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Abstract. Genetic algorithms have been finding increasing appli
cation to difficult search and optimization problems in science and
engineering. As more demands are placed on the methodology, the
remaining challenges to the technique have become increasingly ap
parent, and that they have remained largely unanswered has become
less than acceptable to a user base seeking to cash in on the method's
oft-repeated promises of robustness. Foremost among these challenges
is the so-called linkage problem. In difficult problems - so-called de
ceptive problems - if needed bits or features are not coded tightly on
the artificial chromosome, simple genetic algorithms will be forced to
bypass global optima and instead be misled toward less acceptable lo
cal optima. Standard suggestions to circumvent this problem through
inversion or other reordering operators have not been successful, and
it has been suggested that many of these operators are too slow to
be of timely use. These difficulties led to the invention of so-called
messy genetic algorithms that were introduced in a previous paper.
Simply stated, messy genetic algorithms tackle the linkage problem
by finding tightly coded building blocks initially and then juxtapos
ing them to find globally optimal structures . In the original study, a
3D-bit, order-three deceptive problem was solved to global optimality,
but a number of challenges were posed for the messy methodology.
Specifically, nonuniform building block scale and size were highlighted
as difficulties that must be overcome if mGAs were to become a tech
nique of general applicability. These challenges have been overcome,
and this paper presents theoretical and computational results using
mGAs on problems of varying building block size and scale. The
problem of nonuniform building block scale is tackled with a tech
nique called genic selective crowding, and the problem of nonuniform
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building -block size is handled with null bits and tie breaking . To
gether, these techniques appear to overcome these difficult hurdles ,
yielding convergence to global optima in problems of bounded de
ception. Furthermore, this desirable convergence is performed with
remarkable efficiency. Theoretical computations are presented that
show that mGAs converge in time that grows only as a polynomial
function of the number of decision variables on a serial machine and
as a logarithmic function of the number of decision variables on a
parallel machine with a polynomial number of processors. The paper
also suggests a number of extensions and continuations of this work,
including the trial of messy floating point codes, messy permutations,
and messy classifiers (rules). Although additional basic work is both
needed and recommended, the compelling convergence and efficiency
demonstrated by mGAs recommends them for immediate application
in some of the many tough, blind combinatorial optimization prob
lems of science and engineering that have gone unsolved for want of
more tractable solution techniques.

1. Introduction

Like neural networks and connectionist systems, genetic algorithms and arti
ficia l evolutionary systems got their start during the cybernetics movement of
the late 1940s and 1950s, and as neural nets faded during the 1960s and 1970s
only to receive revived attention in the last decade, so too have genetic algo
rithms receded from view and undergone a recent renaissance. Simply stated,
genetic algorithms are search procedures based on the mechanics of natural
selection and natural genetics. They combine the use of string codings or ar
tificial chromosomes and populations with the selective and juxtapositional
power of reproduction and recombination to motivate a surprisingly powerful
search heuristic in many problems.

Despite their empirical success, there has been a long-standing objection
to the use of GAs in arbitrarily difficult problems. To assure convergence to
global optima, strings in simple GAs must be coded so that building blocks
- short, highly fit combinations of bits - can combine to form optima. If the
linkage between necessary bit combinations is too weak, in certain types of
problems called deceptive problems [7, 8], genetic algorithms will converge to
suboptimal points. A number of reordering operators have been suggested to
recode strings on the fly, but these have not yet proved sufficiently powerful
in empirical studies, and a recent theoretical study [9] has suggested that
unary reordering operators are too slow to be of much use in searching for
tight linkage.

On March 23, 1989, a new approach to this problem was launched in the
Genetic Algorithms Laboratory (GALab) at the University of Alabama. On
that date, globally optimal results to a 30-bit, order-three deceptive problem
were obtained using a new type of genetic algorithm called a messy genetic
algorithm [10]. Messy genetic algorithms combine the use of variable-length
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strings, a two-phase selection scheme, and messy genetic operators to effect
a solution to the fixed-coding problem of standard simple GAs . Prior to this
discovery, no provably difficult problem had ever been solved to optimality
using any GA without prior knowledge of good string orderings. Thus, thes e
results suggest that a major impediment to the use of GAs on arbitrarily dif
ficult problems has been removed. In the original work, two challenges were
outlined, challenges that needed to be overcome if messy GAs were to become
a broadly applicable tool. These challenges of nonhomogeneous subproblem
scale and size have been addressed successfully in this investigation.

This paper presents the results of our study of mGAs in problems with
nonuniform subfunction scale and size. With these challenges largely an
swered, messy genetic algorithms now appear capable of solving many diffi
cult combinatorial optimization to global optimality in polynomial time or
better. In the remainder of this report, the messy GA approach is summa
rized, both its operation and its theory of use. Thereafter, experiments on
problems of varying scale, varying building-block size, and combined varying
scale and size are presented. Directions for further study and application are
also considered.

2. mGAs: How are they different? What makes them tick?

The details of simple genetic algorithms are covered in standard references [1,
6, 13], and messy GAs are described more fully in Goldberg et al . [10] . Here,
fundamental differences between the usual simple GA and the messy ap
proach are highlighted, and the salient theory of messy GAs is briefly dis
cussed.

2.1 Differences between messy GAs and simple GAs

Messy GAs are different from simple GAs in four ways:

1. mGAs use variable-length codes that may be over- or underspecified
with respect to the problem being solved.

2. mGAs use simple cut and splice operators III place of fixed-length
crossover operators.

3. mGAs divide the evolutionary process into two phases: a pr imordial
phase and a juxtapositional phase.

4. mGAs use competitive templates to accentuate salient building blocks.

Messy GAs are messy because they use variable-length strings that may
be under- or overspecified with respect to the problem being solved. For
example, the three-bit string 111 of a simple GA might be represented in
a messy GA (using LISP·like notation) as «1 1) (2 1) (3 1)), where
each bit is identified by its name and its value. In mGAs, since variable
length strings are allowed, interpretations must be found for strings with
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to mislead similarity-based met hods away from global opt ima and toward
the complement of the global optimum. Since these functions are maximally
misleading, if an algorit hm can solve this class of problem, it can solve any
thing easier. In these first st udies, test functions have been const ructed from
sums of disjoint deceptive subfunctions . The restri ction to nonoverlapping
subfunctions can be partially lifted, a matter to be discussed as an ext ension
to this work.

2.4 C ompetitive templates

Comp etitive templates are critical to the success of mGAs in problems over
a fixed set of Boolean variables, because they permit the accurate evalu ation
of partial strings. The argument is straightforward, yet subtle. Assume
that order-k building blocks are being processed , and further assume that a
comp etitive template is available that is locally optimal to the level k - 1. If
the function is deterministic and nonstationary, th en the only structures that
will achieve a function value better th an that of th e competitive template
alone are those that are building blocks at the level k. Moreover, among
directly competing gene combinations, the best building block at th e level k
will get the best increment over th e comp etitive template value . In this way,
mGAs are able to separate the value of a bit combin ation from the string
without prior function knowledge.

The idea of using locally opt imal templates to the previous level suggests
the most pr actical way of using mG As. Starting at the level k = 1, an order-l
optimal template can be found , which in turn is used to find a level k = 2
template, and so on. In this way, mGAs can climb the ladder of deception
one rung at a time, obtaining useful intermediate results at the same time the
solution is being refined . It is interesting to note that this ladder-climbing
analogy carries over to the computational cost of solutions with increasing
k, a matter addressed in the next subsection.

2.5 mGA complexity

In th e pilot st udy, the complexity of messy GAs was not discussed , but sub 
sequent analysis has shown that they are polynomi al on serial machines and
logarithmic on parallel machines. The remainder of this subsection examines
this argument in detail.

Analysis of the complexity of the basic mGA is straightforward, if we
assume that function evalua t ions require much greater processing t ime than
genetic operators, that is t f ~ toa. Consider a problem with f decision
variables being optimized to order k. We recognize immediately that there
are m = f / k building blocks to be discovered. Further analysis pro ceeds by
considering the processing in the separate phases.

Durinl the primordial phase, the mGA starts with a population size
n = 2k (k) and a function evaluation for each population member during
initializa tion. If the func tion is deterministic, the initial evaluations are not
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rep eated in subsequent rounds of the primordial phase. Tournament selec
tion is performed until th e population cont ains a proportion O(l/m) of each
bui lding block. With the usual logistic growth [10], and letting P = 11m, it is
a straightforward matter to calculate the number of generations required un
til the complet ion of t he pr imordial phase . Starting with the logist ic growth
equation,

P = 1
1+(n -1)2- t

and solving for t, we obtain the result that

t = log(n - 1) - log(m - 1)

(2.1)

(2.2)

where logarithms here and elsewhere are taken with base two. Since m < n
and the population size is polynomial in £, we conclude that the number
of generations in the primordial phase is O(1og£). The downsizing of the
population (sometimes performed during the primordial phase through cut
ting the population in half every so often) does not affect this computation,
because the growth is logistic whether a double round is made to maintain
const ant pop ulat ion size or a single round is made, cutting the pop ulation
size in half. Overall, the primordial phase has complexity of O(£k) on a serial
machine and 0(1) on a pa rallel machine (assuming O(£k) processors). In
either case, the number of generations of tournament selection required to
dope the population with a sufficient number of the best building blocks is
O (1og f) .

To analyze the juxtaposit ional phase, we consider the processing in two
subphases : the lengthening sub phase and the crossing subphase. In both
subphases, we assume a constant population size n = O(m) = 0(£) , where
enoug h duplication of building blocks is permitted to allow for probabilis
tic variance. During lengthening, the cut probability is small, because the
building blocks are short, an d with splice probability near one, the process
ing tends to double the string length each generation. The strings are final ly
long enough to cover the problem no sooner than a time governed by the
equation £ = k2t . Solving for t , the duration of the lengthening phase is
clearly t = O(1og(£lk)) = O(1og£). With a population size of O(m) = 0(£),
a serial machine requ ires a number of function evaluations that is of order
o(£log £) du ring length ening, and a parallel machine requires process ing of
O( log£) .

At the beginning of the crossing subphase, we assume that the optimal
building blocks make up at least half the population when compared to com
peting substrings. Assuming continued logistic growth from this starting
condi t ion, the propo rtion of optimal building blocks grows as follows:

1
P = - 

1 + 2- t
(2.3)
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Phase Duration Serial Parallel
Primordial O(log e) OW) 0(1)

Leng thening O(log e) o (Rloge) o (log e)
Cross ing o (log e) o (Rloge) o (log e)

Overall mGA o (log e) OW) o (log e)

Table 1: Summary of complexity estimates for an mGA.

We expect a single instance of the k-optimal string when the population
contains at least one expected copy or when

(2.4)

Substituting and solving for the number of generations to convergence, we
obtain

t = _log(n1
/

m - 1) (2.5)

Let ti ng n = (1 + t )m and expanding in a power series through quadra t ic
terms using the binomial theorem, we conclude that t = 0(m- 1/ 2 ) . Checking
the series wit h the cubic term included we see that that term dominates.
Continuing this process through the j th term, we conclude that the limiting
case is t = O(m-(i-l)/i) , which for large j yields e = 0(m- 1 ) . Thus, the t ime
to convergence in the crossing phase is t = 0 (log m) = 0 (log e). As with the
lengthening subphase, we conclu de that the crossing phase is of complexity
O(Rloge) on a seria l machi ne and o (loge) in parallel.

These complexity est imates for each of the phases are summarized in
t able 1. On a serial machine, an mGA requ ires a numb er of function evalua 
t ions t hat grows as a polynomial function of the number of decision variables ,
O(ek

) . It is interesting that the computation is dominated by the initializa
tion phase. This suggests that if prior information is available regarding t he
function that would permit restriction of init ialization to a limited number
of bu ilding blocks (something less than o (Rlog e)), then t he overall serial
comp lexity can be reduced to a svelte O(Rlog e) . On a parallel machine with
enough pro cessors , initialization can be done in constant time, as can the
generational function evaluations dur ing lengthening and crossing. Thus , on
a large enough parallel mach ine, the mGA requires computations that grow
only as fast as a logarithmic function of the number of decision variables.
These estimates are exciting and bode well for the future of messy GAs in
combinatorial function opt imization, especially when considered in the light
of the following conjecture.

2.6 A conjecture: mGAs find the best so lu t ion at a given level

That mGAs converge in polynomial time or better is important , but poly
nomial convergence is no virtue if that convergence is incorrect . Empirically,
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mGAs have always found globally optimal results in problems of bounded
deception, leading us to th e following conjecture :

Conjecture 1. With probability that can be made arbitrarily close to one,
messy GAs converge to a solution at least as good as th e truncated order-k
solution, where the truncated order-k solution is defined as the optimum of
the function defined by setting all Walsh coefficients of the original function
at order k +1 or above to zero. Moreover, thi s convergence occurs in a time
that is O( f k

) on a serial machine and O(1ogf) on a parallel m achine.

The plausibility of th is conjecture can be seen quite readily. During th e
pr imordial phase, the best building blocks grow logist ically as long as the
fitn ess signal is reliable (and as long as appl es are compared to apples, but
we will have more to say abo ut this in a moment when we discuss the need
for thresholding or genic selective crowding) . During the lengthening portion
of the juxtapositional phase, the bes t building blocks will hold their own on
average, because rep roduct ion will continue to increase their number at a
rate near doub ling, an d splicing must cont inue to express a bu ilding block
no less than half of the time (because half th e t ime a currently expr essed
bui lding block will be placed at the left end of the string, guaranteeing con
t inued expression under th e first-come-first- served rule). Thereaft er during
the crossing por tion of the juxt apositional phas e, th e mG A behaves very
much like a simple GA with very t ight building blocks, and cont inued con
vergence pro ceeds according to an inequality that looks very much like the
standard schema theorem.

Alth ough the conjecture is reasonable, taking it to theoremhood is non
t rivial as it is insufficient to deal with the trajectory of the pop ulation in
expectation . It is also difficulty to include in detail the thresholding and tie
breaking mechanisms to be discussed in the following sections. Nonetheless,
the outline gives more than a hint of the convergence mechanism underlying
mGAs and provides some explanation of the remarkable empirical results
observed to date.

3. N onuniform sc aling a n d genic selective crow d in g

It is clear that the test function considered in the pilot study [10] is quit e
difficult. Each of the 10 subfunct ions has two local optima, yielding a total
of 210 = 1024 opt ima , 1023 of them false. On the other hand, the function
seems like something of a special case. After all, 10 copies of the same
function were added together, thereby prohibit ing any study of what happ ens
to mGA convergence when either the scale of the subfunction varies or when
building block size is different . In this section, we extend the mGA to permit
the solution of problems with varying subfunction scale using a technique
called genic selective crowding or thresholding. Simply stated , this technique
restricts the selection procedure by requiring competit ions to be held between
only those individuals that have a better-than-random numb er of genes in
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common. In this way, only apples are comp ared to apples , and only relevant
differences in scale are used to dist inguish between different building blocks.

In the remainder of th is section, the qualitative theory of genic selective
crowding, a mathematical analysis of two of its important parameters , and
some simulat ion results are presented to lend support to the use of this tech
nique. A later section will present results using this method in combinat ion
with tie breaking on functions with mixed scale and bui lding block size.

3.1 Theory of genic selective cr owd ing

In th e pilot study, tournament selection was used during the primordial ph ase
by repeatedly drawing two strings chosen at random (without replacement)
from the population and select ing the better st ring. In the problem con
sidered in th at study, that procedure worked well, because all subfunctions
had identical scaling. In general , however , this procedure is flawed , because
it permits substrings to be compared to one another regardless of whether
they ar e referring to the same subfunction - regardless of whether they con
tain any genes in common. The pilot study recognized this challenge, and
suggested a technique called genic selective crowding (or thresholding ) to
overcome the difficulty.

The idea of genic select ive crowding is st ra ightforward. Tournaments
are held as usu al , except th at individuals are forced to compete with those
individuals who have at least some threshold number of genes in common
with them. In thi s way, a pressu re is maintained for like to compete with like,
helping to insure that th e comparison is a meaningful one. The mechanism
is not unlike that of a number of niching procedures in common use [1, 3,
4, 11, 13], excep t that allele values are not compared; only the presence of
genes in common is checked.

In practice, the actual algorithm works as follows. The first candidate
for selection is picked uniformly at random without rep lacement from a can
didate permutation list that originally includes all population members in
randomly generated order. The second candidate is chosen by checking t he
next shuffle number, n sh, candida tes in the permutation list one at a time
until one is found that has at least threshold, 0, genes in common with the
first candidate. If a candidate is found, the tournament is held in t he nor
mal manner with th e better individual being selected for subsequent genet ic
pro cessing. If no second candidate is found that meets the criterion in nsh

tries , the first candidate is chosen for subsequent processing.
The two parameters of genic selective crowding, the threshold value and

shuffle numb er, play an important role in properly imp lementing the thresh
olding mechanism in messy GAs. It is important to choose a threshold value
th at discriminates between the chance occurrence of genes in common and
the likelihood that such commonality is st atis tically significant. Intuitively,
it seems reason able to expect that the threshold will have to increase in a
messy GA as the strings get longer, and an analysis of appropriate threshold
values will show exactly that. It is also import ant to choose a shuffle number
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such that th ere is a better than random chance of choosin g at least one indi
vidual with the threshold numb er of bits in common. This par ameter should
vary as the string length , bu t without some further thought , it is unclear
exactly how. Simplified analyses that guide reasonable choices for threshold
and shuffle number are presented in the next subs ection.

3 .2 R easonable values for threshold and shuffle number

Simplified analyses of threshold and shuffle number values are present ed
herein . Under th e assumption of a ran domly generated population of can di
dates, we require th at th e threshold value B be set higher than its expected
value for a given current st ring length and that th e shuffle numb er n sh be set
so as to exp ect at least one occurrence of a second cand idate with B genes
in common with the first candidate. Although th e algebra is somewh at in
volved, the analysis leaves us with a straightforward procedure that appears
to give good results.

Assuming an i -bit problem, it is clear that an mGA may have raw strings
of length ). less than or greater than t . After decoding, however, the pro
cessed length of a string (the number of different bit s mentioned in the stri ng)
must be less than or equal to the length of th e problem t . In the remain
der of th is subsection, the lengths discussed are all processed lengths. In a
given threshold comparison , we consider the possibility of having different

processed lengths ).1 and ). 2' Clearly, th ere are (t) .(t) possible com

binations of two strings of length ).1 and ).2 . The numb er of combinations
of two strings having x common genes between th em may be estimated by
fixing x positions in both the st rings and calculating the numb er of possible
combinations to place the rest (£ - x) genes in the remaining positions of
both strings.

The number of combin ati ons of two strings cont aining x common genes is
equal to the numb er of combinat ions of choosing x positions from t possible
choices, times the number of combinations which allocate the ( ).1 - x) re
main ing positions in the first string from the (£- x) remaining choices, times
the number of combinations which allocate the ().2 - x) remaining positions
in the second string from (£ - ).1) remaining choices or symbolically

Therefore, the probability that two strings contain exactly x common genes
is given by the equation

(3.1)
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There are limits on the number of common genes between two strings, x
that will satisfy the above equat ion. A little computation shows th at the
minimum and maximum limits on x are .

max(O,)\1 + ).2 - £)

and

respectively. It can be proved easily that

(3.2)

Substituting equat ion 3.2 for th e first two terms in the numerator of equa
tion 3.1 yields the point probability functi on for a hypergeometric distribu
t ion [5J:

(3.3)

The limits on x mentioned above agree with that in a hypergeometric
distribution. Therefore, the probability that there are a certain number of
common genes between two random strings is hypergeometric. To calculate
th e threshold value , we compute the expected number of bits in common by
summing over all possible values:

min(). l>).2)

E[xJ = L: x ·P(£, ).1, ).2,X )
x=max(O.Al +).2 -£)

(3.4)

After a good bit of manipulation it is found that the expected number of bits
in common is given by the simple equation, E[xJ = ~. In the program , we
simply require that a threshold be used that is at least equal to the nearest
integer greater than the calculated E[x] value. Therefore, the threshold value
is taken as

(3.5)

where the operator r1denotes a ceiling operator that calculates th e nearest
integer greater than the operand.

With a suitable choice of threshold , we turn to calculating a reasonable
value for the shuffle number. We would like to choose a shuffle number
that ensures a reasonable probability of selecting a second candidate that
has at least B genes in common with th e first candidate. Calculating the
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Figure 1: The shuffle number versus string length (AI = A2 assumed).

cumulative probability distribution of having at least f) genes in common is
a straightforward exercise:

min(>-,,>- ,}

P(£,>'1 , >'2, f)) = 2:.: P(£'>'l' >'2,k)
k=B

(3.6)

Setting the expected numb er of matched copies in th e shuffle subpopulat ion
to one and solving for th e shuffle number yields the following:

(3.7)

Assuming strings of equal length, >'1 = >'2, the value of shuffle number is
shown as a fun ction of string length for a 3D-bit problem in figure 1. It
may be shown using th e usual normal approximation to the hyp ergeome tric
distribution that the lowest probabilit ies of occurrence of f) mat ches between
randomly chosen st rings occurs when both strings ar e very short or very long.
Sub sti tuting appropriate length and threshold values into the probability
distribution yields the equation

(3.8)

which is used regardless of string length as a reasonable bound on the nec
essary shuffle number.
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3.3 C omputational experiments with and w ithout thresholding

The thresholding mechanism described in the previous subsections has been
implemented in mGA code developed for execution on a TI Exp lorer. Several
test functions having subfunctions with unequal scaling have been used to
examine the effect of thresholding on messy GAs. Scaled versions of the orig
inal 3D-bit test function are formed by multiplying each of the subfunctions
by a scale factor, th ereby producing an unequal selection pressure on each
subfunction, making it more difficult for messy GAs to solve the problem
to global optimality without a mechanism such as selective genic crowding .
A performance comparison of messy GAs with and without thresholding is
made by applying them on these functions. In each experiment, five simu
lations are performed and the average values are presented. The basic GA
parameters used in all simulation runs are as follows:

number of generations
probability of cut
probability of splice
probability of mutation

= 30;
= 1/60;
= 1.0;
= 0.0.

In the following, the test functions and their corresponding simulation results
are presented.

3.3.1 Test function 1: Nine up, one down

In this test function, the first subfunction is scaled down by a factor of
three and the other subfunctions (two through ten) are scaled up by a fac
tor of seven. This introduces an adverse selection pressure against the first
subfunction. To make matters worse, an extra 1000 copies of each correct
three-bit building block for subfunctions two through ten are added to the
initial population, making a total of 9000 additional strings. This pertur
bation is performed in an attempt to overwhelm the poorly scaled building
block. Adverse scaling together with an adverse initial proportion produces a
stiff challenge for the mGA to maintain enough copies of the correct building
block for the first subfunction in the population. The other GA parameters
used in the simulations follow:

population size
string length
number of generations

= 41480 reduced to 2592;
= 3;
= 30.

Simulations with and without thresholding are performed, and the aver
age of five simulations is plotted. The thresholding parameters B and shuffle
number are adopted according to the theory presented in the previous sub
section, using a threshold of r~l and a shuffle number of 30. Figure 2
compares the maximum number of subfunctions correct versus generation
for mGAs with and without thresholding. The first subfunction and the
rest of the subfunctions are plotted separately to show the convergence of
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Figure 2: Maximum number of subfun ctions correct in test funct ion
1 wit h nine subfunctions scaled up and one scaled down. The average
of five runs is shown. Wit hout thresholding, the mGA is unable to get
all ten subfunctions correctly. With thresholding, th e mGA correctly
finds global optima reliably.
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the algorithm in each category. T he mG A without thresholding is unable
to maint ain correct strings corr esponding to the first subfunction t hrough
ou t the primordial phase, whereas the mG A with thresholdin g mai ntains
enough copies of the corr ect string corresponding to the first subfunction in
successive generations to solve the problem to global optimality . Figure 3
shows the average number of subfunctions in the population versus genera
tion number . It is clear from the figure that the mGA without thresholding
loses the correct building block corr esponding to the first subfunction, while
t he m GA with t hresholding maintains all ten correct building blo cks, solving
the pro blem to global op ti mality quit e eas ily.

3. 3.2 Test function 2: One up, nine down

In the second test function, we investigate the revers e situat ion from that
of the first. Here, subfunc tion one is scaled up by a factor of seven and the
remaini ng nine subfunct ions are scaled down by a fact or three . As an added
per turbation , an extra 9000 copies of the best scaled-up building blo ck (sub
function one) are added to the initial population to try to over whelm the
poorly scaled building blo cks. This test function and initial conditi on com
bination provide a st iff challenge to mGA convergence. All GA parameters
are the same as those in the simulations for test function 1.
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Figure 3: Average numb er of subfunctions correct in test function 1
with nin e subfunctions scaled up and one scaled down.

Figure 4 shows the max imum number of subfunctions correct at each
generation for messy GAs with and witho ut thresholding. The graph shows
that the mGA without thresholding loses the correct building blocks corre 
sponding to th e poorly scaled subfunctions and is only able to get a single
subfunct ion answered correct ly. On the ot her hand , th e mGA with thresh
olding is able to maintain and recombine the correct bu ilding blocks to all
subfunct ions and solve the problem to global opt ima lity. Figu re 5 graphs
th e population average number of correct building blocks versus generation.
The figure once again confirms the role of thresholding in successfully classi
fying the tournaments, thereby allowing only comparable building blocks to
compete with one another.

3.3.3 T est funct ion 3: A linear sc aling

Having tested the extremes of behavior, test function 3 considers a linear
scaling of the 10, three-bit subfunctions, starting from a factor of 10 for
subfunction one and going up to 100 for subfunction ten with an increment
of 10 between each subfunction. No extra copies are added here . An ini
tial pop ulat ion size equal to 32,480 is used and the pop ulat ion is reduced to
2030 at the end of the primordial phase. The other GA parameters inclu ding
thresholding parameters used in the simulations are the same as those used in
the previous test funct ions. Messy GAs with and without thresholding are
applied to this function and the maximum and average objective function
values are compared in figure 6. The plot shows that thresholding permits
th e mGA to maintain and recombine all ten subfunctions in the populat ion.
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Figure 4: Maximum number of subfunctions correct in test function 2
with one subfunct ion scaled up and nine funct ions scaled down. The
mGA wit hout th resholding is only able to get th e ups caled subfunction
correct, while the mGA with th resholdi ng maintains and recombines
all subfunctions to obtain the global optimum.
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Figure 5: Average number of subfunct ions correct in test function 2.
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Figure 6: Maximum and average value of the objective function versus
generation number on the linearly scaled test function 3. Both mGAs
with and without thresholding are able to find the global optimum,
but the mGA with thr esholding finds the optimum more quickly and
maintains higher average performance across the population.

The mGA with thresholding is also able to mai ntain a higher value of aver
age fitness across the population than the mGA without th resho lding . Also
note that the mGA with thresholding finds globally optimal st ructures more
quickly th an the mGA without thresholding; the mGA with t hres holding
finds it s first optimal solut ion at generation 15, whereas the mG A wit hout
thresholdi ng takes one generation longer. It is actually inte rest ing tha t the
mGA without t hresholding can solve the prob lem at all. Clearly, th e thresh
olding is useful here, but the pressure app lied by thresholding to ma intain
separate competitions appears to be more important in situations that be
come greatly perturbed from an ideal mix of optimal building blocks . This
speaks well for the robustness of the procedure.

4. Nonuniform size , tie breakin g, and null bits

In the previous section, a genic selective crowding (th resholding) mecha
nism successfully add ressed the problem of nonuniform subfunction scale . In
this sect ion, we int roduce a method that tackles the problem of nonuni form
building block size. In the remainder of the sect ion, the difficulty is further
explained and the method of null bits with t ie break ing is introduced. There
after, simulations are perfo rmed to demonstrate the efficacy of the method.
Problems with combined nonuniform subfunction scale and size are also at
tacked using a combination of null bits, tie breaking, and thresholdi ng.
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It is fairly easy to understand why, if steps are not t aken to enforce mean
ingful competitions, nonuniform scaling of different subfunctions can cause
an mGA difficulty; however, it is not immediately obvious why nonu niform
building block size shou ld cause an mGA any difficulty. The problem can
best be understood if we imagine a discrepancy between function and algo
rithm bui lding block size. Suppose an mGA is process ing at the level k = 4,
but suppose t hat the longest building blocks in the function are of length
3. Such a mismatch between algorithmic and funct ional building blocks can
cause difficulty depend ing on the bits that fill in the leftover positions in the
shortest substrings. For example, consider th e two strings A = (( 1 1) (2
1) (3 1) (8 1) ) and B = (( 1 1) ( 2 1) ( 3 1) ( 8 0) ) . Referring to th e
prev ious 3D-bit problem, both contain optimal building blocks ((1 1) ( 2
1) (3 1) ), but th ey differ as to how to fill in the blan k. Thinking abo ut the
desirable outcome, we would rather see st ring A select ed and B eliminated,
because the fill-in bit (8 0) in string B may prevent the exp ression of the
optimal bit combination over posi tion s 7-8-9, whereas th e fill-in bit (8 1) in
st ring A agrees with the corr ect solution and would not inhibit its expression.
Yet, if nothing is done , string B will most often be selected in this decepti ve
problem because a lone zero will, on average, have high er fitness th an a lone
one . In some sense, such bits that ride along on a chromosome are parasites,
because they agree with locally optimal solutions, but do nothing to improve
the solutio n further. Later on, these same parasit ic bits inhibit expression
of correct bit combinations, and they must be selected against, if we are to
have some hope of solving problems with differing building block size.

The pilot study suggested a mechanism to deal with this knotty pr ob
lem. Specifically the inclusion of null or placeholder bits and the use of a
tie -breaking procedure were recommended. The idea is st raightforward. A
number of null bits are introduced as placeho lders to fill in leftover posi
t ions. Then during a tournament , if the fitness of two strings is the same,
the string with the shorter effective length (the one with the greater number
of null bits) is selected. Returning to the example given above , the addition
of null bits and tie breaking fixes the problem with parasitic bits completely.
Consider the modified string A' = ((1 1) ( 2 1) (3 1) (8 N)) with a null
bit as a placeholder for gene eight . When the objective function is sampled,
this string will have the same function value as B = ( ( 1 1) ( 2 1) (3 1)
(8 0)) (assuming an all-zero competitive template ), but string A' will be
preferred, because it has the shorter effect ive length.

In general, the numb er of null bits that must be add ed to a problem is
the difference between the size of the largest and smallest subfunctions in th e
problem. Since this information is not usually known beforehand, a total of
k - 1 null bits shou ld be add ed to the solution, thereby bounding all possible
building block lengths. Another way to perform essentially the same opera
tion is to init ialize the problem with building blocks of all sizes up to k an d
break t ies on the basis of shorter actual length. Either mechanism is reason-
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able, and the biological plausibility of them both has been argu ed [10] on the
grounds of a preference for most energy- or mass-efficient representat ion.

4.2 Monkey wrench runs

In the first size experiments, we don 't actually use a problem with different
building block size. Instead, we return to t he origin al 30-bit problem of
the pilot study with its ten , three-bit deceptive subfunctions. To simulate
the effect of a mismatch between algorithm building block size and problem
building block size, 9000 copies of four-bit parasitic strings (we call these the
four-bit monkey wrenches, because they are add ed intentionally to gum up
the works) are introduced on top of th e normal population of 32,480, three
bit st rings. T he added paras it ic st rings contain an optimal substring (1 1
1) plus a spur ious four th bit having a value 0 at the first position of one of
the other nine subfu nctions. A simple count shows that there are a total of
9 ·10 = 90 such variat ions and a 100 copies of each variant are included. Five
independent simulations are performed using the following GA parameters:

init ial population size
probability of cut
probability of splice
probabili ty of mutat ion

= 41,480 down to 2592
= 1/60
= 1.0
= 0.0

In figure 7, the maxi mum and average numb er of opt imal subfunctions versus
generation is shown for mG~s with and without t ie breaking. The figure
shows that with tie breaking, an optimal solution is found as soon as the
strings are long enough to specify the solution, whereas without tie breaking
the occurrence of an optimal solut ion is considerably delayed and unstable.
The maximum and average function value of the strings versus generation
are shown in figure 8.

It is interesting that the mGA without t ie breaking is able to solve this
problem to global optimality, albeit more slowly than the mGA with those
features, even though the monkey wrenches were present to disturb the solu
tion process. Apparently, cut and splice were sufficient to excise the bad bits
that went along for the ride . In general, however, multiple parasitic bits can
tag along, and to simulate this possibility a six-bit monkey wrench is devised
that takes a single optimal building block and adds one zero each from three
of the remaining nine subfunctions. There are (~) = 84 such six-bit monkey
wrenches per function . One copy of each is included per subfunction for a
total 10 . 84 = 840 substrings appended to the original initial population
of 32,480, three-bit strings yielding a total of 33,320 strings in the initial
population. During the primordial phase, this population is reduced to size
2082 with successive population halving; th e size is held const an t throughout
the juxtapositional phase as per usu al. Otherwise, the messy GA parame
ters used in these simulations are the same as th ose used in the previous
experiment.
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Figure 7: Average and maximum number of opti mal subfunctions
versus generation in the 3D-bit problem with 4-bit monkey wrenches.
Without null bit s th e discovery of the correct solution is considerably
delayed and not ent irely stable. Wit h tie breaking , the mGA finds the
globally optimal solutio n in t he first generation the stri ngs ar e long
enough to cover th e problem.
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Figure 8: Average and maximum funct ion value versus generation in
t he 3D-bit problem with four -bit monkey wrenches .
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Figure 9: Average and maximum function value of the population
versus generation in a problem with six-bit monkey wrenches.

The populat ion maximum and average function values are graphed in
figure 9. The tie -breaking algorithm allows messy GAs to converge to the
optimal solution by maintaining all low-orde r building blocks in the pop
ulation , whereas the mGA without tie breaking cannot solve the problem
to global optimality; the presence of multiple parasit ic bits is simply too
disruptive.

4 .3 Differently sized building b locks

T he monkey wrench experiments give us confidence in th e t ie-breaking proce
dure. Here we actually construct a problem with building blocks of differing
sizes and try t he mGA with and without tie breaking an d null bits.

Specifically, a 31-bit function with one three-bit subfunction an d seven
4-bit subfunctions is designed. The three- and four-bit subfunctions use
Liepins's construct [14J for a fully deceptive function of order k:

{

I - ft'
f(d, k) = 1,

I_ill
k '

if d = OJ
if d = k;
otherwise.

Here d is the number of ones in the substring. T hus, the function has a global
optimum at 1 ... 1, a local optimum at O. . . 0, and a value that declines as
the function's argument gets more distant (in the sense of Hamming) from
all zeroes.

Because the disparity between building block sizes is so small, only a
single null bit, (32 N), is required and used. GA parameters ident ical to
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Figure 10: Average proport ion of strings having a three-bit optimal
building block and a null bit (only the primordial phase is shown).
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the previous experiments are used, except that the population starts at size
24 (i2) = 575,360 and is ramped down to 2247 with successive population
halving. Average quantities from three independent simulations are pre
sented. Figure 10 shows the average proportion of the three-bit optimal
strings during the primordial phase. The mGA without ti e breaking and
null bits is unable to grow a substantial portion of the three-bit building
blocks. As a result, it is also unable to optimize the func tion to global opti 
mality as is seen in figure 11. By contrast, the mGA with null bits and tie
br eak ing is able to solve the problem to global optimality quite quickly.

4.4 Nonuniform scaling an d nonuniform bu ild ing blo ck size

Thus far, we have t reated the prob lems of nonuniform scale and size as though
they always occur in separate objective functions . Of course, it is likely that
a funct ion will have both nonuniformly scaled and sized subfu nctions in it.
In thi s subsection, a test function is constructed wit h both difficulties, and
mGAs with genic selective crowding alone , tie breaking wit h null bits alone,
and both features together are t ried and compared.

A 36-bit test funct ion with differently scaled and sized bui lding blocks is
constructed . In the problem, th ree subfunctions are three bits long, three
other subfunctions are four bits long, and the remaining three subfunctions
are five bits long. Liepins's construct is used here for all three sizes, and
each functio n is scaled by twice its order squared, 2P. Thus, the three-bit
function is multiplied by 18, the four-bit funct ion by 32, and th e five-bit
function by 50.



438 Messy Genetic Algorithms Revisited

Maximum

.....
o

J

- WithTie Breaking

. _ .. u WithoutTie Breaking

10 15

Avera~~: ..

20 25

Genera tion Number

Figure 11: Average and maximum number of optimal building blocks
versus generation in a problem with one three-bit subfunction and
seven four-bit subfunctions.

Two null bits are required for these runs, and this dictates that an initial
population required for this run be quite sizeable: n = 25 (~8) = 16,062,144.
It should be remembered, however , that this is a small port ion of the search
space, which is itse lf of size 236 = 6.87(101°). Because of the large size of
population required init ially, the primordial select ion is performed in sub
pop ulations , and the best strings are brought forward to be considered for
further selection. During primordial selection, th e popu lati on size is suc
cessively reduced by ha lf until it reaches the chosen size for juxtaposit ional
selection, n = 200.

Figure 12 shows the maximum number of subfunctions correct versus
generation with thresholding alone, tie breaking alone, and their combina
ti on. The results are averaged over three simulations . The figure shows
that thresholding an d tie breaking alone cannot solve the problem to global
optimality, whereas their combination is able to maintain all subfunctions
in the solution. Figure 13 shows the populat ion maximum and average fit
ness in successive generations. Even tho ugh there were many copies of all
order-3 bui lding blocks in the initial population due to null-bit duplicates ,
neither the mGA with tie breaking alone nor the mGA with thresholding
alone could maintain enough copies of th em at the end of the primordial
phase. On the other hand, when both thresholding and tie-breaking meth
ods were applied, thresholding main tained a uniform selection pressure for
different subfunctions, and tie breaking maintained a select ion pressure for
t he individual bu ilding blocks with null bit s. The combined action of these
met hods permitted the global optimum to be found repeatedly.
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5. Continuations and extensions

The initial investigation of mGAs and thi s study lead to a number of inter
est ing cont inuat ions and extensions:

1. Analyze and solve overlapping subfunctions.

2. Prove th e fund amental conjecture of mGAs .

3. Implement a parallel version of an mGA.

4. Develop other messy code types, including permutation codes, messy
floating point codes, and messy classifiers (rules).

5. Extend mGAs to nondeterministic functions .

6. Extend mGAs to nonstationary functions.

In the remainder of this sect ion, each of these possibilities is considered in
somewhat more detail.

In both th e pilot study and th e current investigation, only nonoverlapping
subfunctions were considered. This is a reasonable assumption to launch a
new technique, but the question arises whether functions can be deceptive at
higher levels becaus e of a large number of low-order interactions. For exam
ple, many problems can be described with linear and quadratic interaction
between Boolean decision variables, but does this imply that such functions
are no more than order-2 deceptive? The answer to this and related questions
lies in a careful application of the Walsh theory described elsewhere [7, 8].
Working in reverse, nondeceptive interactions can clearly be added to what
otherwise would be nonoverlapping deceptive subfunctions without affecting
the mGA's ability to solve the augmented problem, and it is reasonable to
exp ect that further analyt ical extensions of the class of mGA-solvable prob
lems are possible . Work in this area is important if we are to understand the
full class of problems that mGAs can solve to global optimality. Regardless
of thes e fine points, as a practical matter, mGAs may be used in the manner
suggested earlier, climbing the ladder of deception one bit at a time. At some
point , it becomes impractical to climb further, and the best answer so far is
adopted and used .

Proving th e fundamental conjecture and obtaining probabilistic bounds
on the method are important, yet nontrivial, extensions of this work. On the
one hand, because mGAs process strings in distinct phases, it may be easier
to perform a rigorous analysis of convergence than it is with a homogeneous
simple GA, where everything is going on all at once. On the other hand,
these syst ems still have many degrees of freedom, and simple calculations in
exp ect ation (calculations like the schema theorem) are not enough to prove
the conjecture. Progress here will depend on a two-pronged at tack. Instead
of analyzing mGA mechanics directly, simplified versions should be attacked
that ret ain the essence of the algorithm. More sophisticated analytical horse
power will also be required, including some fairly sophisticated tools from the
theory of stochastic processes.
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A parallel version of an mGA should not be difficult to implement, and
as it has been suggested, the logarithmic convergence guarantees of a parallel
version are very attractive. A parallel version is easy to implement , because
all genetic and selective processing requires only pairwise inter action. Local
tournaments may be held in the neighborhood of a given processor , and
mating and recombination can also be held locally.

The pilot study and thi s investigation have concentrated on solving prob
lems that map from a fixed number of Boolean variables into the reals. Of
course, the messy philosophy of mGAs can be extended to many different
classes of problems through many different types of codes. The pilot study
suggested a specific floating-point code and ongoing studies ar e considering
it and a number of variants. Messy permutations were also suggest ed, and
this should be a particularly fruitful avenu e of research in scheduling and
resource allocation problems. Another method of tackling problems over
permutations is to map them to binary strings, using the Boolean satisfiabil
ity techniques suggested by De Jong and Spears [2]. This indirect approach
may be fruitful in that it exploits the solid convergence of binary mGAs and
the simplicity of a reasonable penalty-like method.

Messy classifiers were also suggested in the pilot study. The idea is
straightforward. There is little need to carry along don't- care positions
explicitly, and only information-carrying positions need to be mentioned.
Moreover , messy classifiers provide a natural means of resolving th e gra nd
debate between the Michigan and Pitt approaches [6, 16]. Because mGAs
can recombine strings of arbitrary length containing an arbitrary number of
rules, there is no need to decide beforehand whether a single rul e or a group
of rules is the appropriate unit of reward. Suitable punctuation ma rks could
be used to define corporate boundaries and rule clusters could merge or spin
off subsidiaries within the normal mGA framework.

The method of competitive templates essentially removes the "determin
istic noise" that exists in simple GAs because of the simultaneous variation
of multiple building blocks. There are problems, however , where real noise
is present , and mGAs can be extended to permit their solution. There are
basically two approaches to follow. In one method , building blocks can be
duplicated enough times in the initial population to ensure that their average
evaluation is sufficiently accurate. In the other technique, ind ividual copies
of bui lding blocks may be evaluated repeatedly, taking a moving average or
other estimate of their function value. Either way, it should be possible to
perform calculations of the duplication or repetition required to reduce the
error within reasonable bounds.

It should also be possible to use mGAs on nonstationary problems. Else
where [6, 12, 13, 15] techniques of dominance and diploidy have been sug
gested and applied in nonstationary problems, and these certainly could be
adapted to mGA practice. There is another possibility, however . We have
already seen how the decoding of an mGA string involves a form of gene ex
pression that is something like an intrachromosomal dominance mechani sm.
Why not introduce explicit dominant and recessive markers within th e mGA
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together with a dominance shift mechanism, thereby permitting allele combi
nations (building blocks) to be alternately remembered and held in abeyance
as time goes on? Doing this in an mGA context has the advantage of be
ing able to recall or store appropriately sized (and tested) building blocks ,
whereas it is unclear in a simp le GA how to get beyond independent storage
or retrieval of more than single alleles.

Although there are many fru itful avenues for continued research, it should
be pointed out that messy GAs are ready for real-world app lication today.
Their combination of polynomi al or better efficiency and apparent global
convergence seems difficult to beat in many blind combinatorial optimization
problems.

6. Conclusions

This paper has discussed the salient features and theo ry of messy genet ic al
gorithms, and it has presented the results from an investigation of techniques
that permit mGAs to be applied to problems of varying subfunetion scale
and size.

Although more basic work is needed , mGAs are ready for real-world ap
plications, because they work, because they are efficient , and because they
are practical. The pilot study and th is investigation have laid the founda
tion for mG As, demonstrating that mGAs can converge to globally optimal
results in the worst kind of problem, so-called deceptive functions . Because
mGAs can converge in these worst -case problems, it is believed that they will
find global optima in all other problems with bounded deception. Moreover ,
mGAs are st ructure d to converge in computational time that grows only as a
polynomial function of the number of decision variables on a serial machine
and as a logarithmic function of the number of decision variables on a par
allel machine. Finally, mGAs are a practical tool that can be used to climb
a function's ladder of deception, providing useful and relat ively inexpensive
int ermediate results along the way.

For these reasons and because of their potential benefit in so many areas,
we recommend the immediate application of mGAs to difficult , combinatorial
problems of practical imp ort . Although severa l i's remain to be dotted and
a number of t's are st ill there for the crossing, we believe that this technique
will become an import ant weapon in the analyst or designer's arsenal to com
bat nontrivial blind combinatorial problems in a rational, efficient manner.
Moreover, the app arent efficiency and convergence of such an inductive and
speculative process gives new hope that one day a rigorous computational
theory of innovation and design can be developed. While not detracting from
the designer's art, such a theory would provide rigorous underpinnings in an
area where jingoism has too long substituted for careful analysis.



D.E. Goldberg, K. Deb, and B. Korb 443

Acknowledgments

This material is based upon work supported by Subcontract No. 045 of Re
search Activity AI.12 under the auspices of the Research Institute for Com
puting and Information Systems (RICIS) at the University of Houston, Clear
lake, under NASA Cooperative Agreement NCC9-16 and by the National
Science Foundation under Grant CTS-8451610. The authors acknowledge
computers and software provided by the Digital Equipment Corporation and
Texas Instruments Incorporated. Mr. Deb also acknowledges research sup
port under a University of Alabama Graduate Council Fellowship.

References

[1] K.A. De Jong, An Analysis of the Behavior of a Class of Genetic Adaptive
Systems, (Doctoral dissertation, University of Michigan, 1975). Dissertation
Abstracts International, 36(10), 5140B. (Univer sity Microfilms No. 76-9381)

[2] K.A. De Jong and W.M. Spears, "Using genetic algorithms to solve NP
complete problems," Proceedings of the Third International Conference on
Genetic Algoritllms (1989) 124-132.

[3] K. Deb, Genetic Algorithms in Multimodal Function Optimization, Master's
thesis and TCGA Report 89002 (The Clearinghouse for Genetic Algorithms,
University of Alabama, Tuscaloosa, 1989).

[4] K. Deb and D.E . Goldberg,"An investigation of niche and species formation
in genetic function optimization," Proceedings of the Third International
Conference on Genetic Algorithms (1989) 42-50 .

[5] W. Feller, An Introduction to Probability Theory and its Application (Wiley,
New York, 1968).

[6] D.E . Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning (Addison-Wesley, Reading, MA, 1989).

[7] D.E. Goldberg, "Genetic algorithms and Walsh functions: Part I, a gentle
introduction," Complex Systems, 3 (1989) 129-152.

[8] D.E. Goldberg, "Genetic algorithms and Walsh functions: Part II, deception
and its analysis," Complex Systems, 3 (1989) 153-171.

[9] D.E. Goldberg and C.L. Bridges, "An analysis of a reordering operator on a
GA-hard problem," Biological Cybernetics, 62(5) (1990) 397-405 .

[10] D.E. Goldberg, B. Korb , and K. Deb, "Messy genetic algorithms: Motiva
tion, analysis , and first results," Complex Systems, 3 (1989) 493-530.

[11] D.E. Goldberg and J . Richardson, J. "Genetic algorithms with sharing for
multimodal function optimization," Genetic Algorithms and their Applica
tions: Proceedings of the Second International Conference on Genetic Algo
rithms (1987) 41-49.



444 Messy Genet ic A lgor ithms Revisited

[12] D.E. Goldberg and R.E. Smit h, "Nonstationary funct ion optimization using
genetic algorithms with dominance and diploidy," Genet ic Algorit hms and
their Applications: Proceedings of the Second Inte rnational Con ference on
Genetic Algorithms (1987) 59- 68.

[13] J .H. Holland, Adaptation in Natural and Artificial Syst ems (University of
Michigan Press, Ann Arbor, 1975).

[14] G.E. Liepins and M.D. Vose, Representational Issues in Genetic Optimiza
tion. Manuscript submitted for publication , 1989.

[15] R.E. Smith, An Investigation of Diploid Geneti c Algorithms for Adaptive
Search of Non-stationary Functions, Master's thesis and TCGA Report
No. 88001 (The Clearinghouse for Genet ic Algorithms, University of Al
ab am a, Tuscaloosa, 1988) .

[16] S.W. Wilson and D.E . Goldb erg , "A critical review of classifier- systems,"
Proceedings of the Third International Conference on Genet ic Algorithms
(1989) 244-255.


