baxter also showed that there are two critical points
within the parameter space of (A.3). Defining

I = z−1/2(1 − zeL+M ),

the critical points are at

I = ±
[

1 +
√

5

2

]−5/2

,

which leads to (6,8). The critical point at (6) is in the
universality class of the tricritical Ising model, while that
at (8) is of the 3-state Potts type [3, 4]. The physical
interpretation of these critical points is discussed in Sec-
tion II.
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