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Toward an Estimation of Nadir Objective Vector
Using a Hybrid of Evolutionary and

Local Search Approaches
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Abstract—A nadir objective vector is constructed from the1

worst Pareto-optimal objective values in a multiobjective opti-2

mization problem and is an important entity to compute because3

of its significance in estimating the range of objective values4

in the Pareto-optimal front and also in executing a number of5

interactive multiobjective optimization techniques. Along with6

the ideal objective vector, it is also needed for the purpose of7

normalizing different objectives, so as to facilitate a comparison8

and agglomeration of the objectives. However, the task of9

estimating the nadir objective vector necessitates information10

about the complete Pareto-optimal front and has been reported11

to be a difficult task, and importantly an unsolved and open12

research issue. In this paper, we propose certain modifications to13

an existing evolutionary multiobjective optimization procedure to14

focus its search toward the extreme objective values and combine15

it with a reference-point based local search approach to constitute16

a couple of hybrid procedures for a reliable estimation of the17

nadir objective vector. With up to 20-objective optimization test18

problems and on a three-objective engineering design optimiza-19

tion problem, one of the proposed procedures is found to be20

capable of finding the nadir objective vector reliably. The study21

clearly shows the significance of an evolutionary computing based22

search procedure in assisting to solve an age-old important task23

in the field of multiobjective optimization.24

Index Terms—Evolutionary multiobjective optimization25

(EMO), hybrid procedure, ideal point, multiobjective26

optimization, multiple objectives, nadir point, nondominated27

sorting GA, Pareto optimality.28

I. Introduction29

IN a multiobjective optimization procedure, the estimation30

of a nadir objective vector (or simply a nadir point) is often31

an important task. The nadir objective vector is constructed32

from the worst values of each objective function corresponding33

to the entire set of Pareto-optimal solutions, that is, the Pareto-34
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optimal front. Sometimes, this point is confused with the point 35

representing the worst objective values of the entire search 36

space, which is often an over-estimation of the true nadir 37

objective vector. The importance of finding the nadir objective 38

vector was recognized by the multiple criteria decision making 39

(MCDM) researchers and practitioners since the early 1970s. 40

However, even after about 40 years of active research in 41

multiobjective optimization and decision making, there does 42

not exist a reliable procedure of finding the nadir point in 43

problems having more than three objectives. For this reason, 44

a reliable estimation of the nadir point is an important matter 45

to anyone interested in multiobjective optimization, including 46

evolutionary multiobjective optimization (EMO) researchers 47

and practitioners. We outline here the motivation and need 48

for finding the nadir point. 49

1) Along with the ideal objective vector (a point con- 50

structed from the best values of each objective), the 51

nadir objective vector can be used to normalize objective 52

functions [1], a matter often desired for an adequate 53

functioning of multiobjective optimization algorithms in 54

the presence of objective functions with different mag- 55

nitudes. With these two extreme values, the objective 56

functions can be scaled so that each scaled objective 57

takes values more or less in the same range. These 58

scaled values can be used for optimization with different 59

algorithms like the reference-point method, weighting 60

method, compromise programming, the Tchebycheff 61

method (see [1] and references therein), or even for 62

EMO algorithms. Such a scaling procedure may help in 63

reducing the computational cost by solving the problem 64

faster [2]. 65

2) The second motivation comes from the fact that the nadir 66

objective vector is a pre-requisite for finding preferred 67

Pareto-optimal solutions in different interactive algo- 68

rithms, such as the guess method [3] (where the idea is 69

to maximize the minimum weighted deviation from the 70

nadir objective vector), or it is otherwise an integral part 71

of an interactive method like the nondifferentiable inter- 72

active multiobjective bundle-based optimization system 73

(NIMBUS) method [1], [4]. The knowledge of a nadir 74

point should also help in interactive EMO procedures, 75

one implementation of which has been suggested re- 76

cently [5] and many other possibilities are discussed 77

in [6]. 78
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3) Thirdly, the knowledge of nadir and ideal objective79

values helps the decision-maker in adjusting her/his80

expectations on a realistic level by providing the range of81

each objective and can then be used to aid in specifying82

preference information in interactive methods in order83

to focus on a desired region of the Pareto-optimal84

front.85

4) Fourthly, in visualizing a Pareto-optimal front, the86

knowledge of the nadir objective vector is crucial. Along87

with the ideal point, the nadir point provides the range88

of each objective in order to facilitate comparison of89

different Pareto-optimal solutions, that is, visualizing the90

trade-off information through value paths, bar charts,91

petal diagrams, and so on [1], [7].92

5) Above all, the task of accurately estimating the nadir93

point in a three or more objective problems is a non-94

trivial and challenging task, and is an open research95

topic till to date. Researchers have repeatedly shown96

that the task is difficult even for linear multiobjective97

optimization problems. Therefore, any new effort to98

arrive at a suitable methodology for estimating the nadir99

point has an intellectual and pedagogic importance,100

despite its practical significance outlined above.101

These motivations for estimating the nadir point led the102

researchers dealing with MCDM methodologies to suggest103

procedures for approximating the nadir point using a so-104

called payoff table [8]. This involves computing individual105

optimum solutions for objectives, constructing a payoff table106

by evaluating other objective values at these optimal solutions,107

and estimating the nadir point from the worst objective values108

from the table. This procedure may not guarantee a true109

estimation of the nadir point for more than two objectives.110

Moreover, the estimated nadir point can be either an over-111

estimation or an under-estimation of the true nadir point. For112

example, Iserman and Steuer [9] have demonstrated these113

difficulties for finding a nadir point using the payoff table114

method even for linear problems and emphasized the need of115

using a better method. Among others, Dessouky et al. [10]116

suggested three heuristic methods and Korhonen et al. [11]117

another heuristic method for this purpose. Let us point out that118

all these methods suggested have been developed for linear119

multiobjective problems where all objectives and constraints120

are linear functions of the variables.121

In [12], an algorithm for deriving the nadir point is proposed122

based on subproblems. In other words, in order to find123

the nadir point for an M-objective problem, Pareto-optimal124

solutions of all
(
M

2

)
bi-objective optimization problems must125

first be found. Such a requirement may make the algorithm126

computationally impractical beyond three objectives, although127

Szczepanski and Wierzbicki [13] implemented the above idea128

using evolutionary algorithms (EAs) and showed successful129

applications with up to four objective linear optimization130

problems. Moreover, the authors of [12] did not suggest how to131

realize the idea in nonlinear problems. It must be emphasized132

that because the determination of the nadir point depends133

on finding the worst objective values in the set of Pareto-134

optimal solutions, even for linear problems, this is a difficult135

task [14].136

Since an estimation of the nadir objective vector necessitates 137

information about the whole Pareto-optimal front, any proce- 138

dure of estimating this point should ideally involve finding 139

Pareto-optimal solutions. This makes the task more difficult 140

compared to finding the ideal point [11]. Since EMO algo- 141

rithms can be used to find a representation of the entire or a 142

part of the Pareto-optimal front, EMO methodologies stand as 143

viable candidates for this task. Another motivation for using 144

an EMO procedure is that nadir point estimation is to be made 145

only once in a problem at the beginning of the decision making 146

process before any human decision maker is involved. So, even 147

if the proposed procedure uses somewhat substantial compu- 148

tational effort (one of the criticisms made often against evolu- 149

tionary optimization methods), a reliable and accurate method- 150

ology for estimating the nadir point is desired in practice. 151

A careful thought will reveal that an estimation of the nadir 152

objective vector may not need finding the complete Pareto- 153

optimal front, but only an adequate number of critical Pareto- 154

optimal solutions may be enough for this task. Based on 155

this concept, an earlier preliminary study by the authors [15] 156

showed that by altering the usual definition of a crowding 157

distance metric of an existing EMO methodology (elitist 158

nondominated sorting GA or NSGA-II [16]) to emphasize 159

objective-wise best and worst Pareto-optimal solutions (we 160

call these here extreme solutions), a near nadir point can be 161

estimated on a number of test problems. Since this paper, 162

we realized that the proposed NSGA-II procedure alone was 163

not enough to find the desired extreme solutions in a finite 164

amount of computational effort, when applied to other more 165

tricky optimization problems. In this paper, we hybridize the 166

previously proposed NSGA-II approach with a local search 167

procedure which uses the idea of an achievement scalariz- 168

ing function utilized, for example, in an interactive MCDM 169

approach—the reference-point approach [17]—to enhance the 170

convergence of solutions to the desired extreme points. This 171

extension, by far, is not an easy task, as a local search in 172

any form in the context of multiple conflicting objectives 173

is a difficult proposition. Empirical results of this hybrid 174

nadir point estimation procedure on problems with up to 20 175

objectives, on some difficult numerical optimization problems, 176

and on an engineering design problem amply demonstrate the 177

usefulness and promise of the proposed hybrid procedure. 178

The rest of this paper is organized as follows. In Section II, 179

we introduce basic concepts of multiobjective optimization 180

and discuss the importance and difficulties of estimating the 181

nadir point. In Section III, we describe two modified NSGA-II 182

approaches for finding near extreme Pareto-optimal solutions. 183

The nadir point estimation procedures proposed based on a 184

hybrid evolutionary-cum-local-search concept are described 185

in Section IV. The performances of the modified NSGA-II 186

procedures are tested and compared with a naive approach on 187

a number of scalable numerical test problems and the results 188

are described in Section V. The use of the hybrid nadir point 189

estimation procedure in full is demonstrated in Section VI by 190

solving three test problems, including an engineering design 191

problem. Some discussions and possible extensions of the 192

paper are presented in Section VII. Finally, the paper is 193

concluded in Section VIII. 194
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II. Nadir Objective Vector and Difficulties of Its195

Estimation196

We consider multiobjective optimization problems involving197

M conflicting objectives (fi : S → R) as functions of decision198

variables x
199

minimize {f1(x), f2(x), . . . , fM(x)}
subject to x ∈ S (1)

200

where S ⊂ Rn denotes the set of feasible solutions. A vector201

consisting of objective function values calculated at some point202

x ∈ S is called an objective vector f(x) = (f1(x), . . . , fM(x))T .203

Problem (1) gives rise to a set of Pareto-optimal solutions or204

a Pareto-optimal front (P∗), providing a trade-off among the205

objectives. The domination between two solutions is defined206

as follows [1], [18]:207

Definition 1: A solution x(1) is said to dominate the other208

solution x(2), if (i) the solution x(1) is no worse than x(2) in209

all objectives (that is, in the case of a minimization problem,210

fi(x(1)) ≤ fi(x(2)) for all i = 1, 2, . . . , M) and (ii) the solution211

x(1) is strictly better than x(2) in at least one objective (that is,212

in the case of a minimization problem, fi(x(1)) < fi(x(2)) for213

at least one index i).214

Pareto-optimal solutions can then be defined as follows [1]:215

Definition 2: A decision vector x∗ ∈ S and the correspond-216

ing objective vector f(x∗) are Pareto-optimal if there does217

not exist another decision vector x ∈ S that dominates x∗
218

according to Definition 1.219

Let us mention that if an objective fj is to be maximized,220

it is equivalent to minimize −fj . In what follows, we assume221

that the Pareto-optimal front is bounded. We now define a222

critical point, as follows:223

Definition 3: A point z(j)c is a critical point with respect to224

the jth objective function, if it corresponds to the worst value225

of fj among all Pareto-optimal solutions, i.e., z(j)c = {f(y)|y =226

argmaxx∈P∗fj(x)}.227

The nadir objective vector can now be defined as follows:228

Definition 4: An objective vector znad = (znad
1 , . . . , znad

M )T229

whose jth element is taken from the jth component of the230

corresponding critical Pareto-optimal point znad
j = z

(j)
j

c
is231

called a nadir objective vector.232

Due to the requirement that a critical point must be a233

Pareto-optimal point, the estimation of the nadir objective234

vector is, in general, a difficult task. Unlike the ideal ob-235

jective vector z∗ = (z∗
1, . . . , z

∗
M)T , which can be found by236

minimizing each objective individually over the feasible set S237

(i.e., z∗
j = minx∈S fj(x)), the nadir point cannot be formed by238

maximizing objectives individually over S. To find the nadir239

point, Pareto-optimality of solutions used for constructing the240

nadir point must first be established. This makes the task of241

finding the nadir point a difficult one.242

To illustrate this aspect, let us consider a bi-objective243

minimization problem shown in Fig. 1. If we maximize f1244

and f2 individually, we obtain points A and B, respectively.245

These two points can be used to construct the so-called worst246

objective vector, zw. In many problems (even in bi-objective247

optimization problems), the nadir objective vector and the248

worst objective vector are not the same point, which can also249

be seen in Fig. 1.

Fig. 1. Nadir and worst objective vectors may be different.

Fig. 2. Payoff table may not produce the true nadir point.

In order to estimate the nadir point correctly, we need to 250

find critical points (such as C and D in Fig. 1). 251

A. Payoff Table Method 252

Benayoun et al. [8] introduced the first interactive multiob- 253

jective optimization method and used a nadir point (although 254

the authors did not use the term “nadir”), which was to be 255

found by using a payoff table. To be more specific, each 256

objective function is first minimized individually and then a 257

table is constructed where the ith row of the table represents 258

values of all objective functions calculated at the point where 259

the ith objective obtained its minimum value. Thereafter, the 260

maximum value of the jth column can be considered as an 261

estimate of the upper bound of the jth objective in the Pareto- 262

optimal front and these maximum values may be used as 263

components of an approximation of the nadir objective vector. 264

The main difficulty of such an approach is that solutions are 265

not necessarily unique and thus corresponding to the minimum 266

solution of an objective there may exist more than one solution 267

having different values of other objectives, in problems having 268

more than two objectives. In these problems, the payoff table 269

method may not result in an accurate estimation of the nadir 270

objective vector. 271

Let us consider the Pareto-optimal front of a hypothetical 272

problem involving three objective functions shown in Fig. 2. 273
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The problem has a bounded objective space lying inside the274

rectangular outer box marked with solid lines. From the box,275

the region below the triangular surface ABC is removed to276

construct the feasible objective space. Since all three objectives277

are minimized, the Pareto-optimal front is the triangular plane278

ABC. The minimum value of the first objective function is279

zero. As can be seen from the figure, there exist a number of280

solutions having a value zero for function f1 and different281

combinations of f2 and f3 values. These solutions lie on282

the f1 = 0 plane, but on the trapezoid CBB′F′C′C. In the283

payoff table, when three objectives are minimized one at a284

time, we may get objective vectors f (1) = (0, 0, 1)T (point285

C), f (2) = (1, 0, 0)T (point A), and f (3) = (0, 1, 0)T (point B)286

corresponding to minimizations of f1, f2, and f3, respectively,287

and then the true nadir point znad = (1, 1, 1)T can be found.288

However, if vectors f (1) = (0, 0.2, 0.8)T , f (2) = (0.5, 0, 0.5)T ,289

and f (3) = (0.7, 0.3, 0)T (marked with open circles) are found290

as minimum points from corresponding minimizations of f1,291

f2, and f3, respectively, a wrong estimate z′ = (0.7, 0.3, 0.8)T292

of the nadir point will be made. The figure shows how such293

a wrong nadir point represents only a portion (shown dark-294

shaded) of the Pareto-optimal front. Here we obtained an295

underestimation but the result may also be an overestimation296

of the true nadir point in some other problems. Thus, we need297

a more reliable method to estimate the nadir point.298

III. Evolutionary Multiobjective Approaches for299

Nadir Point Estimation300

As has been discussed so far, the nadir point is associated301

with Pareto-optimal solutions and, thus, determining a set of302

Pareto-optimal solutions will facilitate the estimation of the303

nadir point. For the past decade or so, EMO algorithms have304

been gaining popularity because of their ability to find mul-305

tiple, wide-spread, Pareto-optimal solutions simultaneously306

[18], [19]. Since they aim at finding a set of Pareto-optimal307

solutions, an EMO approach may be an ideal way to find308

multiple critical points simultaneously for an estimation of309

the nadir objective vector. Let us now discuss several existing310

approaches for estimating the nadir point using an EMO311

approach.312

A. Naive Approach313

In the so-called naive approach, first a well-distributed set314

of Pareto-optimal solutions can be attempted to be found by an315

EMO, as was also suggested in [15]. Thereafter, an estimate316

of the nadir objective vector can be made by picking the317

worst values of each objective. This idea was implemented318

in [13] and applied to a couple of three and four objective319

optimization problems. However, this naive approach of first320

finding a representative set of Pareto-optimal solutions and321

then determining the nadir objective vector seems to possess322

some difficulties. In the context of the problem depicted in323

Fig. 2, this means first finding a well-represented set of324

solutions on the plane ABC and then estimating the nadir point325

from them.326

Recall that one of the main purposes of estimating the327

nadir objective vector is that along with the ideal point, it328

can be used to normalize different objective functions, so that 329

an interactive multiobjective optimization algorithm can be 330

used to find the most preferred Pareto-optimal solution. But 331

by the naive approach, an EMO is already utilized to find a 332

representative set of Pareto-optimal solutions. One may think 333

that there is no apparent reason for constructing the nadir point 334

for any further analysis. 335

However, representing and analyzing the set of Pareto- 336

optimal solutions is not trivial when we have more than two 337

objectives in question. Furthermore, we can list several other 338

difficulties related to the above-described simple approach. 339

Recent studies have shown that EMO approaches using the 340

domination principle possess a number of difficulties in solv- 341

ing problems having a large number of objectives [20]–[22]. 342

1) To properly represent a high-dimensional Pareto-optimal 343

front requires an exponentially large number of points 344

[18], thereby requiring a large computational cost. 345

2) With a large number of conflicting objectives, a large 346

proportion of points in a random initial population are 347

nondominated to each other. Since EMO algorithms 348

emphasize all nondominated solutions in a generation, a 349

large portion of an EA population gets copied to the next 350

generation, thereby allowing only a small number of new 351

solutions to be included in a generation. This severely 352

slows down the convergence of an EMO toward the true 353

Pareto-optimal front. 354

3) EMO methodologies maintain a good diversity of 355

nondominated solutions by explicitly using a niche- 356

preserving scheme which uses a diversity metric spec- 357

ifying how diverse the nondominated solutions are. In 358

a problem with many objectives, defining a computa- 359

tionally fast yet a good indicator of higher-dimensional 360

distances among solutions becomes a difficult task. This 361

aspect also makes the EMO approaches computationally 362

expensive. 363

4) With a large number of objectives, visualization of a 364

large-dimensional Pareto-optimal front gets difficult. 365

The above-mentioned shortcomings cause EMO approaches to 366

be inadequate for finding the complete Pareto-optimal front 367

in the first place [21]. Thus, for handling a large number 368

of objectives, it may not be advantageous to use the naive 369

approach in which an EMO is employed to first find a 370

representative set of points on the entire Pareto-optimal front 371

and then construct the nadir point from these points. 372

B. Multiple Bi-Objective Formulations 373

Szczepanski and Wierzbicki [13] have simulated the idea of 374

solving multiple bi-objective optimization problems suggested 375

in [12] using an EMO approach and constructing the nadir 376

point by accumulating all bi-objective Pareto-optimal solutions 377

together. In the context of the three-objective optimization 378

problem described in Fig. 2 for which the Pareto-optimal 379

front is the plane ABC, minimization of the pair f1–f2 will 380

correspond to one Pareto-optimal objective vector having a 381

value of zero for both objectives. An easy way to visualize 382

the objective space for the f1–f2 optimization problem is to 383

project every point from the above 3-D objective space on 384
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the f1–f2 plane. The projected objective space lies on the385

first quadrant of the f1–f2 plane and the origin [the point386

(0, 0) corresponding to (f1, f2)] is the only Pareto-optimal387

point to the above problem. However, this optimal objective388

vector (f1 = 0 and f2 = 0) corresponds to any value of389

the third objective function lying on the line CC′ (since the390

third objective was not considered in the above bi-objective391

optimization process). The authors of [13] have also suggested392

the use of an objective-space niching technique to find a set of393

well-spread optimal solutions on the objective space. But since394

all objective vectors on the line CC′ correspond to an identical395

(f1, f2) value of (0, 0), the objective-space niching will not396

have any motivation to find multiple solutions on the line CC′.397

Thus, to find multiple solutions on the line CC′ so that the398

point C can be captured by this bi-objective optimization task399

to make a correct estimate of the nadir point, an additional400

variable-space niching [23], [24] must also be used to get401

a well-spread set of solutions on the line CC′. This aspect402

was ignored in [13], but it is important to note that in order403

to accurately estimate the nadir point, any arbitrary objective404

vector on the line CC′ will not be adequate, but the point C405

must be accurately found. Similarly, the other two pair-wise406

minimizations, if performed with a variable-space niching,407

will give rise to sets of solutions on the lines AA′ and BB′.408

According to the procedure of [13], all these points (objective409

vectors) can then be put together, dominated solutions can410

be eliminated, and the nadir point can be estimated from the411

remaining nondominated points. If only exact objective vectors412

A, B, and C are found by respective pair-wise minimizations,413

the above procedure will result in finding critical points A, B,414

and C, thereby making a correct estimate of the nadir point415

(znad).416

Although the idea seems interesting and theoretically sound,417

it requires
(
M

2

)
bi-objective optimizations with both objective418

and variable-space niching methodologies to be performed.419

This may be a daunting task particularly for problems hav-420

ing more than three or four objectives. Moreover, the out-421

come of the procedure will depend on the chosen nich-422

ing parameter on both objective and decision-space niching423

operators.424

However, the idea of concentrating on a preferred region425

on the Pareto-optimal front, instead of finding the entire426

Pareto-optimal front, can be pushed further. Instead of finding427

bi-objective Pareto-optimal fronts by several pair-wise opti-428

mizations, an emphasis can be placed in an EMO approach429

to find only the critical points of the Pareto-optimal front.430

These points are nondominated points which will be required431

to estimate the nadir point correctly. With this change in432

focus, an EMO approach can also be used to handle large-433

dimensional problems, particularly since the focus would be434

to only converge to the extreme points on the Pareto-optimal435

front, instead of aiming at maintaining diversity. For the436

three-objective minimization problem of Fig. 2, the proposed437

EMO approach would then distribute its population members438

near the extreme points A, B, and C (instead of the entire439

Pareto-optimal front ABC or nonoptimal solutions), so that440

the nadir point can be estimated quickly. Our earlier paper441

[15] suggested the following two approaches.442

C. Worst-Crowded NSGA-II Approach 443

We discuss this approach for an implementation on a 444

particular EMO approach (NSGA-II [16]), but the concept can, 445

in principle, be implemented on other state-of-the-art EMO 446

approaches as well. Since the nadir point must be constructed 447

from the worst objective values of Pareto-optimal solutions, it 448

is intuitive to think of an idea in which population members 449

having the worst objective values within a nondominated 450

front are emphasized. For this, we suggested a modified 451

crowding distance scheme in NSGA-II by emphasizing the 452

worst objective values in every nondominated front [15]. We 453

called this by the name “Worst-Crowded NSGA-II Approach.” 454

In every generation, population members on every nondom- 455

inated front (having Nf members) are first sorted from their 456

minimum to maximum values based on each objective (for 457

minimization problems) and a rank equal to the position of the 458

solution in the sorted list is assigned. In this way, a member 459

i in a front gets a rank R
(m)
i from the sorting in the mth 460

objective. The solution with the minimum function value in 461

the mth objective gets a rank value R
(m)
i = 1 and the solution 462

with the maximum function value in the mth objective gets a 463

rank value R
(m)
i = Nf . Such a rank assignment continues for 464

all M objectives. Thus, at the end of this assignment process, 465

each solution in the front gets M ranks, one corresponding to 466

each objective function. Thereafter, the crowding distance di 467

to a solution i in the front is assigned as the maximum of all 468

M ranks 469

di = max
{

R
(1)
i , R

(2)
i , . . . , R

(M)
i

}
. (2)

In this way, the solution with the maximum objective value 470

of any objective gets the highest crowding distance. Thus, 471

the NSGA-II approach emphasizes a solution if it lies on a 472

better nondominated front and also if it has a higher crowding 473

distance value for solutions of the same nondominated front. 474

This dual task of selecting nondominated solutions and solu- 475

tions with worst objective values should, in principle, lead to 476

a proper estimation of the nadir point. 477

However, we realize that an emphasis on the worst nondom- 478

inated points alone may have at least two difficulties in certain 479

problems. First, since the focus is to find only a few solutions 480

(instead of a complete front), the population may lose its 481

diversity early on during the search process, thereby slowing 482

down the progress toward the critical points. Moreover, if, for 483

some reason, the convergence is a premature event to wrong 484

solutions, the lack of diversity among population members 485

will make it even harder for the EMO algorithm to recover 486

and find the necessary critical solutions to construct the true 487

nadir point. 488

The second difficulty of the worst-crowded NSGA-II ap- 489

proach may occur in certain problems, in which an identifica- 490

tion of critical points alone from the Pareto-optimal front is not 491

enough. Some spurious non-Pareto-optimal points can remain 492

nondominated with the critical points in a population and may 493

make a wrong estimate of the nadir point. Let us discuss this 494

important issue with an example problem. Consider a three- 495

objective minimization problem shown in Fig. 3, where the 496

surface ABCD represents the Pareto-optimal front. 497
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Fig. 3. Problem which may cause difficulty to the worst-crowded approach.

The true nadir point is at znad = (1, 1, 1)T . By using the498

worst-crowded NSGA-II, we expect to find three individual499

critical points: B = (1, 0, 0.4)T (for f1), D = (0, 1, 0.4)T (for500

f2), and C = (0, 0, 1)T (for f3). Note that there is no motivation501

for the worst-crowded NSGA-II to find and maintain point502

A = (0.9, 0.9, 0.1)T in the population, as this point does not503

correspond to the worst value of any of the three objectives in504

the set of Pareto-optimal solutions. With the three points (B, C,505

and D) in a population, a non-Pareto-optimal point E [with an506

objective vector (1.3, 1.3, 0.3)T ], if found by genetic operators,507

will become nondominated to points B, C, and D, and will con-508

tinue to exist in the population. Thereafter, the worst-crowded509

NSGA-II will emphasize points C and E as extreme points and510

the reconstructed nadir point will become F = (1.3, 1.3, 1.0)T ,511

which is a wrong estimation. This difficulty could have been512

avoided, if the point A was somehow present in the population.513

A little thought will reveal that the point A is a Pareto-514

optimal solution, but corresponds to the best value of f3.515

If the point A is present in the population, it will dominate516

points like E and would not allow points like E to be517

present in the nondominated front. Interestingly, this situation518

does not occur in bi-objective optimization problems. To519

avoid a wrong estimation of the nadir point due to the520

above difficulty, ideally, an emphasis on maintaining all521

Pareto-optimal solutions in the population must be made.522

But, since this is not practically viable for a large number of523

objectives (as discussed in Section III-A), we discuss another524

approach which deals with the above-mentioned difficulties525

better than the worst-crowded approach.526

D. Extremized-Crowded NSGA-II Approach527

In the extremized-crowded NSGA-II approach, in addition528

to emphasizing the worst solution corresponding to each529

objective, we also emphasized the best solution corresponding530

to every objective [15]. We refer to the individual best and531

worst Pareto-optimal solutions as “extreme” solutions here.532

In the extremized-crowded NSGA-II approach, solutions on a533

particular nondominated front are first sorted from minimum534

Fig. 4. Crowding distance computation procedure in extremized-crowded
NSGA-II approach.

(with rank R
(m)
i = 1) to maximum (with rank = Nf ) based on 535

each objective. A solution closer to either extreme objective 536

values (minimum or maximum objective values) gets a higher 537

rank compared to that of an intermediate solution. Thus, the 538

rank of solution i for the mth objective R
(m)
i is reassigned as 539

max{R(m)
i , Nf − R

(m)
i + 1}. Two extreme solutions for every 540

objective get a rank equal to Nf (number of solutions in 541

the nondominated front), the solutions next to these extreme 542

solutions get a rank (Nf − 1), and so on. Fig. 4 shows this 543

rank-assignment procedure. 544

After a rank is assigned to a solution by each objective, 545

the maximum value of the assigned ranks is declared as the 546

crowding distance, as in (2). The final crowding distance 547

values are shown within brackets in Fig. 4. 548

For a problem having a 1-D Pareto-optimal front (such as, 549

in a bi-objective problem), the above crowding distance as- 550

signment is similar to the worst crowding distance assignment 551

scheme (as the minimum-rank solution of one objective is also 552

the maximum-rank solution of at least one other objective). 553

However, for problems having a higher-dimensional Pareto- 554

optimal hyper-surface, the effect of extremized crowding is 555

different from that of the worst-crowded approach. In the 556

three-objective problem shown in Fig. 3, the extremized- 557

crowded approach will not only emphasize the extreme points 558

A, B, C, and D, but also solutions on edges CD and BC (having 559

the smallest f1 and f2 values, respectively) and solutions 560

near them. This approach has two advantages: 1) a diversity 561

of solutions in the population will be maintained thereby 562

allowing genetic operators (recombination and mutation) to 563

find better solutions and not cause a premature convergence, 564

as can occur in the worst-crowded approach, and 2) the 565

presence of these extreme solutions will reduce the chance 566

of having spurious non-Pareto-optimal solutions (like point 567

E in Fig. 3) to remain in the nondominated front, thereby 568

enabling a more accurate computation of the nadir point. 569

Moreover, since the intermediate portion of the Pareto-optimal 570

front is not targeted in this approach, finding the extreme 571

solutions is expected to be quicker than the original NSGA-II, 572

especially for problems having a large number of objectives 573

and involving computationally expensive function evaluation 574

schemes. 575
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IV. Nadir Point Estimation Procedure576

It is clear that an accurate estimation of the nadir point577

depends on how accurately the critical points can be found. For578

solving multiobjective optimization problems, the NSGA-II579

approach (and for this matter any other EMO approach) is580

usually observed to find solutions near the Pareto-optimal front581

of a problem rather quickly and then reported to take many582

generations to reach arbitrarily close to the exact front [25].583

Thus, to accurately find solutions on the Pareto-optimal front,584

NSGA-II solutions can be improved by using a local search585

approach [18], [26]. Likewise, for estimating the nadir point586

accurately, we propose to employ an EMO-cum-local-search587

approach, in which the solutions obtained by the modified588

NSGA-II approaches discussed above are improved by using589

a local-search procedure.590

A. Bilevel Local Search Approach591

Recall that due to the focus of the modified NSGA-II592

approaches toward individual objective-wise worst or extreme593

solutions, the algorithms are likely to find solutions close to594

the critical point for each objective. Therefore, the task of the595

proposed local search would be to then take each of these596

solutions to the corresponding critical point as accurately as597

possible. Particularly we would like to have the following598

three goals in our local search approach. First, the approach599

must be generic, so that it, for example, is applicable to600

convex and nonconvex problems alike. Second, the approach601

must guarantee convergence to the Pareto-optimal point, no602

matter which solutions are found by the modified NSGA-II603

approach. Third, the approach must find that particular Pareto-604

optimal solution which corresponds to the worst value of the605

underlying objective. It is clear that the above task of the local606

search procedure involves two optimization tasks (to ensure607

the second task of finding a Pareto-optimal point and the608

third task of finding the worst objective-wise critical point,609

respectively). Unfortunately, both optimization tasks cannot610

be achieved through a single optimization procedure. In fact,611

both these problems form a bilevel optimization problem in612

which the upper level problem handles the second issue of613

finding the critical point, and a feasible solution of the upper614

level optimization problem must be an optimal solution to615

the lower-level problem (meaning a Pareto-optimal solution).616

In this sense, the proposed bilevel local search approach617

is different and more involved than the usual local search618

methods employed in EMO studies.619

The first two goals mentioned above can be achieved by620

using a well-known MCDM approach, called the augmented621

achievement scalarizing function approach [1], [17]. In this622

approach, a reference point z is first chosen. By using a623

weight vector w (used for scaling), the following minimization624

problem is then solved:625

minimize
M

max
j=1

wj(fj(x) − zj) + ρ
M∑
j=1

wj(fj(x) − zj)

subject to x ∈ S
(3)

where S is the original set of feasible solutions. The right-626

most augmented term in the objective function is added so627

Fig. 5. Bilevel local search procedure is illustrated. A and B are worst
objective-wise nondominated points obtained by EMO. The task of local
search is to find critical point P from A and Q from B to make an accurate
estimate of the nadir point.

that a weak Pareto-optimal solution (see, for example, [1] for 628

a definition) is not found. For this purpose, a small value of 629

ρ (e.g., 10−4 or smaller) is used. The above optimization task 630

involves a non-differentiable objective function (due to the 631

max-term in the objective function), but if the original problem 632

is differentiable, a suitable transformation of the problem can 633

be made by introducing an additional slack variable xn+1 to 634

make an equivalent differentiable problem [1], as follows: 635

minimize xn+1 + ρ
M∑
j=1

wj(fj(x) − zj)

subject to xn+1 ≥ wj(fj(x) − zj) j = 1, 2, . . . , M.

x ∈ S (4)

If the single-objective optimization algorithm used to solve 636

the above problem is able to find the true optimum, the optimal 637

solution is guaranteed to be a Pareto-optimal solution [1]. 638

In other words, achievement scalarizing functions project the 639

reference point on the Pareto-optimal front. Moreover, the 640

above approach is applicable for both convex and nonconvex 641

problems. Fig. 5 illustrates the idea. For the reference point 642

C, the optimal solution of the above problem is D, which is a 643

Pareto-optimal point. The direction marked by the arrow de- 644

pends on the chosen weight vector w. Irrespective of whether 645

the reference point is feasible or not, the approach always finds 646

a Pareto-optimal point dictated by the chosen weight vector 647

and the reference point. The effect of the augmented term 648

(with the term involving ρ) is shown by plotting a sketch of 649

the iso-preference contour lines. More information about the 650

role of weights is given, for example, in [27]. 651

However, we also have a third goal of arriving at the 652

objective-wise critical point. Thus, a task of finding any 653

arbitrary Pareto-optimal solution is not adequate here, instead 654

the aim of our local search procedure is to find the critical 655

point corresponding to the underlying objective (like the point 656

P for objective f2 in Fig. 5). Unfortunately, it is not obvious 657

which reference point and weight vector one must choose 658

to arrive at a critical point. For this purpose, we construct 659

another optimization problem to determine a combination of 660
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a reference point and a weight vector which will result in the661

critical point for an objective. This requires a nested bilevel662

approach in which the upper-level optimization considers a663

combination of a reference point and a weight vector (z, w) as664

decision variables. Each combination (z, w) is then evaluated665

by finding a Pareto-optimal solution corresponding to a lower-666

level optimization problem constructed using an augmented667

achievement scalarizing function given in (3) or (4) with z and668

w as the reference point and the weight vector, respectively.669

In the lower-level optimization, problem variables (x) are the670

decision variables. As discussed above, the resulting optimal671

solution of the lower-level optimization is always a Pareto-672

optimal solution (having an objective vector f∗). Since our673

goal in the local search approach is to reach the critical point674

corresponding to a particular objective (say jth objective), a675

solution (z, w) for the upper-level optimization task can be676

evaluated by checking the jth objective value (f ∗
j ) of the677

obtained Pareto-optimal solution.678

Fig. 5 further explains this bilevel approach. Consider points679

A and B which are found by one of the modified NSGA-II680

procedures as worst objective-wise nondominated solutions for681

f2 and f1, respectively.682

The goal of using the local search approach is to reach683

the corresponding critical points (P and Q, respectively) from684

each of these points. Consider point A, which is found to685

be the worst in objective f2 among all modified NSGA-II686

solutions. The search region for the reference point z in687

the upper-level optimization is shown by the dashed box for688

which A is the lower-left corner point. Each component of the689

weight vector (w) is restricted within a non-negative range690

of values ([0.001, 1.000] is chosen for this paper). For the691

reference point z, say C, and weight vector w (directions692

indicating improvement of achievement scalarizing function),693

the solution to the lower-level optimization problem [problem694

(3) or (4)] is the decision variable vector x corresponding to695

solution D. Thus, for the reference point C and the chosen696

weight vector (w), the corresponding function value of the697

upper-level optimization problem is the objective value f2 of698

D (marked as f ∗
2 (C, w) in the figure). Since this objective value699

is always computed for a Pareto-optimal solution (hence the700

∗ in its notation) and the upper-level optimization attempts701

to maximize this objective value iteratively, intuitively, the702

proposed bilevel local search approach is expected to find the703

critical point P (for f2). It is interesting to note that there may704

exist many combinations of (z, w) (for example, with reference705

point A′ and weight vector shown by the arrow in the figure)706

which will also result in the same point P and for our purpose707

any one of such solutions would be adequate to accurately708

estimate the nadir point. Similarly, for the modified NSGA-II709

solution B (worst f1 solution of NSGA-II), the critical point Q710

is expected to be the outcome of the above bilevel optimization711

approach. This critical point may result from many combi-712

nations of reference point and weight vectors (for example,713

from the reference point B′ and the weight vector shown714

by an arrow in the figure). In the bilevel approach, since715

we solve the single-objective lower-level problem [(3) or716

(4)] with an appropriate local optimization algorithm and the717

task of the upper-level search is also restricted in a local718

neighborhood by fixing variable bounds, we refer to this 719

bilevel optimization approach as a local search algorithm 720

here. 721

Now we are ready to outline the overall nadir point estima- 722

tion procedure in a step-by-step format. 723

1) Step 1: Supply or compute ideal and worst objective vec- 724

tors by minimizing and maximizing each objective func- 725

tion independently within the set of feasible solutions. 726

2) Step 2: Apply the worst-crowded or the extremized- 727

crowded NSGA-II approach to find a set of 728

nondominated points. Iterations are continued until a 729

termination criterion (described in the next subsection), 730

which uses ideal and worst objective vectors computed 731

in Step 1, is met. Say, P nondominated extreme 732

points (variable vector x(i)
EA with objective vector f (i)

EA 733

for i = 1, 2, . . . , P) are found in this step. Form the 734

minimum and maximum objective vectors (fmin and 735

fmax) from the P obtained extreme solutions. For the 736

jth objective, they are computed as follows: 737

f min
j =

P

min
i=1

f
(i)
j EA

(5)

f max
j =

P
max
i=1

f
(i)
j EA

. (6)

3) Step 3: Apply the bilevel local search approach for each 738

objective j (∈ {1, . . . , M}), one at a time. First, identify 739

the objective-wise worst solution (solution x(j)
EA for 740

which the jth objective has the worst value in P) and 741

then find the corresponding optimal solution y∗(j) in 742

the variable space by using the bilevel local search 743

procedure, as follows. The upper-level optimization uses 744

a combination of a reference point and a weight vector 745

(z, w) as decision variables and maximizes the jth 746

objective value of the Pareto-optimal solution obtained 747

by the lower-level optimization task (described a little 748

later) 749

maximize(z,w) f ∗
j (z, w)

subject to 0.001 ≤ wj ≤ 1, j = 1, 2, . . . , M

zi ≥ f
(j)
i EA i = 1, 2, . . . , M

zi ≤ f
(j)
i EA + (f max

i − f min
i )

i = 1, 2, . . . , M. (7)

The term f ∗
j (z, w) is the value of the jth objective 750

function at the optimal solution to the following 751

lower-level optimization problem: 752

minimize(y) maxM
i=1 wi

(
fi(y)−zi

f max
i

−f min
i

)

+ρ
M∑
k=1

wk

(
fk(y)−zk

f max
k

−f min
k

)
subject to y ∈ S. (8)

This problem is identical to that in (3), except that 753

individual objective terms are normalized for a better 754

property of the augmented term. In this lower-level 755

optimization problem, the search is performed on the 756

original decision variable space. The solution y∗(j) to 757

this lower-level optimization problem determines the 758

optimal objective vector f(y∗(j)) from which we extract 759
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the jth component and use it as the objective value760

for the upper-level solution (z, w). Thus, for every761

reference point z and weight vector w, considered in the762

upper-level optimization task, the corresponding optimal763

augmented achievement scalarizing function is found764

by solving the lower-level optimization problem. The765

upper-level optimization is initialized with the NSGA-II766

solution z(0) = f(x(j)
EA) and w

(0)
i = 1/M. The lower-level767

optimization is initialized with the NSGA-II solution768

y(0) = x(j)
EA. The local search can be terminated based on769

standard single-objective convergence measures, such770

as Karush–Kuhn–Tucker (KKT) condition satisfaction771

through a prescribed limit or a small difference in772

variable vectors between successive iterations.773

4) Step 4: Finally, construct the nadir point from the worst774

objective values of the all Pareto-optimal solutions775

obtained after the local search procedure.776

The use of a bilevel local search approach can be computa-777

tionally expensive, if the starting solution to the local search is778

far away from the critical point. For this reason, the proposed779

local search procedure may not be computationally viable if780

started from a random initial point. However, the use of a mod-781

ified NSGA-II approach to first find a near critical point and782

then to employ the proposed local search to accurately locate783

the critical point seems like a viable approach. To demonstrate784

the computational viability of using the proposed local search785

approach within our nadir point estimation procedure, we shall786

present a break-up of function evaluations needed by both787

NSGA-II and local search procedures later.788

Before we leave this subsection, we discuss one further789

issue. It is mentioned above that the use of the augmenta-790

tion term in the achievement scalarizing problem formulation791

allows us not to converge to a weakly Pareto-optimal solution792

by the local search approach. But, in certain problems, the793

approach may only find a critical proper Pareto-optimal solu-794

tion [1] depending on the value of the parameter ρ. For this795

reason, we actually get an estimate of the ranges of objective796

function values in a properly Pareto-optimal set and not in797

a Pareto-optimal set. We can control the trade-offs in the798

properly Pareto-optimal set by choosing an appropriately small799

ρ value. For further details, see, for example, [1]. In certain800

problems having a small trade-off near the critical points, a801

proper Pareto-optimal point can be somewhat away from the802

true critical point. If this is not desired, it is possible to solve a803

lexicographic achievement scalarizing function [1], [2] instead804

of the augmented one suggested in Step 3.805

B. Termination Criterion for Modified NSGA-II806

Typically, a NSGA-II run is terminated when a pre-specified807

number of generations is elapsed. Here, we suggest a perfor-808

mance based termination criterion which causes a NSGA-II809

run to stop when the performance reaches a desirable level.810

The performance metric depends on a measure stating how811

close the estimated nadir point is to the true nadir point.812

However, for applying the proposed NSGA-II approaches813

to an arbitrary problem (for which the true Pareto-optimal814

front, hence the true nadir point, is not known a priori),815

we need a different concept. Using the ideal point (z∗), the816

worst objective vector (zw), and the estimated nadir point 817

(to be denoted as zest) at any generation of NSGA-II, we 818

can define a normalized distance (ND) metric as follows and AQ:3819

track the convergence property of this metric to determine the 820

termination of our NSGA-II approach: 821

ND =

√√√√ 1

M

M∑
i=1

(
zest
i − z∗

i

zw
i − z∗

i

)2

. (9)

If in a problem, the worst objective vector zw (refer to Fig. 1) 822

is the same as the nadir point, the ND metric value must 823

converge to one. Since the exact final value of this metric 824

for finding the true nadir point is not known a priori on an 825

arbitrary problem, we record the change in ND for the past τ 826

generations. Let us now denote NDmax, NDmin, and NDavg, as 827

the maximum, minimum, and average ND values for the past 828

consecutive τ generations. If the normalized change (NDmax − 829

NDmin)/NDavg is smaller than a threshold �, the proposed 830

NSGA-II approach is terminated and the current nondominated 831

extreme solutions are sent to the next step for performing the 832

local search. 833

However, in the case of solving test problems, the location 834

of the nadir objective vector is expected to be known and a 835

simple error metric (E) between the estimated and the known 836

nadir objective vectors can be used for stopping a NSGA-II 837

run to investigate the working of our proposed procedure 838

E =

√√√√ M∑
i=1

(
znad
i − zest

i

znad
i − z∗

i

)2

. (10)

To make the approach pragmatic, in this paper, we terminate 839

a NSGA-II run when the error metric E becomes smaller than 840

a predefined threshold (η). 841

V. Results on Benchmark Problems 842

We are now ready to describe the results of numerical tests 843

obtained using the proposed hybrid nadir point estimation 844

procedure. We have chosen problems having three to 20 845

objectives in this paper. In this section, we use benchmark 846

problems where the entire description of the objective space 847

and the Pareto-optimal front is known. We have chosen these 848

problems to test the working of our procedure. Thus, in these 849

problems, we do not perform Step 1 explicitly. Moreover, if 850

Step 2 of the nadir point estimation procedure successfully 851

finds the nadir point (using the error metric (E ≤ η) for 852

determining termination of a run), we do not employ Step 3 853

(local search). The complete hybrid procedure will be tested 854

in its totality in the next section. 855

In all runs here, we compare three different approaches: 856

1) naive NSGA-II approach in which first we find a set of 857

nondominated solutions using the original NSGA-II and 858

then estimate the nadir point from the obtained solutions; 859

2) NSGA-II with the worst-crowded approach; 860

3) NSGA-II with the extremized-crowded approach. 861

To make a fair comparison, parameters in all three cases 862

are kept fixed for all problems. We use the simulated binary 863
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crossover (SBX) recombination operator [28] with a probabil-864

ity of 0.9 and a distribution index of ηc = 10. The polynomial865

mutation operator [18] is used with a probability of 1/n866

(n is the number of variables) and a distribution index of867

ηm = 20. The population size is set according to the problem868

and is mentioned in respective subsections. Each algorithm869

is run 11 times (odd number of runs is used to facilitate870

the recording of the median performance of an algorithm),871

each time starting from a different random initial population.872

However all proposed procedures are started with an identical873

set of initial populations to be fair. The number of generations874

required to satisfy the termination criterion (E ≤ η) is noted875

for each run and the corresponding best, median, and worst876

number of generations are presented for a comparison. For all877

test problems, η = 0.01 is used.878

A. Three and More Objectives879

To test Step 2 of the nadir point estimation procedure880

on three and more objectives, we choose three Deb, Thiele,881

Laumanns and Zitzler (DTLZ) test problems [29] which haveAQ:4 882

different characteristics. These problems are designed in a883

manner so that they can be extended to any number of884

objectives. The first problem, DTLZ1, is constructed to have885

a linear Pareto-optimal front. The true nadir objective vector886

is znad = (0.5, . . . , 0.5)T and the ideal objective vector is887

z∗ = (0, . . . , 0)T . The Pareto-optimal front of the second test888

problem, DTLZ2, is a quadrant of a unit sphere centered at889

the origin of the objective space. The nadir objective vector890

is znad = (1, . . . , 1)T and the ideal objective vector is z∗ =891

(0, . . . , 0)T . The third test problem, DTLZ5, is somewhat mod-892

ified from the original DTLZ5 and has a 1-D Pareto-optimal893

curve in the M-dimensional space [21]. The ideal objective894

vector is z∗ = (0, . . . , 0)T and the nadir objective vector is895

znad =
(

( 1√
2
)M−2, ( 1√

2
)M−2, ( 1√

2
)M−3, ( 1√

2
)M−4, . . . , ( 1√

2
)0

)T

.
896

1) Three-Objective DTLZ Problems: All three approaches897

are run with 100 population members for problems DTLZ1,898

DTLZ2, and DTLZ5 involving three objectives. Table I shows899

the numbers of generations needed to find a solution close900

(within an error metric value of η = 0.01 or smaller) to the901

true nadir point.902

It can be observed that the worst-crowded NSGA-II and903

the extremized-crowded NSGA-II perform in a more or less904

similar way when compared to each other and are somewhat905

better than the naive NSGA-II approach. In the DTLZ5906

problem, despite having three objectives, the Pareto-optimal907

front is 1-D [29]. Thus, the naive NSGA-II approach performs908

almost as well as the proposed modified NSGA-II approaches.909

To compare the working principles of the two modi-910

fied NSGA-II approaches and the naive NSGA-II approach,911

we show the final populations for the extremized-crowded912

NSGA-II and the naive NSGA-II for DTLZ1 and DTLZ2 in913

Figs. 6 and 7, respectively. Similar results are also found for914

the worst-crowded NSGA-II approach, but are not shown here915

for brevity. It is clear that the extremized-crowded NSGA-II916

concentrates its population members near the extreme regions917

of the Pareto-optimal front, so that a quicker estimation of918

the nadir point is possible to achieve. However, in the case919

Fig. 6. Populations obtained using extremized-crowded and naive NSGA-II
for DTLZ1. Extremized-crowded NSGA-II finds the objective-wise extreme
points, whereas the naive NSGA-II approach finds a distributed set of points.

Fig. 7. Populations obtained using extremized-crowded and naive NSGA-II
for DTLZ2. Extremized-crowded NSGA-II finds objective-wise extreme
points.

of the naive NSGA-II approach, a distributed set of Pareto- 920

optimal solutions is first found using the original NSGA-II 921

(as shown in the figure) and the nadir point is constructed 922

from these points. Since the intermediate points do not help 923

in constructing the nadir objective vector, the naive NSGA-II 924

approach is expected to be computationally inefficient and also 925

comparatively inaccurate, particularly for problems having a 926

large number of objectives. 927

There is not much of a difference in the performance of the 928

original NSGA-II and modified NSGA-IIs for DTLZ5 problem 929

due to the 1-D nature of the Pareto-optimal front. Hence, we 930

do not show the corresponding figure here. 931

To investigate if the error metric (E) reduces with gen- 932

erations, we continue to run the two modified NSGA-II 933

procedures till 1000 generations. For the DTLZ1 problem, 934

the worst-crowded approach settles on an E value in the 935

range [0.000200, 0.000283] for 11 independent runs and 936

the extremized-crowded approach in the range [0.000199, 937

0.000283]. For DTLZ2, both approaches settle to E = 938

0.000173 and for DTLZ5, worst-crowded and extremized- 939

crowded NSGA-IIs settle in the range [0.000211, 0.000768] 940

and [0.000211, 0.000592], respectively. Since a threshold of 941

E ≤ 0.01 was used for termination in obtaining results 942
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TABLE I

Comparative Results for DTLZ Problems With Three Objectives

Test Pop. Number of Generations
Problem Size NSGA-II Worst-Crowded NSGA-II Extremized-Crowded NSGA-II

Best Median Worst Best Median Worst Best Median Worst
DTLZ1 100 223 366 610 171 282 345 188 265 457
DTLZ2 100 75 111 151 38 47 54 41 49 55
DTLZ5 100 63 80 104 59 74 86 62 73 88

in Table I, respective NSGA-IIs terminated at a generation943

smaller than 1000. However, these results show that there is no944

significant change in the nadir point estimation with the extra945

computations and the proposed procedure has a convergent946

property (which will also be demonstrated on higher objective947

problems through convergence metrics of this paper in Figs. 8–948

10, 13, 15, and 17).949

2) Five-Objective DTLZ Problems: Next, we study the per-950

formance of all three NSGA-II approaches on DTLZ problems951

involving five objectives. In Table II, we collect information952

about the results as in the previous subsection.953

It is now quite evident from Table II that the modifications954

proposed to the NSGA-II approach perform much better than955

the naive NSGA-II approach. For example, for the DTLZ1956

problem, the best NSGA-II run takes 2342 generations to957

estimate the nadir point, whereas the extremized-crowded958

NSGA-II requires only 353 generations and the worst-crowded959

NSGA-II 611 generations. In the case of the DTLZ2 problem,960

the trend is similar. The median generation counts of the961

modified NSGA-II approaches for 11 independent runs are962

also much better than those of the naive NSGA-II approach.963

The difference between the worst-crowded and extremized-964

crowded NSGA-II approaches is also clear from the table. For965

a problem having a large number of objectives, the extremized-966

crowded NSGA-II emphasizes both best and worst extreme967

solutions for each objective maintaining an adequate diversity968

among the population members. The genetic operators are able969

to exploit a relatively diversified population and make a faster970

progress toward the extreme Pareto-optimal solutions needed971

to estimate the nadir point correctly. However, on the DTLZ5972

problem, the performance of all three approaches is similar973

due to the 1-D nature of the Pareto-optimal front. Fig. 8 shows974

the convergence of the error metric value for the best runs of975

the three algorithms on DTLZ2. The figure demonstrates the976

convergent property of the proposed algorithm.977

The superiority of the extremized-crowded NSGA-II ap-978

proach is clear from the figure. Similar results are also979

observed for DTLZ1. These results imply that for a problem980

having more than three objectives, an emphasis on the ex-981

treme Pareto-optimal solutions (instead of all Pareto-optimal982

solutions) is a faster approach for locating the nadir point.983

So far, we have demonstrated the ability of the nadir point984

estimation procedure in converging close to the nadir point by985

tracking the error metric value which requires the knowledge986

of the true nadir point. It is clear that this metric cannot be used987

in an arbitrary problem. We have suggested a ND metric (9)988

for this purpose. To demonstrate how the ND metric can be989

used as a termination criterion, we record this metric value990

Fig. 8. Error metric for best of 11 runs on five-objective DTLZ2.
Extremized-crowded NSGA-II is about an order of magnitude better than
the naive NSGA-II approach.

Fig. 9. Variation of ND metric in 11 runs for two methods on five-objective
DTLZ2. Extremized-crowded NSGA-II is about an order of magnitude better
than the naive NSGA-II approach.

at every generation for both extremized-crowded NSGA-II 991

and the naive NSGA-II runs and plot them in Fig. 9 for 992

DTLZ2. Similar trends were observed for the worst-crowded 993

NSGA-II and also for test problem DTLZ1, but for brevity 994

these results are not shown here. To show the variation of 995

the metric value over different initial populations, the region 996

between the best and the worst ND metric values is shaded 997

and the median value is shown with a line. Recall that the ND 998

metric requires the information of the worst objective vector 999

(zw). For the DTLZ2 problem, the worst objective vector is 1000

found to be zw
i = 3.25 for i = 1, . . . , 5. Fig. 9 shows that the 1001
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TABLE II

Comparative Results for Five and Ten-Objective DTLZ Problems

Test Pop. Number of Generations
Problem Size NSGA-II Worst-Crowded NSGA-II Extremized-Crowded NSGA-II

Best Median Worst Best Median Worst Best Median Worst
Five-Objective DTLZ Problems

DTLZ1 100 2342 3136 3714 611 790 1027 353 584 1071
DTLZ2 100 650 2142 5937 139 166 185 94 114 142
DTLZ5 100 52 66 77 51 66 76 49 61 73

Ten-Objective DTLZ Problems
DTLZ1 200 17 581 21 484 33 977 1403 1760 2540 1199 1371 1790
DTLZ2 200 – – – 520 823 1456 388 464 640
DTLZ5 200 45 53 60 43 53 57 45 51 64

ND metric (ND) value converges to around 0.286, which is1002

identical to that computed by substituting the estimated nadir1003

objective vector with the true nadir objective vector in (9).1004

Thus, we can conclude that the convergence of the extremized-1005

crowded NSGA-II is on the true nadir point. Despite the1006

large variability in ND value in different runs early on, all1007

11 runs of the extremized-crowded NSGA-II finally converge1008

to the critical points at around 100 generations without much1009

variance, indicating the robustness of the procedure. Similarity1010

of this convergence pattern (at generation 100) with the fast1011

convergence demonstrated in Fig. 8 at around 100 generation1012

indicates that the ND metric (using ideal and worst objective1013

vectors) signifies a similar convergence to the nadir point as1014

that obtained with the exact nadir and ideal objective vectors1015

used in the error metric. Hence, the ND metric can be used in1016

arbitrary problems. A fast rate of convergence is also interest-1017

ing to note from Fig. 9. The extremized-crowded NSGA-II1018

is able to find the nadir point much quicker (almost an1019

order of magnitude faster) than the naive NSGA-II approach.1020

Due to clear and visible demonstration of superiority of the1021

extremized-crowded NSGA-II through these figures, we do not1022

perform any further statistical tests.1023

3) Ten-Objective DTLZ Problems: Next, we consider1024

the three DTLZ problems for ten objectives. Due to the in-1025

crease in the dimensionality of the objective space, we double1026

the population size for these problems. Table II presents the1027

numbers of generations required to find a point close (within1028

η = 0.01) to the nadir point by the three approaches for1029

the DTLZ problems with ten objectives. It is clear that the1030

extremized-crowded NSGA-II approach performs an order of1031

magnitude better than the naive NSGA-II approach and is1032

also better than the worst crowded NSGA-II approach. Both1033

the DTLZ1 and DTLZ2 problems have 10-D Pareto-optimal1034

fronts and the extremized-crowded NSGA-II makes a good1035

balance of maintaining diversity and emphasizing extreme1036

Pareto-optimal solutions so that the nadir point estimation is1037

quick. In the case of the DTLZ2 problem with ten objectives,1038

the naive NSGA-II could not find the nadir objective vector1039

even after 50 000 generations (and achieved an error metric1040

value of 5.936). Fig. 10 shows a typical convergence pattern1041

of the extremized-crowded NSGA-II and the naive NSGA-II1042

approaches on the ten-objective DTLZ1 problem.1043

Fig. 10. Performance of two methods on ten-objective DTLZ1. Extremized-
crowded NSGA-II is about an order of magnitude better than the naive NSGA-
II approach. Convergence becomes faster after a solution dominating the nadir
point is discovered.

The figure demonstrates that for a large number of gen- 1044

erations the estimated nadir point is far away from the true 1045

nadir point, but after some generations (around 1000 in this 1046

problem) the estimated nadir point comes quickly near the true 1047

nadir point. To understand the dynamics of the movement of 1048

the population in an extremized-crowded NSGA-II simulation 1049

with the generation counter, we count the number of popula- 1050

tion members which dominate the true nadir point and plot this 1051

quantity in Fig. 10. Points which dominate the nadir point lie 1052

in the region between the Pareto-optimal front and the nadir 1053

point. Thus, a task of finding these points is important toward 1054

reaching the critical points and therefore in estimating the 1055

nadir point. It is extremely unlikely to create such important 1056

points at random, particularly when dealing with a large 1057

number of objectives. Thus, an optimization algorithm, starting 1058

with random solutions, must work toward finding such impor- 1059

tant points first before converging to the Pareto-optimal front. 1060

In DTLZ1, it is seen that the first point dominating the true 1061

nadir point appears in the population at around 750 generations 1062

with the extremized-crowded approach, whereas the naive 1063

NSGA-II needed about 10 000 generations. Thereafter, when 1064

an adequate number of such solutions start appearing in the 1065

population, the population very quickly converges near the 1066

critical points for correctly estimating the nadir point. 1067
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Fig. 11. Function evaluations versus number of objectives for DTLZ1.

Fig. 12. Function evaluations versus number of objectives for DTLZ2.

B. Scale-Up Performance1068

Let us next investigate the overall function evaluations1069

required to get near the true nadir point on DTLZ1 and DTLZ21070

test problems having three to 20 objectives. As before, we use1071

the stopping criterion E ≤ 0.01. Here, we investigate the scale-1072

up performance of the extremized-crowded NSGA-II alone1073

and compare it against that of the naive NSGA-II approach.1074

Since the worst-crowded NSGA-II did not perform well on1075

ten-objective DTLZ problems compared to the extremized-1076

crowded NSGA-II approach, we do not consider it here.1077

Fig. 11 plots the best, median, and worst of 11 runs of1078

the extremized-crowded NSGA-II and the naive NSGA-II on1079

DTLZ1.1080

First of all, the figure clearly shows that the naive NSGA-II1081

is unable to scale up to 15 or 20 objectives. In the case1082

of 15-objective DTLZ1, the naive NSGA-II’s performance is1083

more than two orders of magnitude worse than that of the1084

extremized-crowded NSGA-II. For this problem, the naive1085

NSGA-II with more than 200 million function evaluations1086

obtained a front having a poor error metric value of 12.871.1087

Due to the poor performance of the naive NSGA-II approach1088

on the 15-objective problem, we did not apply it to the 20-1089

objective DTLZ1 problem.1090

Fig. 12 shows the performances on DTLZ2. After 670 1091

million function evaluations, the naive NSGA-II was still not 1092

able to come close (with an error metric value of 0.01) to 1093

the true nadir point on the ten-objective DTLZ2 problem. 1094

However, the extremized-crowded NSGA-II took an average of 1095

99 000 evaluations to achieve the task. Because of the com- 1096

putational inefficiencies associated with the naive NSGA-II 1097

approach, we did not perform any runs for 15 or more 1098

objectives, whereas the extremized-crowded NSGA-II could 1099

find the nadir point up to the 20-objective DTLZ2 problem. 1100

The nature of the plots for the extremized-crowded NSGA-II 1101

in both problems is found to be sub-linear on a semi- 1102

logarithmic plot. This indicates a lower than exponential scal- 1103

ing property of the proposed extremized-crowded NSGA-II. 1104

It is important to emphasize here that estimating the nadir 1105

point requires identification of the critical points. Since this 1106

requires that an evolutionary approach essentially puts its 1107

population members on the Pareto-optimal front, an ade- 1108

quate computational effort must be spent to achieve this 1109

task. However, results shown earlier for three to ten-objective 1110

problems have indicated that the computational effort needed 1111

by the extremized-crowded NSGA-II approach is smaller when 1112

compared to the naive NSGA-II. It is worth pointing out 1113

here that decision makers do not necessarily want to or are 1114

not necessarily able to consider problems with very many 1115

objectives. However, the results of this paper show a clear 1116

difference even with smaller problems involving, for example, 1117

five objectives. 1118

VI. Results of Tests With the Full Hybrid Nadir 1119

Point Estimation Procedure 1120

Now, we apply the complete hybrid nadir point estimation 1121

procedure which makes a serial application of the extremized- 1122

crowded NSGA-II approach followed by the bilevel local 1123

search approach on three optimization problems. Since in the 1124

previous problems we identified difficulties with the worst- 1125

crowded NSGA-II, we do not continue with the worst-crowded 1126

NSGA-II procedure any more. The first two problems are 1127

numerical test problems taken from the MCDM literature on 1128

which the payoff table method is reported to have failed to 1129

estimate the nadir point accurately, and the third problem is 1130

a nonlinear engineering design problem. All these problems 1131

adequately demonstrate the usefulness of the proposed hybrid 1132

procedure with the extremized-crowded NSGA-II approach. 1133

For all problems of this section, we use a population size 1134

of 20n, where n is the number of variables and keep other 1135

NSGA-II parameters as they were used in the previous section. 1136

For both upper and lower-level optimizations in the local 1137

search, we have used the fmincon routine (implementing 1138

the sequential quadratic programming (SQP) method in which 1139

every approximated quadratic programming problem is solved 1140

using the Broyden–Fletcher–Goldfarb–Shanno quasi-Newton AQ:51141

procedure) of MATLAB with default parameter values. 1142

A. Problem KM AQ:61143

We consider a three-objective optimization problem, which 1144

provides difficulty for the payoff table method to estimate the 1145
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nadir point. This problem was used in [30]1146

minimize

⎧⎨
⎩

−x1 − x2 + 5
1
5 (x2

1 − 10x1 + x2
2 − 4x2 + 11)

(5 − x1)(x2 − 11)

⎫⎬
⎭

subject to 3x1 + x2 − 12 ≤ 0
2x1 + x2 − 9 ≤ 0
x1 + 2x2 − 12 ≤ 0
0 ≤ x1 ≤ 4 0 ≤ x2 ≤ 6. (11)

Individual minimizations of objectives reveal the following1147

three objective vectors: (−2, 0, −18)T , (0, −3.1, −14.25)T ,1148

and (5, 2.2, −55)T , thereby identifying the ideal vector1149

z∗ = (−2, −3.1, −55)T . The payoff table method finds1150

(5, 2.2, −14.25)T as the estimated nadir point from these mini-1151

mization results, which is a wrong estimate as discussed below.1152

Another paper [31] used an exhaustive grid-search strategy1153

(computationally possible due to having only two variables1154

and three objectives in this problem) of creating a number1155

of feasible solutions systematically and constructing the nadir1156

point from the solutions obtained. Since an exhaustive search1157

was used, we can say that the true nadir point of the problem is1158

(5, 4.6, −14.25)T . We now employ our nadir point estimation1159

procedure to investigate if it is able to find this true nadir1160

point.1161

Step 1 of the procedure, described in Section IV-A, finds1162

z∗ = (−2, −3.1, −55)T and zw = (5, 4.6, −14.25)T by min-1163

imizing and maximizing each objective function individu-1164

ally.1165

In Step 2 of the procedure, we employ the extremized-1166

crowded NSGA-II. As a result, we obtain four different1167

nondominated extreme solutions, as shown in the first column1168

of Table III. The extremized-crowded NSGA-II approach is1169

terminated when the ND metric does not change by an amount1170

� = 0.0001 in a consecutive τ = 50 generations.1171

It is interesting to note that the fourth solution is not needed1172

to estimate the nadir point, but the extremized principle keeps1173

this extreme solution corresponding to f1 to possibly eliminate1174

spurious solutions which may otherwise stay in the population1175

and provide a wrong estimate of the nadir point (see Fig. 3 for1176

a discussion). Fig. 13 shows the variation of the ND metric1177

value with generation, computed using the above-mentioned1178

ideal and worst objective vectors. The NSGA-II procedure was1179

terminated at generation 135, due to the fall of the ND value1180

below the chosen threshold of 0.0001. At the end of Step 2,1181

the estimated nadir point is znad = (5, 4.6, −14.194)T , which1182

seems to disagree on the third objective value with that found1183

by the exhaustive grid-search strategy.1184

In Step 3, we now apply the bilevel local search approach1185

from each of the four solutions presented in Table III, as they1186

are found to be the extreme nondominated solutions using1187

NSGA-II. The minimum and maximum objective vectors from1188

these solutions are: (−1, −3.1, −55)T and (5, 4.6, −14.194)T ,1189

respectively. Recall that the local search method suggested1190

here is a bilevel optimization procedure in which the upper-1191

level optimization uses a combination of a weight vector and1192

a reference point as a decision variable vector (z, w) with1193

an objective of maximizing the objective value for which1194

the corresponding NSGA-II solution is the worst. The lower-1195

Fig. 13. Variation of ND metric with generation for problem KM.

Fig. 14. Pareto-optimal front with extreme points for problem KM. Point
4 is best for f1, but not worst for any objective. Thus, it is redundant for
estimating the nadir point.

level optimization loop uses variable vector x and minimizes 1196

the corresponding achievement scalarizing function with ρ = 1197

10−5. 1198

Solution 1 from Table III corresponds to the worst value of 1199

the first objective (f1). Thus, the upper-level optimization task 1200

maximizes objective f1. Starting with the NSGA-II solution 1201

(column 2 in the table), the local search approach finds a 1202

solution shown in the sixth column. Since this particular 1203

NSGA-II solution happens to be truly the critical point for f1, 1204

the local search terminates after two iterations and declares 1205

the same solution as the outcome of the local search. 1206

Solution 2 has the worst value for objective f3 among the 1207

four obtained NSGA-II solutions. Table III clearly shows that 1208

solution 2 (the objective vector (0.023, −3.100, −14.194)T , 1209

obtained by the extremized-crowded NSGA-II), was close to 1210

the Pareto-optimal front, but was not a Pareto-optimal solution. 1211

However, the proposed local search approach starting from this 1212

solution is able to find a better solution (0, −3.1, −14.25)T . 1213

This shows the importance of employing the local search in 1214

our hybrid approach. 1215

Solution 3 has the worst value for objective f2. The pro- 1216

posed local search approach does not improve this solution, 1217

as this is truly the critical point for f3. 1218
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TABLE III

Extremized-Crowded NSGA-II and Local Search Method on Problem KM

xNSGA-II Objective Vector, fNSGA-II w z Extreme Point
1 (0, 0)T (5, 2.2, −55)T (0.333, 0.333, 0.333)T (5, 2.2, −55)T (5, 2.2, −55)T

2 (3.511, 1.466)T (0.023, −3.100, −14.194)T (0.335, 0.335, 0.334)T (0.023, −3.085, −14.114)T (0, −3.1, −14.25)T

3 (0, 6)T (−1, 4.6, −25)T (0.333, 0.333, 0.333)T (−1, 4.6, −25)T (−1, 4.6, −25)T

4 (2.007, 4.965)T (−1.973, −0.050, −18.060)T Not worse in any objective, so not considered

Solution 4 does not have the worst value for any of the1219

objectives, so we do not perform a local search from this so-1220

lution. Fig. 14 shows the Pareto-optimal front for this problem.1221

These three extreme Pareto-optimal points are marked on the1222

front with a shaded circle. The fourth point is also shown with1223

a star.1224

Finally, in Step 4 of the proposed hybrid approach, the1225

nadir point estimated by the combination of the extremized-1226

crowded NSGA-II and the bilevel local search approach is1227

(5, 4.6, −14.25)T , which is identical to that obtained by the1228

exhaustive grid search strategy [31]. As discussed earlier,1229

the exhaustive grid search strategy is not scalable to large-1230

dimensional problems due to an exponential increase in com-1231

putations.1232

The extremized-crowded NSGA-II approach took 5440 so-1233

lution evaluations and the three local search runs took a total1234

of 1583 solution evaluations, thereby requiring a total of 70231235

solution evaluations. Thus, the NSGA-II approach needed a1236

major share of the overall computational effort of about 77%1237

and the bilevel local search approach took only about 23% of1238

the total effort.1239

B. Problem SWAQ:7 1240

Next, we consider a linear problem presented in [13]1241

minimize

⎧⎪⎪⎨
⎪⎪⎩

9x1 + 19.5x2 + 7.5x3

7x1 + 20x2 + 9x3

−(4x1 + 5x2 + 3x3)
−(x3)

⎫⎪⎪⎬
⎪⎪⎭

subject to 1.5x1 − x2 + 1.6x3 ≤ 9

x1 + 2x2 + x3 ≤ 10

xi ≥ 0 i = 1, 2, 3. (12)

The true nadir point for this problem is znad = (94.5,1242

96.3636, 0, 0)T . In [13], a close point (94.4998, 95.8747,1243

0, 0)T was found using multiple, bi-objective optimization1244

runs. The estimation is different in its second objective value1245

by about 0.5%. In the following, we show the results of our1246

hybrid nadir point estimation procedure.1247

In Step 1 of the procedure, we find the ideal and worst1248

objectives values: (0, 0, −31, −5.625)T and (97.5, 100, 0, 0)T ,1249

respectively. (These values are obtained by using the SQP1250

routine of MATLAB. A linear solver could have been used1251

instead.)1252

Thereafter, in Step 2, we apply the extremized-crowded1253

NSGA-II procedure initializing the population around xi ∈1254

[0, 10] for all three variables. NSGA-II is terminated when the1255

change in the ND value in the past 50 generations is below1256

the threshold of � = 0.0001. Fig. 15 shows the change in1257

Fig. 15. Variation of ND metric with generation for problem SW.

the ND value with the generation counter and indicates that 1258

the NSGA-II run was terminated at generation 325. We obtain 1259

four different nondominated solutions, which are tabulated in 1260

Table IV. 1261

The minimum and maximum objective vectors are: 1262

(0.0000, 0.0000, −30.9920, −5.6249)T and (94.4810, 1263

96.3635, 0.0000, 0.0000)T , respectively. Notice that this 1264

maximum vector is close to the true nadir point mentioned 1265

above. We shall now investigate whether the proposed local 1266

search is able to improve this point to find the nadir point 1267

more accurately. 1268

We observe that the first solution does not correspond to 1269

the worst value for any objective. Thus, in Step 3, we employ 1270

the bilevel local search procedure only for the other three 1271

solutions. The resulting solutions and corresponding z and w 1272

vectors are shown in the table. For solutions 2 and 3, we 1273

maximize objectives f2 and f1, respectively. Since solution 4 is 1274

worst with respect to both objectives f3 and f4, we maximize 1275

a normalized composite objective: −[(f3(x) − f min
3 )/(f max

3 − 1276

f min
3 ) + (f4(x) − f min

4 )/(f max
4 − f min

4 )], where maximum and 1277

minimum objective values are those obtained by the modified 1278

NSGA-II in Step 2. 1279

From the obtained local search solutions (the last column 1280

in the table), in Step 4, we estimate the nadir point as 1281

(94.5000, 96.3636, 0, 0)T , which is identical to the true nadir 1282

point for this problem. In this problem, the NSGA-II approach 1283

required 12 640 solution evaluations out of an overall 13 032 1284

solution evaluations. Thus, the bilevel local search required 1285

only 392 solution evaluations (only about 3% of the overall 1286

effort). Thus, the use of an extremized-crowded NSGA-II 1287

allowed near critical points to be found by taking most of the 1288

computational effort and the use of the bilevel local search 1289
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TABLE IV

Extremized-Crowded NSGA-II and Local Search Method on Problem SW

xNSGA−II Objective Vector, fNSGA−II

1 (0.0001, 0, 5.6249)T (42.1879, 50.6249, −16.8752, −5.6249)T

2 (0.0001, 3.1830, 3.6336)T (89.3219, 96.3635, −26.8164, −3.6336)T

3 (3.9980, 2.9998, 0.0003)T (94.4810, 87.9854, −30.9920, −0.0003)T

4 (0, 0, 0)T (0, 0, 0, 0)T

w z Extreme Point
1 Not worse in any objective, so not considered
2 (1.0000, 0.9844, 0.7061, 0.8232)T (183.8020, 192.7266, −26.8004, −3.6336)T (89.3182, 96.3636, −26.8182, −3.6364)T

3 (0.2958, 0.2540, 0.2006, 0.2486)T (188.9619, 184.3489, −30.9920, 5.6246)T (94.5000, 88.0000, −31.0000, 0.0000)T

4 (0.25, 0.25, 0.25, 0.25)T (0, 0, 0, 0)T (0, 0, 0, 0)T

Fig. 16. Welded beam design problem.

Fig. 17. Variation of ND metric with generation for the welded beam design
problem.

ensured finding the critical points by taking only a small1290

fraction of the overall computational effort, despite the bilevel1291

nature of the optimization procedure.1292

C. Welded Beam Design Optimization1293

So far, we have applied the hybrid nadir point estimation1294

procedure to numerical test problems. They have given us1295

confidence about the usability of our procedure. Next, we1296

consider an engineering design problem related to a welded1297

beam having three objectives, for which the exact nadir point1298

is not known. In this problem, we compare our proposed nadir1299

point estimation procedure with the naive NSGA-II approach1300

for the number of computations needed by each procedure and1301

also to investigate whether an identical nadir point is estimated1302

by each procedure.1303

This problem is well-studied [18], [32] having four design 1304

variables, x = (h, �, t, b)T (dimensions specifying the welded 1305

beam). Minimizations of cost of fabrication, end deflection, 1306

and normal stress due to load F = 6, 000 lb are of importance 1307

in this problem. There are four nonlinear constraints involving 1308

shear stress, normal stress, a physical property, and buckling 1309

limitation. 1310

The mathematical description of the problem is given below 1311

minimize

⎧⎪⎨
⎪⎩

f1(x) = 1.10471h2� + 0.04811tb(14.0 + �)

f2(x) = δ(x) = 2.1952/t3b

f3(x) = σ(x) = 504 000/t2b

⎫⎪⎬
⎪⎭

subject to g1(x) ≡ 13, 600 − τ(x) ≥ 0

g2(x) ≡ 30 000 − σ(x) ≥ 0

g3(x) ≡ b − h ≥ 0

g4(x) ≡ Pc(x) − 6000 ≥ 0

0.125 ≤ �, t ≤ 10

0.125 ≤ h, b ≤ 5 (13)

where the terms τ(x) and Pc(x) are given as 1312

τ(x) =
[
(τ ′(x))2 + (τ ′′(x))2 + �τ ′(x)τ ′′(x)/√

0.25(�2 + (h + t)2)
]1/2

Pc(x) = 64, 746.022(1 − 0.0282346t)tb3

where 1313

τ ′(x) =
6000√

2h�

τ ′′(x) =
6000(14 + 0.5�)

√
0.25(�2 + (h + t)2)

2
[
0.707h�(�2/12 + 0.25(h + t)2)

] .

1314

In this problem, we have no knowledge on the ideal and 1315

worst objective values. Since these values will be required 1316

for computing the ND metric value for terminating the 1317

extremized-crowded NSGA-II, we first find them here. 1318

1) Step 1: Computing Ideal and Worst Objective Vectors: 1319

We minimize and maximize each of the three objectives to 1320

find the individual extreme points of the feasible objective 1321

space. For this purpose, we have used a single-objective real- 1322

parameter genetic algorithm with the SBX recombination and 1323

the polynomial mutation operators [18], [28]. We use a dif- 1324

ferent set of parameter values from that of our multiobjective 1325

NSGA-II studies: population size = 100, maximum generations 1326
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TABLE V

Minimum and Maximum Objective Values of Three Objectives

Cost Deflection Stress x1 x2 x3 x4

Minimum 2.3848 0.2428 6.2664 8.2972 0.2443
Min. after LS 2.3810 0.2444 6.2175 8.2915 0.2444
Maximum 333.9095 5 10 10 5
Max. after LS 333.9095 5 10 10 5
Minimum 0.000439 (*)4.4855 (*)9.5683 10 5
Min. after LS 0.000439 (*)4.4855 (*)9.5683 10 5
Maximum 0.0713 0.8071 5.0508 1.8330 5
Max. after LS 0.0713 0.8071 5.0508 1.8330 5
Minimum 1008 (*)4.5959 (*)9.9493 10 5
Min. after LS 1008 (*)4.5959 (*)9.9493 10 5
Maximum 30 000 2.7294 5.7934 2.3255 3.1066
Max. after LS 30 000 0.7301 5.0376 2.3308 3.0925

The values marked with a (*) for variables x1 and x2 can take other values without any change in the optimal objective value and without making the overall
solution infeasible.

TABLE VI

Cost Deflection Stress
Ideal 2.3810 0.000439 1008

Worst 333.9095 0.0713 30 000

= 500, recombination probability = 0.9, mutation probability =1327

0.1, distribution index for recombination = 2, and distribution1328

index for mutation = 20. These values are usually followed in1329

other single-objective real-parameter genetic algorithm (GA)1330

studies [33], [34]. After a solution is obtained by a GA run,1331

it is attempted to improve by a local search (LS) approach—1332

the SQP procedure coded in MATLAB is applied with default1333

parameter values to minimize individual objective functions1334

in the feasible set. Table V shows the corresponding extreme1335

objective values before and after the local search approaches.1336

Interestingly, the use of the local search improves the cost1337

objective from 2.3848 to 2.3810. As an outcome of the above1338

single-objective optimization tasks, we obtain the ideal and1339

worst objective values, as shown in Table VI.1340

2) Step 2: Applying Extremized-Crowded NSGA-II: First,1341

we apply the extremized-crowded NSGA-II approach with1342

an identical parameter setting as used above, except that for1343

the SBX recombination ηc = 10 is used, according to the1344

recommendation in [18] for multiobjective optimization. The1345

suggested termination criterion on the ND metric is used with1346

the above ideal and worst objective values. Fig. 17 shows the1347

variation of the ND metric with generation.1348

It is interesting to note how the ND metric, starting from a1349

small value (meaning that the estimated nadir point is closer1350

to the worst objective vector), reaches a stabilized value of1351

0.5587. The NSGA-II procedure gets terminated at generation1352

314.1353

Interestingly, only two nondominated extreme points are1354

found by the extremized-crowded NSGA-II. They are shown1355

in Table VII.1356

From these two solutions, the estimated nadir point after1357

Step 2 is (36.4347, 0.0169, 28088.3266)T . In a three-objective1358

problem, the presence of only two extreme points signifies that1359

two of the three objectives may be correlated to each other1360

on the Pareto-optimal front. We shall discuss this aspect more1361

later.1362

3) Step 3: Applying Local Search: The two solutions 1363

obtained are now attempted to be improved by the bilevel local 1364

search approach, one at a time. The minimum and maximum 1365

objective vectors obtained from the NSGA-II solutions (from 1366

Table VII) are as follows: fmin = (2.8235, 0.000439, 1008)T 1367

and fmax = (36.4347, 0.0169, 28088.3266)T . Since the first 1368

solution corresponds to the worst of objective f1, the upper- 1369

level loop of the local search for solution 1 maximizes f1. 1370

The resulting solution is shown in Table VII under the heading 1371

“After local search.” A slightly better solution is obtained using 1372

the local search. 1373

For solution 2 of Table VII, objectives f2 and f3 are both 1374

worst. Thus, we maximize a normalized quantity arising from 1375

both objectives:
∑3

i=2(fi(x) − f min
i )/(f max

i − f min
i ). The local 1376

search finds a nondominated solution which seems to be 1377

better in terms of the first two objectives but worse in the 1378

third objective. The weight vector obtained by the upper-level 1379

loop of the local search is (0.2470, 0.3333, 0.4196)T and the 1380

corresponding reference point is (2.8235, 0.0169, 55168.65)T . 1381

An investigation will reveal that the local search utilized a 1382

reference point which has identical values for the first two 1383

objectives and a much worse f3 value than the NSGA-II 1384

solution. Then, by using a weight vector which has more or 1385

less equal value for all three objectives, the upper loop is able 1386

to locate the critical point corresponding to the second and 1387

third objectives. Interestingly, this critical point corresponds 1388

to the minimum f1 value which is exactly the same as that 1389

obtained by the minimization of the cost objective alone in 1390

Table V. It is clear that the extremized NSGA-II approach in 1391

Step 2 found a solution close to an extreme Pareto-optimal 1392

solution and the application of Step 3 helps to move this 1393

solution to the extreme Pareto-optimal solution. 1394

Observing these two final solutions, in Step 4, we can now 1395

estimate the nadir point (cost, deflection, stress) for the welded 1396

beam design problem as
1397

Nadir point: (36.4209, 0.0158, 30 000)T . 1398

Note that this point is different from the worst objective 1399

vector of the entire feasible search space computed earlier. 1400

Out of a total of 31 551 solution evaluations, the bilevel local 1401

search required only 51 solution evaluations, thereby demand- 1402
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TABLE VII

Two Population Members Obtained Using the Extremized-Crowded NSGA-II Approach

Sol. No. Cost Deflection Stress x1 x2 x3 x4

Extremized-crowded NSGA-II
1. 36.4347 0.000439 1008 1.5667 0.5389 10 5
2. 2.8235 0.0169 28088.3266 0.3401 4.6715 7.2396 0.3424

After Local Search
1. 36.4209 0.000439 1008 1.7345 0.4789 10 5
2. 2.3810 0.0158 30 000 0.2444 6.2175 8.2915 0.2444

Fig. 18. Pareto-optimal front and estimation of the nadir point.

ing a tiny fraction of 0.16% of the overall computational1403

effort.1404

4) Comparison With the Naive NSGA-II Approach: We1405

now apply the naive NSGA-II approach to the same problem to1406

investigate whether an identical nadir point is obtained. In the1407

naive approach, we first generate a set of Pareto-optimal points1408

by a combination of the original NSGA-II and a local search1409

approach. The range of the Pareto-optimal front, thus found,1410

will provide us with information about the nadir point of the1411

problem. We use an identical parameter setting as used in the1412

extremized-crowded NSGA-II run. The local search approach1413

used here is applied to NSGA-II solutions one at a time and1414

is described in Chapter 9 (Section VI) of [18]. The resulting1415

optimization problems are solved using the fmincon routine1416

of MATLAB software. In Fig. 18, we show the NSGA-II1417

solutions with circles and their improvements by the local1418

search method with diamonds. The two nondominated extreme1419

solutions obtained using our nadir point estimation procedure1420

are marked using squares. Both approaches find an identical1421

nadir point, thereby providing confidence to our proposed1422

approach. However, the overall function evaluations needed to1423

complete the naive NSGA-II and local searches for obtaining1424

the distributed set of Pareto-optimal points were 102 267,1425

compared to a total of 31 551 function evaluations needed with1426

our proposed nadir point estimation procedure. For a four-1427

variable, three-objective problem, a reduction of about 70%1428

computations with our proposed approach to find an identical1429

nadir point is a significant achievement.1430

It is also interesting to note that despite the use of three1431

objectives, the Pareto-optimal front is 1-D in this problem.1432

If the obtained front is projected on the deflection–stress1433

(f2–f3) plane, it can be seen that these two objectives are1434

correlated to each other. Therefore, in addition to finding the1435

nadir point, the number of extreme solutions xEA found by 1436

the extremized-crowded NSGA-II procedure may provide a 1437

rough idea about the dimensionality of the Pareto-optimal 1438

front—an added benefit which can be obtained by performing 1439

the nadir point estimation task before attempting to solve a 1440

problem for multiple Pareto-optimal solutions. A significant 1441

amount of research efforts is now being made in handling 1442

problems with many objective functions using evolutionary 1443

algorithms and in automatically identifying redundant objec- 1444

tives in a problem [21], [35], [36]. An analysis of critical 1445

points obtained by the proposed extremized-crowded NSGA-II 1446

procedure for identifying possible redundancy in objectives is 1447

worth pursuing further and remains as a viable approach in this 1448

direction. 1449

VII. Discussions and Extensions 1450

In this paper, we have combined the flexibility in an EMO 1451

search with an ingenious local search procedure. By redirect- 1452

ing the focus of an EMO’s diversity-preserving operator to- 1453

ward the extreme nondominated solutions, we have suggested 1454

an extremized-crowded NSGA-II procedure which is able to 1455

find representative points close to extreme points of the Pareto- 1456

optimal front, not only to three or four-objective problems, but 1457

to as many as 20-objective problems. By proposing a bilevel 1458

local search procedure of choosing an appropriate reference 1459

point near an obtained NSGA-II solution and a suitable weight 1460

vector for finding the critical point corresponding to the worst 1461

nondominated solutions obtained by the NSGA-II procedure, 1462

we have demonstrated the working of the hybrid procedure 1463

to a number of challenging test and practical optimization 1464

problems. Because we need a local optimization method for 1465

the bilevel problems, it is important to point out that a method 1466

most appropriate to the characteristics of the problem in 1467

question should always be favored. 1468

To make NSGA-II’s search more efficient, a mating restric- 1469

tion strategy can be added so that a better stability of multiple 1470

extreme solutions is maintained in the population. Restricting 1471

recombination among neighboring solutions in the objective 1472

space may also allow a focused search, thereby finding a 1473

better approximation of extreme solutions. For this purpose, 1474

the emphasis for extreme solutions can also be implemented 1475

on other EMO procedures, such as SPEA2 [37], PESA [38], AQ:81476

or others. 1477

In the upper-level local search approach [problem (7)], the 1478

upper bound on the reference point z is chosen rather loosely. 1479

Since the task is to perform a local search, a tighter and 1480

more problem-informatic upper bound, such as a more relaxed 1481
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bound on the worst objective value and a more restricted bound1482

on the other objectives can be used for a computationally1483

faster procedure. Similarly, the bounds on the weight vector1484

can also be chosen with some problem information derived1485

from the location of the particular NSGA-II solution vis-a-vis1486

other solutions. In fact, based on the properties of achievement1487

scalarizing functions, the inclusion of the weight vector w in1488

the upper-level optimization is needed, but can be considered1489

fixed (and not as a variable vector) as indicated in [39]. In that1490

approach, by fixing the weight vector based on the location1491

of the NSGA-II solution, the upper-level optimization may1492

be used to find an optimal z corresponding to the extreme1493

Pareto-optimal solution. This task typically requires less com-1494

putational effort due to the reduction in decision variables on1495

the upper-level optimization loop and remains an interesting1496

future study to test further.1497

In another approach, the bilevel local search procedure sug-1498

gested here can be integrated within the NSGA-II procedure1499

as an additional operator. The local search can be applied to1500

a few selected solutions of a NSGA-II population after every1501

few generations. This on-line procedure will guarantee finding1502

(locally) Pareto-optimal solutions whenever the local search is1503

applied. A preliminary study [40] has shown some promising1504

results in this direction. However, its computational advantage1505

on more complex problems, if any, compared to the proposed1506

hybrid approach of this paper will be an interesting future1507

research worth pursuing.1508

VIII. Conclusion1509

We have proposed a hybrid methodology involving evolu-1510

tionary and local search approaches to address an age-old yet1511

open research issue of estimating the nadir point accurately1512

in a multiobjective optimization problem. By definition, a1513

nadir point is constructed from the worst objective values1514

corresponding to the solutions of the Pareto-optimal front. It1515

has been argued that the estimation of the nadir point is an1516

important task in multiobjective optimization. Since the nadir1517

point relates to the critical Pareto-optimal points, the estima-1518

tion of a nadir point is also a difficult and challenging task.1519

Since intermediate Pareto-optimal solutions are not important1520

in this task, the suggested modified NSGA-II approaches have1521

emphasized their search for finding the worst or extreme1522

solutions corresponding to each objective. To enhance the1523

convergence properties and make the approaches reliable,1524

the modified NSGA-II approaches have been combined with1525

a reference-point based bilevel local search approach. The1526

upper-level search uses a combination of a reference point and1527

a weight vector as a variable vector, which is then evaluated1528

by using a lower-level search of solving the corresponding1529

achievement scalarizing function. While the lower-level search1530

is guaranteed to converge to a locally Pareto-optimal solution,1531

the upper-level search drives the procedure to converge to the1532

critical point of an objective function.1533

The extremized-crowded approach has been found to be1534

capable of making a quicker estimate of the nadir point than a1535

naive approach (of employing the original NSGA-II approach1536

to first find a set of nondominated solutions and then construct1537

the nadir point) on a number of benchmark problems having 1538

three to 20 objectives and on other problems including a diffi- 1539

cult engineering design problem involving nonlinear objectives 1540

and constraints. Emphasizing solutions corresponding to the 1541

extreme objective values on a nondominated front has been 1542

found to be a better approach than emphasizing solutions 1543

having the worst objective values alone. Since the former 1544

approach maintains a diverse set of solutions near both best 1545

and worst objective values, thereby not allowing spurious 1546

dominated solutions to remain in the population, the result of 1547

the search is better and more reliable than that of the worst- 1548

crowded approach. 1549

The computational effort to estimate the nadir point has 1550

been observed to be much smaller (more than an order of 1551

magnitude) for benchmark test problems having a large num- 1552

ber of objectives than the naive NSGA-II approach. Moreover, 1553

since the extremized-crowded NSGA-II approach has been 1554

able to find solutions close to the critical points, the local 1555

search procedure has been found to take only a fraction of the 1556

overall computational effort. Thus, the bilevel nature of the 1557

proposed local search procedure does not seem to affect much 1558

the overall computational effort of the hybrid approach. 1559

Despite the algorithmic challenge posed by the task of 1560

estimating the nadir point in a multiobjective optimization 1561

problem, in this paper, we have listed a number of reasons 1562

for which nadir objective vectors are useful in practice. They 1563

included normalizing objective functions, giving information 1564

about the ranges of objective functions within the Pareto- 1565

optimal front to the decision maker, visualizing Pareto-optimal 1566

solutions, and enabling the decision maker to use different 1567

interactive methods. What is common to all these is that the 1568

nadir objective vector can be computed beforehand, without in- 1569

volving the decision maker. Thus, it is not a problem if several 1570

hundred function evaluations are needed in the extremized- 1571

crowded NSGA-II in most problems. Approximating the nadir 1572

point can be an independent task to be executed before 1573

performing any decision analysis. 1574

One of the reasons why it may be advisable to use some 1575

interactive method for identifying the most preferred solution 1576

instead of trying to approximate the whole set of Pareto- 1577

optimal solutions is that for problems with several objectives, 1578

for example, the NSGA-II approach requires a huge number 1579

of evaluations to find a representative set. For such problems, 1580

the nadir point may be estimated quickly and reliably using the 1581

proposed hybrid NSGA-II-cum-local-search procedure. The 1582

extremized-crowded NSGA-II approach can be applied with a 1583

coarse termination requirement, so as to obtain near extreme 1584

nondominated solutions quickly. Then, the suggested local 1585

search approach can be employed to converge to the extreme 1586

Pareto-optimal solutions reliably and accurately. Thereafter, 1587

an interactive procedure (like NIMBUS [1], [4], [41], for 1588

example) (using both ideal and nadir points obtained) can 1589

be applied interactively with a decision-maker to find a de- 1590

sired Pareto-optimal solution as the most preferred solution. 1591

Alternatively, an evolutionary algorithm utilizing preference 1592

information such as [42] can be used. In this case, the nadir 1593

point together with the ideal point will inform the decision- 1594

maker about the ranges of the objective and help the decision 1595
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maker to concentrate on generating representations of desired1596

parts of the Pareto front.1597

This paper is important in another aspect, as well. The1598

proposed nadir point estimation procedure uses a hybridization1599

of EMO and a local search based MCDM approach. The1600

population aspect of EMO has been used to find near extreme1601

nondominated solutions simultaneously and the reference-1602

point based local search methodology helped converge to true1603

extreme Pareto-optimal solutions so that the nadir point can1604

be estimated reliably and accurately. Such collaborative EMO-1605

MCDM studies may help develop efficient hybrid procedures1606

which use best aspects of both contemporary fields of mul-1607

tiobjective optimization. Hopefully, this paper will motivate1608

researchers to engage in more such collaborative studies for1609

the benefit of either field and, above all, to the triumph of the1610

field of multiobjective optimization.1611
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