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ABSTRACT

This paper proposes an integrated approach to arrive at
optimal build orientations, simultaneously minimizing sur-
face roughness ‘Ra’ and build time ‘17, for object manu-
facturing in SLS process. The optimization task is carried
out by two popularly known multi-objective evolutionary
optimizers - NSGA-II (non-dominated sorting genetic al-
gorithm) and MOPSO (multi-objective particle swarm op-
timizer). The performance comparison of these two opti-
mizers along with an approximation of Pareto-optimal front
is done using two statistically significant performance mea-
sures. Three proposals addressing the task of decision mak-
ing, i.e. selecting one solution in presence of multiple trade-
off solutions, are introduced to facilitate the designer. The
overall procedure is integrated into M O RPE - Multi-objective
Rapid Prototyping Engine. Several sample objects are con-
sidered for experimentation to demonstrate the working of
MORPE. A careful study of optimal build directions for
several components indicates a trend, providing insight into
the SLS processes which can be regarded highly useful for
various practical RP applications.
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1. INTRODUCTION

Rapid prototyping (RP) or layered manufacturing refers
to processes in which a component is fabricated by layer-by-
layer deposition of material from 3D computer assisted de-
sign models. RP is playing an important role in reducing the
time required for new product development and lowering the
development costs. Common examples of RP techniques are
Fused Deposition Method (FDM), Stereolithography (SLA),
Selective Laser Sintering (SLS), Laminated Object Manu-
facturing (LOM), 3D printing and Direct Metal Deposition
(DMD). With the advent of these technologies, it is now
possible to fabricate physical prototypes directly from CAD
models for checking the feasibility of design concept and pro-
totype verification.

SLS is one such popular RP process for object manufac-
turing [7]. Rapid growth of SLS can be attributed to its
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ability to process various materials like polymers, metals, ce-
ramics and composites. Commercial SLS systems build the
parts by selective solidification of the thermoplastic polymer
powder by CO; laser. First, tessellated CAD model (repre-
sented using triangular meshes) is ‘sliced’, with layer thick-
ness ranging from 0.1 to 0.3 mm. The powder is spread on
the machine bed with the help of a re-coater and pre-heated
to about 4 — 5° C below its melting point. This is done by
four heat radiators present in the built chamber. The laser
is then focussed on heated powder to sinter it and cause
local solidification of the material. In the sintering process
the temperature of the powder is raised to a point of fusing
without actual melting. After allowing sufficient time for
the sintered layer to cool down, the part bed moves down
by one layer thickness and powder is again spread by the re-
coater. The sintered material forms the volume of the part
while the un-sintered powder remains in its place acting as
a support and is cleaned away once the build is complete.
This process is repeated and prototype gets created.

The usual goals in SLS, or in any other RP method, during
part fabrication are: (i) High quality surface finish (charac-
terized by the minimization of surface roughness Ra), and
(ii) Reduction of total build time 7. Better surface finish can
be achieved by deposition of thinner slices, but this is likely
to increase the build time. Thus, there is usually a conflict
between two simultaneously considered goals of achieving
better surface quality and reduction in the build time. Both
the objectives, Ra and 7', depend on the build orientation
(defined later) and the goal is to find orientations which
is/are optimal.

In past, several studies have been carried out in order to
identify optimal orientations by considering different objec-
tives. Development of expert systems based on user expe-
rience was proposed in [5]. Preferential treatment of ob-
jectives categorized as primary (surface roughness) and sec-
ondary (build time) was attempted in [3]. Genetic algo-
rithms were used to minimize a weighted sum of surface
roughness and build time in context to different RP applica-
tions [17, 2, 1]. A bi-objective approach simultaneously con-
sidering build time and surface accuracy was proposed in [12,
13, 14, 15]. A complete recollection of past work is beyond
the scope of interest in this paper, but an important fact to
realize is that despite such attempts, a systematic applica-
tion of nature inspired heuristics to carry out multi-objective
optimization followed by decision-making and knowledge dis-
covery through post-optimal analysis is still missing, which
is the focus of this paper.

Once the trade-off front (and corresponding build orien-



tations) are found, the final step is the selection of an ori-
entation for fabrication. To aid this step we have proposed
three decision making schemes. Further, the importance of
post optimal analysis of the solutions to unfold problem in-
formation is also demonstrated through case studies. The
entire procedure is automated by developing a package called
Multi-objective Rapid Prototyping Engine (MORPE). The
software tool is developed for SLS system and is easily mod-
ifiable for other RP techniques. MORPE incorporates two

multi-objective evolutionary algorithms NSGA-IT and MOPSO,

statistical performance measures like attainment surface es-
timator and hypervolume calculator, ‘Local Search’ proce-
dure to improve the solutions obtained from MOEAs, and
‘Decision Making’ schemes to facilitate the designer to select
an optimum fabrication orientation.

The rest of the paper is structured as follows. In section 2
the multi-objective problem formulation is provided. Section
3 briefly introduces the multi-objective evolutionary opti-
mizers (NSGA-II and MOPSO) and statistically comparable
performance measures adopted in this study. In section 5
several solid models are considered for bi-objective optimiza-
tion to investigate and validate the working of MORPE.
Results and discussions on the experiments are presented in
section 6. This section also provides insight into the decision
making and innovative design principles are deciphered via.
post optimal analysis. Finally, in section 7 major findings
of this study are summarized.

2. MULTI-OBJECTIVE PROBLEM

In current study, the objectives of interest are average
surface roughness Ra and total build time 7', both of which
depend on the build orientation ¢. The, bi-objective opti-
mization problem considering Ra and T is formulated as:

Minimize fi = Ra(¢)
Minimize fo = T(¢)
with: ¢= {6,0,}
subject to:

0<6, <180

0<6, <180

The decision variables 6, and 6, represent the rotations of
solid model about X and Y axes, respectively, from an ini-
tial configuration about a chosen reference XYZ Cartesian
coordinate system. For complete details on rotations, reader
is referred to [12]. The optimization problem has two min-
imization type objectives which depend upon two decision
variables. The decision variables are bounded in a range and
there are no other constraints. Next, we briefly discuss the
computation of Ra and T which is borrowed from [16].

In a CAD model an object is represented by triangular
facets. So the first step is to compute the roughness of a
single facet. Following equations are used for calculating
the roughness depending upon whether the facet is ‘up’ or
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Figure 1: Build angle computation for a triangular
facet.

‘down’ facing:

Rau, = —2.04067 + .22a + 0.06722t — 0.001368a11)
Radown = 185 — 9.52P — 0.834a — 0.157¢ 4 0.15P*
—0.00099a” + 0.0058a (2)

Here, angle o = 90° — 0, where 0 is the angle between vertical
direction and facet normal as shown in Figure 1, ‘¢’ is the
slice thickness (taken as 0.15 mm) and ‘P’ is the laser power
(taken to be 60 W). Once, roughness values are computed
for all the facets the Average Surface Roughness (Ra) of the
entire part can be calculated as:

where Ra; and A; are the surface roughness and area of
the i*" facet. At build angle =90° or a=0° the roughness
value from these equations differ. At this angle roughness
is computed by taking the average of the two models. The
variation of roughness values for ‘up’ or ‘down’ facing facets
is shown in Figure 2.

The majority the build time in SLS occurs during re-
coating of the powder, in which case T is proportional to
the number of layers. Since the layers are of constant thick-
ness, T becomes proportional to object height in the build
direction. Therefore, by minimizing the height of the part
in the direction of deposition, build time can be minimized.
If Z-axis denotes the build direction then the build time es-
timate is given by object height as:

T = (Zmaa: - Zmzn) (4)

3. PROPOSED APPROACH

The overall procedure is carried out by MORPE which
comprises of following modules: a) Multi-objective optimizers-
NSGA-II and MOPSO b) Performance comparison tools—
Hypervolume Indicator and Attainment Surface Approxi-
mator ¢) Local Search Tool d) Decision Making Kit. Figure
3 portrays the working of MORPE.

Although there exist several multi-objective evolutionary
algorithms (MOEAS) in literature, popularly used genetic al-
gorithm based (NSGA-II) and particle swarm based (MOPSO)
optimizers have been utilized in this study. NSGA-II is an
Elitist Non-Dominated Sorting Genetic Algorithm and one
of the most popularly used GA for multi-objective optimiza-
tion. Several salient features like elite preservation and ex-
plicit diversity preserving mechanisms ensure its good con-
vergence and diversity. More details on NSGA-IT can be
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Figure 2: (a) Variation of Ra-up with respect to build angle. (b) Variation of Ra-down with respect to build
angle. The laser power(P) is 60 W and thickness(t) is 0.15 mm, also taken in this study.

found in [4]. Recently, Multi-objective Particle Swarm Op-
timizers have also gained popularity. A recently proposed
MOPSO in [11, 10] has been adopted in this study. The
MOPSO uses NWtd. and Dom. methods for personal best
and global best selections. Clustering method is used for
archiving purposes. For more details on MOPSO reader is
referred to [11, 9]. By employing two evolutionary optimiz-
ers we are able to approximate the Pareto-front with better
accuracy.

Due to stochastic nature of evolutionary approaches, it is
difficult to conclude anything from just one simulation. To
eliminate the random effects and gather results of statistical
significance, we perform multiple (11) runs of the evolution-
ary algorithm corresponding to different initial populations.
Two performance measures commonly used in EA literature
have been employed in this paper, and described as follows:

Attainment Surfaces: Multiple non-dominated sets from
multiple runs are used to deduce an approximation of best
non-dominated set, commonly known as 1°* attainment sur-
face. The computation of attainment surfaces is done by
using attainment surface package described in [6].

Hypervolume indicator: Hypervolume is a measurement
which takes into account the diversity as well as the con-
vergence of the solutions [18]. Hypervolume represents the
sum of the areas enclosed within the hypercubes formed by
the points on the non-dominated front and a chosen refer-
ence point. For minimization type problems a higher value
of hypervolume is desired, as it indicates better spread and
convergence of solutions.

As a usual practice in MO applications, we employ mu-
tation driven hill-climbing strategy and conduct local search
to refine the best non-dominated set obtained from the evo-
lutionary optimizers. However, for majority of experiments
in this paper, little or no improvement was found after the
local search — indicating the closeness of obtained solutions
to Pareto solutions. The local search was carried out based
on achievement scalarizing function [9] but due to space lim-
itations we exclude any further details.

4. DECISION MAKING

When a set of trade-off solutions is obtained from a multi-
objective optimization exercise, a decision point needs to
be chosen to proceed further. This is often a non-trivial
task for an operator and guidelines are desired. To ad-
dress this task, we introduce three decision making tech-
niques, namely— ‘Aspiration Point Method’, ‘Marginal Util-
ity Method” and ‘Ly Metric Method’ [8]. The first method
requires an ‘aspiration point’, described later, as an input
from the user. However, remaining two methods do not
require any user input. These methods are described as fol-
lows:

Aspiration Method: This method assumes that the de-
signer has some pre-decided preference (or aspiration) for an
operating point with which he/she is likely to settle. The
goal is to find a solution which is better than the aspira-
tion of the designer, thereby calling it an aspiration point
method. To carry out the search we allocate this aspira-
tion point as the reference for ASF scheme [8], and evaluate
ASF for all points on the Pareto-optimal front. The Pareto-
optimal solution which corresponds to lowest ASF wvalue,
with respect to the reference point, is selected.

In this study we have considered following three aspira-
tion points:

( RamintRamaz TmintTmaas ) ( RamintRamax
2 ) 2 2

Aspi= , Aspa=
Tma:c), ASpSZ (Ramax7 M)

Aspi, for example, implies that user is willing to accept an
available point in proximity of (but better than) the mean of
best and worst obtained (Ra, T') values. The corresponding
decision choices obtained on the Pareto-front are indicated
as P17 Pg and Pg‘

Marginal Utility Method: This approach does not re-
quire any prior information from the user and searches for a
Pareto-optimal solution which shows least affinity towards
any of its neighbors in the objective space. To compute this
affinity, consider three non-dominated points Pi, Py and P,
s.t. (Rai<Rao<Ra2) and (T1>Tp>T>) and we are inter-
ested in evaluating the affinity at the middle point Py. P

)
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and P» lie in the neighborhood of Py and are selected as
follows: consider k points, Py, m = 1 to k, nearest to P,
with Rao,m < Rag. Then centroid of all Py s is computed
and a point out of Py .8, which is closest to the centroid, is
selected as P;. For selecting P», same exercise is repeated,
but this time considering points s.t. Rao,ms are greater than
Rao.

Once P and P, are computed for Py, affinity function
(AF), is calculated as :

AFp,=max(W1,W2); Wi= “30 700 and W= J722—2t
For each point in the non-dominated set, except for k ex-
treme points at both ends, AF' is computed and the solution
with minimum AF is assigned as decision choice. This so-
lution is argued to posses least affinity to move away from.
In this study value of k is taken equal to 6. The value of &k
decides the resolution of the proximity in which we are inter-
ested to compute the affinity function. Decision point found
by this method is usually a ‘knee point’. ’Knee points’ are

Rap, —Rap,

of great practical importance as they denote a coordinate
on Pareto-front where increase (decrease) in one objective is
very large compared to decrease (or increase) in other ob-
jective.

Lo-metric: This approach also does not require any infor-
mation from the user. Firstly, each objective is normalized
in [0.0, 1.0]. Then an ‘ideal point’ is constructed, which is
origin in case of normalized space, and taken as the refer-
ence point. Euclidean distance (L2) of each point in non-
dominated set is calculated from the reference point and the
solution with smallest euclidean distance is finally selected.

5. EXPERIMENTS

A series of simulations are performed on various solid
models (ranging from simple geometries to complex ones) to
find the optimal build orientations and trade-off fronts of Ra
and T'. A total of 9 solid models are considered in this study:
Bipyramid, Pyramid, Prism, Pentagon-Bar, Disc, Cylinder,
Diamond, Cuboid and Fin. These objects serve as a good
representative set for different geometrical features.

Both NSGA-IT and MOPSO are applied and performance
of these optimizers are compared based on hypervolume
curves and attainment surfaces. A population size of 40 and
maximum number of generations 80 are chosen for both the
optimizers. For NSGA-II crossover probability is taken as
0.9 and mutation probability as 0.5, other parameters are set
as default. For MOPSO a t; of 0.25 is used [11]. For each
solid model both the optimizers are executed for 11 runs.
Results from multiple runs from both the optimizers are
combined and global non-dominated set is found. On each
member of this global non-dominated set local search is ap-
plied. Negligible or no improvement is found in most cases,
indicating the closeness of solutions to the actual Pareto-
optimal set.

The 1°*(0%) attainment surface is computed for both the
optimizers, which serves as the best approximation of Pareto-
front. Study of shapes and spread of Pareto-fronts along
with the orientations corresponding to extreme solutions are
also done. Based on the results the solid models have been
categorized into two groups and general guidelines for op-
timal orientations are drawn. Important task of decision
making is also carried on a sample object and usefulness of
decision schemes is also highlighted.

6. RESULTSAND DISCUSSIONS

Estimation of minimum 7" orientation for SLS can be done
by aligning the shortest object dimension along the build
direction. But, minimum Ra orientation is non-intuitive as
Ra computation is based on the weighted average of ‘up’ and
‘down’ facing surfaces. Moreover, at orientations in which
majority of the model’s surface area has a build angle « in
proximity of 90° or 0° , Ra is expected to shown an erratic
behavior.

We performed the simulations and categorized the objects
into two groups based on commonalities amongst optimal so-
lutions: (a) Solid models for which a distributed set of trade-
off solutions is obtained, and (b) Solid models for which
there is only a small variation in Ra or T', or practically no
trade-off front is found. For group (a) objects, objectives
are evidently conflicting leading to a reasonable range of
trade-off solutions, whereas for group (b) the objectives are



almost non-conflicting leading to solutions within a small
range. The two groups are discussed next:

Group (a): For Bipyramid, Figures 4(a) and 4(b) show
average hypervolume curves and 1°* attainment surface for
NSGA-IT and MOPSO, respectively. Lo-metric the deci-
sion choice is also marked and occurs to be ‘knee’ point.
NSGA-II hypervolume attains a steady value after 30 gen-
erations and stays above the hypervolume curve of MOPSO.
Although, in initial few generation MOPSO shows a faster
rise in hypervolume but fails to match NSGA-II perfor-
mance. Based on the attainment surface curves as well,
performance of NSGA-II is better than MOPSO (indicated
by better spread and convergence of the trade-off front).
However, both NSGA-II and MOPSO have similar trade-off
front providing a better estimate on the location of Pareto-
front. Such trends were also observed for other solid mod-
els but due to space limitations we only show these curves
for Bipyramid. NSGA-II showed better performance over
MOPSO for other solid models as well, detailed graphs have
not been included.

‘Reference Point Method’ and ‘Marginal Utility’ schemes
are shown in Figures b5(a) and 5(b), respectively. For
‘Reference Point Method’ three solutions corresponding to
three reference points are obtained. The ‘Marginal Util-
ity Method’ finds a ‘knee’ solution. Decision choices ob-
tained for three methods suggests that ‘Le-metric method’
and ‘Marginal Utility’ method favor to discover a knee solu-
tion on the trade-off front and do not depend upon any user
information. ‘Aspiration Method’ is more flexible in finding
solutions which resemble user’s preference. However, the
solutions found by‘Aspiration Method’, corresponding to a
chosen reference point, depends on the shape and spread of
the Pareto-front. The three decision schemes showed simi-
lar behavior on trade-off fronts of other solids and we do not
present any further plots.

The min. T orientation, Figure 6(a), is achieved such that
Bipyramid almost lies flat on one of the faces and minimum
height occurs along Z-axis (build direction). Bipyramid has
equal areas, hence the orientation which minimizes the sur-
face roughness will be one in which the sum of all surface
roughnesses is minimized. From the Ra model described
earlier (Figure 2), roughness for a face is minimum when
« is close to zero whether ‘up’ or ‘down’ facing. With the
geometry of Bipyramid it is impossible to achieve an orien-
tation where all (or a majority) of surfaces have 0° build
angle. In such situation a best compromise which minimizes
the sum of surface roughnesses is achieved when Bipyramid
is slightly tilted from the vertical with majority of surfaces
‘up’ facing and one face close to being vertical, as shown in
Figure 6(b). (Based on models the roughness is small for
‘up’ facing surfaces compared to ‘down’ facing for small val-
ues of a, which explains the fact that majority of surfaces
are ‘up’ facing). The Lo-metric orientation shown in Figure
6(c) lies in between two extreme orientations.

The arguments provided above also serve to explain op-
timal orientations for remaining objects in this group. For
Prism, in the min. T orientation, Figure 6(f), the object
lies flat on the larger face. In min. Ra orientation, Figure
6(g), 4 out of 5 surfaces are either ‘up’ facing or vertical and
Prism assumes an inclined orientation with respect to the
horizontal such that one of the larger faces is vertical. For
Pentagon Bar min. T orientation, Figure 6(h), occurs with
the object lying flat on one its faces thereby leading to min-
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Figure 4: (a) NSGA-II and MOPSO hypervolume
curves for Bipyramid with reference point (11.5,
11.0). (b) 1°* Attainment Surfaces for NSGA-II and
MOPSO and Lz-metric ‘Decision Choice’ for Bipyra-
mid.

imum height along Z-axis. In min. Ra orientation, Figure
6(h), all the large faces of the bar are vertical causing the
build angle a=0°. For Disc min. T orientation, Figure 6(j),
occurs with Disc lying horizontally flat, allowing minimum
dimension (disc height) along Z-axis. The min. Ra orien-
tation, 6(g), occurs with flat surfaces of disc vertical. In
vertical position, (a=0°), flat surfaces have least roughness
values. Majority area of flat surfaces (compared to curved
surface), assigns more weight to lower roughness and overall
Ra is minimized.

To validate our line of arguments, Cylinder is shown next.
The length of the Cylinder is chosen to be larger than its
diameter (unlike Disc). The minimum 7T orientation occurs
with Cylinder lying horizontal and flat faces vertical, Figure
6(1). In minimum Ra orientation, Figure 6(m), Cylinder
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Figure 5: (a) Reference Point method for Bipyra-
mid. (b) Marginal Utility method for Bipyramid.

stands tall vertically on one of the flat surfaces. This con-
figuration is justified because larger curved surface area has
lower surface roughness in vertical position with a=0°, and
as Ra is weighted with surface area, min. Ra is achieved in
this orientation. Next object considered is Diamond. The
minimum 7" orientation, Figure 6(n), is self explanatory.
The min. Ra orientation, Figure 6(0), occurs with axis of
Diamond titled with respect to vertical and flat top facing
‘down’ and major portion of the curved surface area facing
‘up’. For Diamond the curved surface area is larger than the
flat top area, and from previous discussions we already have
noted that ‘down’ faces lead to higher roughness compared
to ‘up’ faces (up to certain « values). Hence in min. Ra
majority of Diamond’s area faces ‘up’.

Group (b): This group consists of solid objects for which
optimal solutions are found in a small span of distribution.
Solid models in this group are Cuboid, Pie and Fin. For all

these objects it is found that the spread of solutions in first
or second objective is practically negligible. For Cuboid,
min. 7 solution is with (6,,8,)=(90.0°, 90.0°) and (Ra,
T)= (10.52, 10.0), and min. Ra solution is with (0.,8,)=
(0.0°, 89.98°), (Ra, T)= (9.05, 10.0). In 3-D these two ori-
entations are flat (89.98° is same as 90.0° for any practical
purpose). Due to space limitation only Min. 7T solution is
shown, Figure 6(p). The estimate of T" for both these ori-
entations is same but there is slight variation in Ra values.
The variations can be explained based on numerical errors
and discontinuity in Ra occurring due to vertical flat sur-
faces (a = 90.0°,90.0°). The flat orientation is justified as
min. T solution as shortest height is along Z-axis. This ori-
entation also has 4 surfaces (majority of the surface area)
almost vertical (o = 0°), thus leading to minimum Ra.

Next, for the Pie shape flat orientation, Figure 6(q), is
the optimal orientation. Min. T in this orientation is self-
evident. In this orientation the side-strip has a = 0°. Al-
though the side-strip is not the majority area, and the ma-
jority area faces lie horizontal with o = 90°, still this orien-
tation leads to min. Ra. To understand this behavior other
orientations are shown in which majority surface areas have
a = 0°, Figures 6(r) and 6(s). It is found that T and Ra val-
ues are larger for these orientations. This can be explained
based on the fact that though in these two orientations, the
flat vertical surfaces have o = 0°, but the remaining area
on the strip has large o values which increases Ra. (It is
important to note that in Figure 6(q), the roughness for
top and bottom surfaces is not maximum rather an average
of roughness at @ = 0° and o = 90°, and hence Ra is not
large). For Fin as our last example, Figure 6(t) shows that
the majority of surface (containing hollow feature and pro-
truding plates) has a = 0° (thereby minimizing Ra) and the
minimum vertical thickness minimizes T'.

For all the solid models that we have considered the op-
timal extreme orientations have been explained well in con-
sonance with the objective function models. Thus, our pro-
cedure is validated. Importantly, similar trade-off fronts ob-
tained by two popular optimizers builds our confidence in
the proposed approach. Based on studies conducted here,
an insight into the nature of optimal orientations is also
obtained. Minimum 7 orientation for objects is straight-
forward to guess and occurs when shortest dimension occurs
along Z-axis. Certain guidelines for min. Ra orientations
can be derived as follows. For objects with flat surfaces
only, a min. Ra orientation occurs when the faces with the
majority area are (or close to) vertical. When curved or
oblique surfaces appear on the object then an orientation in
which majority area is vertical is often non-optimal. In such
cases, the build angle for curved or oblique faces should be
reduced and often one may find min. Ra orientation coincid-
ing with min. 7 orientation. The scope of these rules can be
made broader by conducting such studies on several objects
to derive general principles which may help the designer to
guess an optimal orientation a-priori. Before conducting this
study, to get such an insight would not have been possible.
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Figure 6: (a)-(c) Byramid. (d)-(e) Pyramid. (f)-(g) Prism.
(n)-(o) Diamond. (p) Cuboid. (q)-(r) Pie. (s) Fin.



7. CONCLUSIONS

This paper presents a novel attempt and systematic ap-
proach to address the tasks of finding optimal build ori-
entations in SLS process, approximating true (or close to)
Pareto-optimal solutions, and addressing the issue of decision-
making. The entire procedure is integrated and leads to the
development of M ORPE — Multi-objective Rapid Prototyp-
ing Engine. Two popular optimizers, NSGA-II and MOPSO,
are employed to discover trade-off fronts. Overall NSGA-IT
outperforms MOPSO, but similarities in convergence and
spread patterns of trade-off fronts indicate the closeness of
obtained solutions to the Pareto-front. Local search em-
ployed to fine tune the obtained solutions showed negligible
improvement, assuring that the solutions found by the op-
timizers are pretty good estimate of Pareto-solutions. Sev-
eral sample objects considered for experimentation demon-

strated the working of optimizers and decision making schemes.

‘Reference Point Method’ discovers a solution which depends
on the user’s preference and the shape of the Pareto-front.
‘Marginal Utility Method’ and ‘L2 — metric’ methods have
a tendency to discover a ‘knee’ point.

Based on the nature of the optimal solutions and careful
analysis, objects could be categorized into two groups. For
the first group a reasonable spread amongst the trade-off
solutions was found. The second group objects were found
to have a single optimal orientation which minimizes both
Ra and T. A closer analysis of the obtained solutions in
consideration with their geometric features and Ra model
helps in revealing common characteristics amongst the opti-
mal orientations. Such a discovery is regarded useful from a
practical view-point and may aid a designer in guessing op-
timal orientations for a solid object based on its geometry.
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