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Abstract

This paper proposes an integrated approach to arrive abhaliuild orientations, simultaneously
minimizing surface roughnesR& and build time T’, for object manufacturing in SLS process. The
optimization task is carried out by two popularly known nxolbjective evolutionary optimizers -
NSGA-II (non-dominated sorting genetic algorithm) and M&IP (multi-objective particle swarm
optimizer). The performance comparison of these two opéns, along with an approximation of
Pareto-optimal front is done using two statistically sfgpaint performance measures. Three proposals
addressing the task of decision making, i.e. selecting ohgisn in presence of multiple trade-off
solutions, are made to facilitate the designer. A hill clingblocal search procedure is also proposed to
further refine the solutions obtained by evolutionary ojters. The overall procedure is integerated
into aMORPE- Multi-objective Rapid Prototyping Engine. Several saenplbjects are considered for
experimentation to demonstrate the working®RPE A careful study of optimal build directions
for several components indicates a trend, providing insigflo the SLS processes which can be re-
garded highly useful for various practical RP applicationMulti-objective Optimization, Decision

Making, Genetic Algorithms, Particle Swarm Optimizatiorde5LS.

1 Introduction

Rapid prototyping (RP) or layered manufacturing refers to processésah a component is fabricated by
layer-by-layer deposition of material from 3D computer asisted designlsidB is playing an important
role in reducing the time required for new product development and logel@velopment costs, thus
many companies are realizing the benefits of producing prototypes quintlgasily. Today there exist
multiple RP techniques. Common examples of RP techniques are Fused DepbigEtiood (FDM),
Stereolithography (SLA), Selective Laser Sintering (SLS), LaminatgeédManufacturing (LOM), 3D
printing and Direct Metal Deposition (DMD). With the advent of these tetdgies, it is now possible to
fabricate physical prototypes directly from CAD models for checking dasibility of design concept and
prototype verification.

SLS process is one such most popular RP processes for object wtanuofg [15]. Rapid growth
of SLS can be attributed to its ability to process various materials like polymers, metedgnics and
composites. Commercial SLS systems (such as EOS P 380) build the partsdiivaesolidification of
the thermoplastic polymer powder BYD, laser. First, tessellated CAD model is sliced with layer thickness
ranging from 0.1 to 0.3 mm. Powder is spread on the machine bed with help-coater. The powder is
pre-heated to about-45° C below its melting point to keep the amount of energy contributed by laser as
low as possible. This is done by means of four heat radiators presestloitbchamber. The laser sinters



the powder and leads to a local solidification of the material. In the sinteringepsahe temperature of
the powder is raised to a point of fusing without actual melting. After allowinificsent time for the
sintered layer to cool down without causing significant internal strefisepart bed moves down by one
layer thickness and powder is again spread by the re-coater. Theedimaterial forms the part while
the un-sintered powder remains in its place to support the structure andrigdlaway once the build is
complete. This process is repeated and prototype gets created.

The quality of the prototype is usually characterized by its surface rasghmaccuracy and strength.
While cost of fabrication is directly related to build time [6]. To achieve betteuescy or enhanced
surface finish deposition of finer slices is desired. Such a deposition lig tikencrease build time. Thus,
there is always a conflict between two simultaneosly considered goalfielamy better surface quality
and reducing the build time. However; appropriate selection of build orientatin help acheiving these
goals simultaneously.

Since appropriate build directions are unknown a search to identifydbisorientations which si-
multaneosly minimizéRaandT is needed. The minimization of two conflicting objectives leads to set of
trade-off solutions with varyingRaandT corresponding to a set of build orientations. From a designers
point an optimal orientation needs to be chosen for final fabrication, pdttimgrd the issue of 'Decision
Making’. Much of past work has focussed on finding optimal build origote in different RP processes
but 'Decision Making’, atleast to best knowledge of the authors, hasageived any major attention. To
tackle this issue, this paper proposes three 'Decision Making’ schenikesdeimonstrating their working
on sample objects. Post optimal analyses on various sample objects is &bkt @at revealing additional
information which can be regarded highly useful from a practical sfaoidt. The entire procedure is auto-
mated using a developed softwarglulti-objective Rapid Prototyping EngindORPE) to achieve afor-
mentioned task. The software tool is used for SLS system and is easily rbtalffiaother RP techniques.
MORPEincorporates two multi-objective evolutionary algorithms (MOEASs), NSGard MOPSO, for
optimization purposes, inbuilt performance measures, like attainment s@w$éimater and hypervolume
calculator to arrive at results of statistical importance, 'Local Seangtg@ure to improve upon the solu-
tions obtained from MOEAs and 'Decision Making’ schemes to facilitate thgydesto select an optimum
fabrication orientation. This tool is made freely downloadable from http://homadgiikk~-npadhye and
should serve as useful resource for entire RP community.

Rest of the paper is structured as follows. Section 2 reviews LM literaturstéidies related to
optimal build orientation. In section 3 the multi-objective problem formulation irtexirio SLS process
is set up. This is followed by section 4 which systematically proposes amagpto address the task
of arriving at optimal build orientations. This section briefly introduces twdtiralbjective evolutionary
optimizers (NSGA-Il and MOPSO). Then, introduction to stastically companaérformance measures,
Hypervolume Indicatoand Attainment Surface Approximatois made. Finally, the section describes
a proposed mutation driven hill climbing local search using achievemelarizoag function (ASF) for
refinement of solutions obtained by evolutionary optimizers. In section ég@ksolid models from simple
to complicated geometries are considered for bi-objective optimization to inatestigd valid the working
of MORPE Results and discussions on the experiments are presented in sectioninfeagaces are
drawn. This section also provides insight into the decision making issue aadsitive design principles
are deciphered via. post optimal analysis. Finally, section 8 summarizes phefimdings in this study
with major conclusions.

2 RELATED WORKS

There has been a keen interest in build orientation studies for partddbriagn LM manufacturing for

more than a decade. Various goals, like surface finish, build time, sugipacture etc. have been consid-
ered for different processes in past. Apart from the dependambeitdl orientations, these goals largely
behave in accordance with the specific LM technology and hence optimemtairons for one process
might not be optimum for another process. Thus, once the measure(&rtifg these goals is decided a



search procedure is required to identify the favorable orientationpémific RP process. Following para-
graphs chronologically summarize various attempts in this direction and helpcogtjmare and identify
shortcomings in past approaches.

In [10] the authors proposed an interactive system to decide a suitablerjgmtation. Here surface
roughness was treated as primary objective and build time as secongnival and thus guidelines were
formulated based on experience. In [5] a multi-objective approach is atdrfigy SL parts by considering
dimensional accuracy and build times as objectives. The part accuesdyemted as the primary objective
and was calculated based on experience for different types otesrfd he second objective considered
for minimization was build time (quantified by number of slices). This work also dhiced adaptive
slicing based on pre-specified cusp height. The orientation selection whsiméwo steps: firstly few
orientations based on part-accuracy were shortlisted and then a 'bestation was found based on build
time as criterion.

In [16] part orientation for SL parts was determined based on consiolesaof surface quality, build
time or the complexity of the support structures. Surface quality was attaithent by maximizing the
area of non-stepped surfaces or by minimizing the area of worst quatiices. Build time was estimated
indirectly as part height in build direction. Support structure was minimizemibymizing the number of
supported points. Suitable orientation for one of the objectives at a time etasrdned from the list of
preselected base planes.

In [9] proposed a system to compute part orientations for SL parts, olgartirade-off in time, cost
and accuracy. The feature based tool considers cost, uild time, pralidesures, optimally oriented
features, overhanging areas and support volume for proposingditeiction. The overall tool comprises
of fowllowing modules: orientation, timing, cost, problematic feature and dispragrientation module
one or more candidate orientations are chosen based on considerdtaitea surfaces, holes, cuts,
shafts, protusions, shell and axes. Then these orientations aretedabmecriteria of: overhanging area,
volume of support structure, build time, cost of the part and problematigriesaa A total score is allocated
based to each of pre-selected orientations based on above criteriaridi@tion with maximum total
score is finally selected.

In [18, 19] volumetric error minimization approach is adopted. Here, therdifice between the vol-
ume of the part deposited using uniform slices and that of CAD model was madnfidz determining
orientation. This approach utilized primitive volume approach, which asswameamplex part to be
constructed from a combination of basic primitive volumes. In laster studyeitiresented a generic
approach in which tessellated CAD models were utilized instead of basic prirshitaes.

In [29] a process planning approach was proposed to improve buifdrpence in SL by lowering
build time, achieving better accuracy and high quality surface roughfssess planning consisted of
three modules: orientation, layer thickness and parameter selection. epadittbn orientation, layer
thickness sweep period, z height, fill overcure and hatch over cure etsen as the process variables
and were decided based upon considerations of support structif®darontal planes as the constraints.
In the part orientation module a set of most feasible orientations were &@lbased on planar, conical
and cylindrical surfaces present on the part. The part was orientixs$e preselected orientations and
sliced uniformly leading to trade-off in considered objectives. The fowstrsoitable alternate orientations
were selected for further investigations in slicing and parameter modules tgpenith the most suitable
process plan. In [11], from a set of preselected orientations, biestation was decided which led to least
number of adaptive slices.

In [28] a real coded genetic algorithm was employed to obtain optimal builditatien and single
objective weighted approach was used to construct a single objectoanttyining average surface rough-
ness and build time. Later, in [25] a bi-objective study was conducted, simeoltesly minimizing surface
roughness and build time, to find a set of trade-off solutions.

In [2], combined objective of average weighted surface rough®&¥SR) and build time, using fuzzy
weights, is minimized by usage of a genetic algorithm. In [3] authors carried owlti-criteria decision
making approach with objectives of surface roughness, build time, amdgst. These objectives were



assigned a weight and combined into a single objective which was corssideminimization.

In [1] single objective genetic algorithm was again employed to determine opfimiatation direc-
tions for LM processes so as to minimize the required post-machining regPKMRR in LM (as post-
machining is often required to improve the surface quality). Here, the autlsmeloped an expression of
the distribution of surface roughness and relation between the RPMRabridation direction.

In [4] build orientations for parts fabricated with stereolithography amévee for optimizing build
time, surface roughness and post-processing times using single obyeeigre¢ed approach. Other studies
in literature that have also employed single objective weighted approa¢h3arg0].

Irrespective of the objective(s) considered for determining build tatean, pre-selection of orienta-
tions or minimization of weighted single objective function, as done in earlieiestuths well-known
defficiencies and optimality of the solutions cannot be gauranteed [7]. elAmwmore recently suit-
able multi-objective optimization approaches using genetic algorithms, i.e. simuliglgeminimizing
or maximizing multiple goals, have been studied for different LM processgs23, 24, 25, 26]. Similar
attempts to optimize multiple goals in this direction have been made [12, 31, 32,8])}it®such studies,
systematic application of nature inspired huerestics coherently addressitigpbjective optimization,
decision-making and knowledge discovery through optimization is still missingad@iress the existing
shortcomings we have chosen SLS process for which optimal build oriergatie determined.

3 MULTI-OBJECTIVE PROBLEM

Without loss of generality, we assume that the goal is to minimmzenctionsfs,..., f,, of n-dimensional
decision variableg. A decision vectorp, € Sis called Pareto-optimal if there is no other decision vector
@ € Sthat dominates it. Any vectap; is said to dominatey, if ¢ is not worse tharg, in all of the
objectives and it is strictly better thagm in at least one objective. In case two solutiggsand@, do not
dominate each other, we say that they are indifferent to each other noar@ominated with respect to
each other. To solve such problems, algorithms which can find a well digtdilset of trade-off and well
converged set of solutions with least computational expense are desired

In current study the objectives of interest are average surfaghnessRaand total build timeT.
Thus, the following bi-objective optimization can be set up.

Minimize f; = Ra()
Minimize fa = T(@)
with: @= {6y,06y}

subject to:
0<6,<180
0<6,<180

The problem variables aBzanddy representing the rotations from an initial configuration about some
reference XYZ Cartesian coordinate system. Figures 3(a) and 3¢bjible the rotation scheme stated
here by considering rotation of a facet or planar triangle (CAD modeksgmted in form of facets can
be rotated by rotation of all facets). Computation of surface roughRasmd build timeT has been
borrowed from [27] and briefly described as follows:

3.1 Surface Roughness

where for SLS surface roughness (in micrometers) is calculated diffefer up facinganddown facing
surfaces as follows:
Ra,p = —2.04067+.220 +0.06722 — 0.00136&12 (@H)
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Figure 1: Build angle for SLS

Rajown= 185— 9.52P — 0.834a — 0.157 + 0.15P2 — 0.00099x2 -+ 0.0058xt )

Angle a = 90°-6, wheref is the angle between vertical direction and facet normal as shown in Figure
Thus, average surface roughness of entire part can be calcutated a

= £ 3)

WhereRg andA; are surface roughness and area ofithériangular facet of STL fileRa is computed
from equations (1) or (2).

3.2 Build Time

Build time (T) in RP processes can be calculated by taking the sum of the times taken texdeaior
contour, fill the interior area on a layer, generate support structamespther non-productive times, such
as platform motion and warming time in SLS. Usually non-productive times arg@émdient of build
orientation. In case of SLS, the major portion of the time is taken during reéagoaf the powder. Since,
SLS does not require any support structure no additional time is neededdosupport. Therefore, by
minimising the height of the part in the direction of deposition, build time can be minimi$ettaxis
denotes the build direction then build time estimate is given by object height as:

T= (Zmax— Zmin) (4)

Other rotation schemes can also be adopted for this purpose, but sinceahiayéng deposition is
assumed to be along Z-axis, the rotation about Z-axis is invariant for th@uwation of objective axis,
hence, only X-axis and Y-axis rotations are considered.
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Figure 3:

4 PROPOSED APPROACH

The overall procedure is carried out by MORPE which comprises ofviitig modules: a) Adaptive slic-
ing procedure b) Multi-objective optimisers- NSGA-II and MOPSO c) &enfance comparison tools-
Hypervolume Indicator and Attainment Surface Approximator d) Locar@eadool e) Decision Mak-
ing Kit. Figure 4 portrays the working of MORPE. For MORPE, Adaptiveisticorocedure has been
developed in Matlab version R2007a. The optimisation routines and pericen@mparison measures
are developed in C (gcc version 4.3.2) language. Matlab code is compitegiMER (matlab compiler
runtime) version 7.6 and integrated with optimisation engine. The experimerdgedpn this study
have been carried out on Intel single core 2.9 GHz, RAM-1.0 GB, Hakl&8GB, OS-Linux-ubuntu-
9.04, Computer architecture-32 bit. The codes developed in this papbeaiained from following url
http://home.iitk.ac.intnpadhye.



4.1 Evolutionary Optimisers

Although there exist several multi-objective evolutionary algorithms (MOR#Akterature, popularly used
genetic algorithm based NSGA-II and particle swarm based MOPSO optinfiaee been utilised in this
study. In the following paragraphs we briefly describe the working alidrg features of these algorithms.

MOPSO:Particle swarm optimisation (PSO) is now a well established optimisation techriti@.
is a population based technique, similar in some respects to other evolutidgarighans, except that
potential solutions (particles) move rather than evolve through the sgaeick.sMore recently, PSO has
successfully been extended to multi-objective optimisation problems and sukbdsere called Multi-
objective Particle Swarm Optimisation (MOPSOQO). PSO consists of severdidzde solutions called par-
ticles each of which has a position and velocity, and experiences linéag4diie attractions towards two
attractors:

1) the best position attained by that particle so far (particle attractor conarbest pbesj;

2) the best of the particle attractors in a certain neighbourhood (neigditma attractor or global best
- gbes].

In each generation or cycle (‘'t"), every individual is associated withsitjpn vector(a) and a velocity
vector (4). The size of these vectors is equal to the number of decision variables prablem. The
position and velocity of each individual is updated according to followingaéigns:

i = W + C1f1 - (PBest — @) + o - (GBest — @) (5)

Q1= +@ (6)

Equations (5) and (6) indicate position and velocity updates. Thewesknown as inertia weight and,
c1 andc; are known as learning factors. In our procedwrhas been chosen as 0c3,andc; are both
taken to be 1.0. To preserve diversity in the population often random ligstoe, called "turbulence”, is
added stochastically to a particle’s position.

The MOPSO utilized in this study has been borrowed from [22, 21]. Taldenimarizes the outline
of MOPSO. Complete details on MOPSO can be found in [22]. The major €ifterin MOPSO and PSO
is in the notion of defining 'Pbest’ and 'Gbest’ as there are more than geetoles under consideration
in MOPSO. In this studyNwWtd. andDom. methods have been chosen for personal best and global best
selections. For more details on guide selection reader is referred tg30p],

NSGA-II: Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) is one of the mospydarly
used GA for multi-objective optimization. Several salient features like elitegovation and explicit di-
versity preserving mechanisms ensure its good convergence ansityivBrief description of NSGA-II
procedure is presented here, for further details reader is referrgd 8]: In NSGA-II, Figure 5, off-
spring population (size N) is created by using parent population (sizey Nybal genetic operators: se-
lection, crossover and mutation. The created child population is combinedavehtpopulation, to form
combined population of size 2N, and then a non-dominated sorting is carrte alassify the entire
population into several non-dominated fronts. The new population (size thgn filled by the members
of combined population belonging to different non-dominated levels or gjaitom first level. Since
all members of combined population cannot be accomodated in new populagwaral non-dominated
fronts have to discarded. Since all members of last front entering thgoopulation may not be accom-
modated, only few members (corresponding to number of available slotsgl@eed from the last front
based on the crowding distance technique. Binary tournament seledd&n.a8d polynomial mutation
operators are used for NSGA-II.



Table 1: MOPSO algorithm

MOPSO Algorithm
BEGIN
t=0
Initialise populatior? :
Fori=1toN _ B
Initialise 8}, V=0 andPBes}={6} } i.e. p{=6!
End
Initialise GlobalBest i.eGBest :={}
Do
Evaluate (P
GBest, 1:= Update(?, GBest)
Fori=1toN _
PBest, ;:= Update}, PBes})
End
P.r1:=Generate(R GBes{)
Fori=1toN
MoveParticle@));
End
SQR(GBest)
t=t+1
While(t <tmax
END

4.2 Performance Comparisions

Due to stochastic nature of evolutionary approaches, it is difficult tolade@nything about performance
from just one simulation. To eliminate the random effects and gather resuitatedtical significance,
we perform multiple (11) runs of the evolutionary algorithm correspontbrjfferent initial seeds. Two
performance measures commonly used in EA literature have been employedstutty as follows:

Attainment Surfaces: Multiple runs, corresponding to different initial seeds, of an evolutiprago-
rithm usually result in multiple non-dominated set. Thus, to deduce overédirpgance an approximation
of best non-dominated set, also referred to g@saftainment surface, is computed from available non-
dominated sets. Since non-dominated can be visualized easliy in two andithessibns, such a method
provides good insight into algorithms performance. The computation of attairsnefaces is done by
using attainment surface package described in [14].

Hypervolume indicator: Hypervolume is a measurement which takes into account the diversity as well
as the convergence of the solutions [34]. Hypervolume representsith@fsthe areas enclosed within
the hypercubes formed by the points on the non-dominated front andsarcheference point. For mini-
mization type problems a higher value of hypervolume is desirable, as it is fivdicd better spread and
convergence of solutions. Figure 6(a) illustrates hypervolume computatiamon-dominated points
w.r.t. areference point 'R’. It should be noted that contribution to hygleme is only made by points
which are dominated by the reference point. All points not dominated by feeeree point have zero
contribution to the hypervolume. In this study we have computed averagevofpme curves over several
generations for study and comparisions purposes. Although, hyipergccomputation is dependent on
choice of reference point, yet it is regarded as a good measure af ganployed for higher number of
objectives as well.



4.3 Local Search

Typically for any practical multi-objective optimization problem location of traed®o-optimal solutions
is unknown. Although, MOEAs provide a good means to reach approximatidse to Pareto-optimal
solutions, often further improvement on obtained solutions is possible uctinglocal search Local
search usually considers obtained non-dominated solution and tries to empogwitilizing a construction
of single objective function.

In this study we construct an achievement scalarizing function (ASk)géesobjective function, and
consider its minimization. Following describes ASF scheme:

Consider such a starting poipihaving objective vectdi(y) andz=f(y)), then ASF =:

Zj

min_ rinalemﬁx’ mnt P Z fmax fm‘.n

Where z=f(y) is usually reffered to as a reference point for local search, i and fi’“‘” are mini-
mum objective values of the 'best non-dominated’ set. By minimiZigg- solutions are projected on the
Pareto-front and convergence can be garaunteed.

Although various single objective optimization techniques could be appliechifimizing ASF, but
due to discontinuos nature of objective functions gradient based medhedst preferred. We employed
SQP (Sequential Quadratic Programming) based local search for tipisgguand no improvement was
found. A mutation driven or hill climbing strategy, is proposed for this minimizatesk. Table 4.3
describes the hill climbing approach. To conduct local search a maximumberuof trials (MaxTrials)
are pre-set to limit the number of function evaluations. Then, with equdlamibty, problem variables
6x and®y are perturbed according to gaussian distribution (mean 0.0 and stamd@atiaho;). Standard
deviation ;) for gaussian distribution is varied linearly from 10.0 to 1.0 over the iteratiSnsh a local
search enables to explore wider regions in the starting and becomes roosedd towards the end. If
ASF at newly created orientations is lowered, then the perturbatidhsand6y are accepted. The whole
procedure is continued till termination criteria is met.

5 Decision Making

When a set of trade-off solutions is obtained from a multi-objective optimizatiercise, a decision point
needs to be chosen to proceed further. This is often a non-trivialdaskfoperator and certain guidelines
are necessary. To address this task, we introduce three decision rettinggues, namelyAspiration
Point Method; 'Marginal Utility Method’ and’L ; Metric Method: The first method requires an 'aspira-
tion point’, described later, as an input from the user. However; rengainio methods do not require any
user input to arriveat the decision choice. These methods are dekasitfellows:

Aspiration Method: Here it is assumed that the designer has some pre-decided prefereaspifa-
tion) for an operating point with which he/she is likely to settle. The goal is todisalution which is better
than the aspiration of the designer. Thus, itis called an aspiration point théib@arry out the search we
allocate this aspiration point as the reference for ASF scheme (desiribection 4.3), and evaluate ASF
for all points on the Pareto-optimal front. The Pareto-optimal solution whictesponds to lowest ASF
value, w.r.t. reference point, is selected. In this study we have condittesz aspiration points as follows:

As p= (Raﬂin"!z‘Ranax, Tmin;Tmax),

Asp= (Ranin"'z‘Ranax’ Trma),

10



Aspp= (Ramay, o lm)

The corresponding decision choices obtained on the Pareto-froimidicated as;, P, andPs;. Asp,
for example, implies that user is willing to accept an available point in proximityefikan of best and
worst obtainedRa, T) values. In case of convex Pareto-optimal decision choice dominatesyilmataon
point, whereas in case of concave set decision choice gets dominatesldspihation point.

Marginal Utility Method: This approach also does not require any prior information the useeanches
for a Pareto-optimal solution which shows least affinity towards any of ighbeurs in objective space. To
compute affinity, consider three non-dominated pdif{$, andP,, s.t. Ra<Ragp<Ra) and [1>To>T,)
and we are interested in evaluating the affinity at the middle g&inP; andP; lie in the neighbourhood
of Py and are selected as follows: consi#égoints,Po m m = 1 tok, nearest té¢%, with Ry < Ray. Then
centroid of allPy s is computed and a point out Bf s, which is closest to the centriod, is selecteéas
For selecting?,, same excercise is repeated, but this time considering pointa,f:s are greater than
Ra.

OnceP; andP, are computed foPy, affinity function(AF), is calculated as :

AFs,=max(W1,W2); W1=% and sz%.

For each point in the non-dominated set, excepkfextreme points at both endsF is computed and the
solution with minimumAF is assigned as decision choice. This solution is argued to posses laast affi
to move away from. In this study value of k is taken equal to 6. The valkaletides the resolution of the
proximity in which we are interested to compute the affinity function. Decisiontaiimt by this method

is usually aknee point. 'Knee points’are often of great practical importance as they denote a coordinate
on Pareto-front where increase (decrease) in one objective isarggycompared to decrease (or increase

) in other objective.

Lo-metric: This is a straight-forward method to select one solution out of many non-@bedirsolu-
tions without requiring any information from user. Firstly, each objectiveisnalized between [0.0, 1.0].
Then arfideal point’ is constructed, which is origin in case of normalized space, and taken efethace
point. Euclidean distancé._£) of each point in non-dominated set is calculated from the referencé poin
and the solution with smallest euclidean distance is finally selected.

Table 2: Parameter Setting for Evolutionary Algorithms

General Parameters:
Population size 40
Generations 80
Runs 11

Other NSGA-Il Parameters:
Crossover probabilityi 0.9
Mutation probability 0.5
Crossover Inded0

Mutation Index20

Other MOPSO Parameters:
Turbulence Factor 0.25
pBest Archive Size 3
Archive Size 200

11



6 Experiments

In this section a series of simulations are performed on various solid modegir{g from simple geome-
tries to complex ones) to find the optimal build orientations and trade-off ffonlRaandT. A total of
16 solid models are considered in this study: Pyramid, Bi-Pyramid, CuboiobiGai-Pyramid, Prism,
Cylinder, Bracket, Pentagon-Bar, Sharp, Connector, Disc, FinKeie,Diamond and Plier. These objects
serve as a good representative set with various features.

Both NSGA-Il and MOPSO are applied for optimization and performance edgetoptimizers are
compared based on hypervolume curves and attainment surfaces.ulagpmpsize of 40 and maximum
number of generations 80 are chosen for both the optimizers. For ebdhrsmel both MOPSO and
NSGA-II are executed for 11 runs. Results from multiple runs of both phienizers are combined and
tested for further improvement by proposed local search. Little or netgigitprovement is found after
local search, indicating the closeness of solutions to the true Pareto-opéitndlhen, the %(0%) attain-
ment surface is computed to provide the best approximation of Pareto-8ardy of shapes and spread
of Pareto-fronts along with the orientations corresponding to extreme swutields highly useful infor-
mation and insight into optimization problem. Based on the results for optimal disrgaolid models
are . This categorization helps in drawing general guidelines for optineitations. Important task of
Decision making is also carried out by demonstrating application of newly intexti decision making
methods. The usefulness of each method is also highlighted.

7 Results and Discussions

Estimation of minimuni orientation for SLS is done by aligning the shortest dimension on object along
the build direction. However; in general minimuR®a orientation is not intutive. Ra computation is
done using the surface roughness model mentioned in section 3R@Mmedel was developed based on
statistical design of experiments, i.e. firstly factors affectingRhdike laser power, layer thickness, hatch
spacing, scan speed, and build orientation were considered. Th8mrStotypes were fabricated and in
multiple experiments surface roughness measurement was carried oubbfBireed values of surface
roughness were used and a response and analysis of varianc&fAN@s performed to understand the
significance of chosen factors. Finally surface roughness expnsst®r 'up’ and 'down’ surfaces were
derived. Due to two separate expressions of 'up’ and 'down’ fasumgaces, roughness values differ at
build anglea=9(°. At this angle roughness is computed by taking the average of the vabrastiro
models. Overall surface roughneRais obtained by summing the weighted surface roughnesses of all
facets.

From the above discussions it is clear that prediction of mininRarorientation is not straight-
forward. Further, at orientations in which majority of the model's surfaea &as a build anglexf in
proximity of 90°, Rais expected to shown an erratic behaviour. Also, as the surface resgBrpressions
are statistically derived, rather than being exact, deviations from predieiees are likely to occur in
practical cases.

Based on the simulation results in this study, the objects are categorized intodwusg (a) Solid
models for which a distributed set of trade-off solutions is obtained, an8dlid models for which there
is little variation inRaor T over the entire Pareto-front. For group (a) objects, objectives aderely
conflicting leading to a reasonable range of Pareto-optimal solutionseaér group (b) the objectives
are almost non-conflicting leading to solutions within a small range. The twapgrare discussed next:

Group (a): Following solid objects are placed in this category: BiPyramid, Pyramid, PrisntaBon-
Bar, Disc, Cylinder, Diamond, Wine-Glass and Bracket. For each oéthbgcts hypervolume curves,
154(0%) attainment surfaces, orientations corresponding to minifiwamd minimumRa, andL,-metric
based decision choice are shown in Figures 8 to 13. From the hypervoluwes, Figures 8(a), 9(a),
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10(a), 10(f), 11l(a), 11(f), 12(a), 12(f) and 13(a), it is eviddrat NSGA-Il outperforms MOPSO
in all cases. NSGA-II reaches a higher and steady hypervolume valessaer number of generations.
In most cases MOPSO shows a faster hypervolume rise in initial few gemesr#ut fails to match with
NSGA-II performance. Such a behavior of MOPSO indicates a pre-matumvergence. According to
the authors, such problem arises due to absence of potential globakgnd discontinuous function
landscapes. However; from the attainment surfaces it can be sead@REO and NSGA-II have similar
convergence and spread (with NSGA-II doing slightly better). The agjidic of two optimizers validates
the procedure and builds our confidence in trade-off fronts obtadedhe tarde-off fronts for these solid
models, local search (as described in section 4.3) was conducted acittgty no improvement was
found. Thus, it can be concluded that trade-off solutions foundlase ¢o true Pareto-optimal solutions.

For Bipyramid, the minimunT orientation, Figure 8(e), is achieved such that the object almost lies on
one of the faces. In this configuration the minimum height along Z-axis (birégdtibn) is obtained. Since
the faces of Bipyrism have equal areas, the orientation which minimizes tfaesuoughness is the one
in which the sum of all surface roughnesses is minimized. FroniRtnmodel described earlier (Figure
2), roughness for a face is minimum whens close to zero whether 'up’ facing or 'down’ facing. With
Bipyramid geometry it is impossible to achieve an orientation where all (or a mgjofisurfaces have
0° build angle. In such situation a 'best’ compromise which minimizes the sum afcrbughnesses is
acheived when Bipyramid is slightly tilted from the vertical with majority of suefatup’ facing and one
face close to being vertical, as shown in Figure 8(f). Thenetric decision orientation lies in between the
minimumT andRaorientations and is a 'knee’ point on the attainment surface. 'Refeireoice Method’
and 'Marginal Utility’ decision schemes are shown in Figures 8(c) and, 8dpectively. For 'Reference
Point Method’ three solutions are obtained correspoding to three nefegoints. The 'Marginal Utility
Method’ finds a ’knee’ solution. From the decision choices obtained f@etimethods it turns out that
"Lo-metric method’ and "Marginal Utility’ method favor to discover a knee solutiortiee Pareto-front
and do not depend upon any user information. 'Aspiration Method’ is rflexéle in finding solutions
which resemble user’s preference. However; according to this mettation found, corresponding to a
chosen reference point, depends on the shape and spread ofetwe fiRant.

For Pyramid, the minimurii orientation is achieved with Pyramid lying horizontally flat on one of its
faces, Figure 9(e). This orientation leads to minimum length along Z-axis. limmin Ra orientation,
Figure 9(f), the Pyramid axis is slightly titled from the vertical and 3 out of Bames are 'up’ facing,
with one of the faces being vertical. The-metric decision again corresponds to 'knee’ point and has
an orientation close to minimufh orientation. The similarity in nature of extreme solutions obtained for
Bipyramid and Pyramid is obvious based on geometrical similarity. The decibioices obtained for
Pyramid are shown in Figures 9(b), 9(c) and 9(d). The solutions olotain¢he Pareto-front are similar
to those obtained for Bipyramid, which can accounted for similarities in 'Byypyd’ and "Pyramid’, and
their Pareto-fronts. For remaining solid models onjymetric decision choices are shown.

For Prism, in the minimunT orientation, Figure 10(c), the object lies flat on one of the larger faces.
In minimum Ra orientation, Figure 10(d), 4 out of 5 surfaces are either 'up’ facingeotical. In this
orientation Prism assumes an inclined orientation with respect to the horizantathat one of the larger
faces is also vertical. Decision choice based.gmmetric is found on the 'knee’ and has an orientation
close to minimun orientation.

An important observation can be made from the minimuendRaorientations found for the objects
discussed so far. Firstly, in minimum(or maximumRa) orientations, each object has a surface on which
it rests horizontally flat to reduce the length along Z-axis. For a flat seitlee build angl&=90°. From
the surface roughness models it is clear that for an 'up’ or 'downihfasurface maximum roughness
occurs ab=90°. Hence, it is no surprise that a solution which minimiZebas a maximuniRa Similar
analysis can be carried out for minimURaorientations. For all the minimurRaorientations it is found
that there exists at least one face with larger surface area which is alerbsal (i.e. witha=0°). Again
referring to the models, roughness is minimum for a face wired’. Hence, it is no surprise to have a
vertical face (one with the maximum surface area) leading to minimum rouglfimethe face. Moreover,
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roughness models also suggest that for smaller values ofp’ faces have lower surface roughness as
compared to 'down’ faces, this fact is consistent with the observationinhainimum Ra orientations
majority of surfaces are 'up’ facing. The arguments presented in thisghigm can be referred to explain
the solutions obtained for remaining solid models.

For Pentagon-Bar minimur orientation, Figure 10(h), occurs with the object lying flat on one its
faces and minimum height is acheived alng Z-axis. In mininReorientation, Figure 10(h), all the large
faces of the bar are vertical causing the build argt€°. The L — 2 metric decision choice is again a
'knee’ solution and slighlty titled from minimurf orientation.

For Disc minimumT orientation, 11(c), occurs with Disc lying horizontally flat, allowing minimum
dimension (disc height) along Z-axis. The minimuRa orientation, 10(d), occurs with flat surfaces of
disc vertical. In vertical positiona=0°) flat surfaces have least roughness based on the models. Large
combined area of flat surfaces compared to curved surface aigasassre weight lower roughness and
thusRais minimized. L, metric decision choice is not exactly horizontal (like minimiinorientation)
and hag6y,6y)=(89.72°,180°) and corresponds to a 'knee’ solution.

To validate our line of arguments, Cylinder is considered next. The lendtired@@ylinder is chosen to
be larger than its diameter (unlike Disc). The minimUirarientation occurs with Cylinder lying horizontal
and flat faces vertical, Figure 11(h). In minimuRa orientation, Figure 11(i), Cylinder stands tall
vertically on one of the flat surfaces. This configuration is justified beetarger curved surface area has
lower surface roughness in vertical position with0°, and adRais weighted with surface area, minimum
value is acheived in this orientation. The-metric decision choice resembles closely to minimiim
orientation and corresponds to a solution on 'knee’ of the Pareto-front.

Next object considered is Diamond. The minimdinorientation, Figure 12(c), is self explainatory.
The minimumRa orientation, Figure 12(d), occurs with axis of Diamond titled with respect tboat
and flat top facing 'down’ and major portion of the curved surface &eing 'up’. For Diamond the
curved surface area is much larger than the flat top area, and frafioysealiscussions we already have
noted that 'down’ facing leads to higher roughness compared to 'gpidg(upto certair values). Thus,
in minimum Raorientation larger part of surface area is 'up’ facing. On the Paret:E,-metric based
decision choice is lies very close to minimursolution and also has similar 3-D orientation.

Second last object belonging to this group is Wine-Glass. The front vidigdtes an interesting
orientation taken up for minimizingj, Figure 12(h). In minimunRaorientation, 12(h), the object axis
is tilted with the vertical, and majority of curved surface takes an 'up’ fachigntation.L,-metric based
decision choice is again a '’knee’ solution with object axis almost horizontal.

Final object in this category is Bracket. The minimdmorientation, Figure 13(c), assumes hori-
zontally resting position with convex surface projecting upwards. An isterg analysis leads to better
understanding that why convex surface (and not concave syfffaces 'up’ in the minimumT orienta-
tion. The reason found for this is consistent with the arguments preseriteslpaper so far and stated as
follows: Firstly, the convex side of Bracket has a larger area compareshcave side. We also know that
upto certainx values 'up’ facing surface has lower roughness values comparddwm’ facing, and ori-
entations in which majority surface area is up facing is preferred for miniRandror the two orientations
- one with convex surface 'up’ and another with concave surface hyld times are same for both but
Rais larger for latter, rendering it to be dominated by the prior and getting elimirfiadedthe Pareto-set.
For minimizingRa, an orientation in whiclw=0° for curved surfaces (majority area) is achieved, which
is consistent with the fact that=0° leads to lowest roughness for a face. Themetric decision point is
close to minimunRasolution and also lies on 'knee’ of the Pareto-front.

Group (b): This group comprises of solid objects for which optimal solutions are faar in a
small distribution. Solid models in this group are Cuboid, Cuboidal-Pyramidn&azuor, Fin, Key, Pie,
Sharp and Wire-Plier. For all these objects it is found that the spreadlatians in one of the two
objectives is practically negligible. For Cuboid, Figure 14, it can be efeskthat minimunT, minimum
Raand decision choice solutions have similar horizontal orientation. From theraéiat surface curves
it can be clearly seen that spread of solutions aldrig negligible. Thus, for all these solutions build
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time estimate is almost equal, while there is a small variatioRan The small variation irRa can be
explained by again referring to quadratic surface roughness modela.Vertical surface which is neither
‘'up’ or 'down’, roughness is computed by averaging the roughrseeef¢he face by treating it both as
'up’ or down ’facing’, and since these two values in general are uak@ discontinuity in roughness is
introduced. Additionally, due to numerical and round-off errors in rotatimdels Rafor two seemingly
alike orientations, for e.g. {00°) and (0, 180°), may be different slightly different. Thus, in reality small
variation inRais unimportant from a practical view-point, more so when the orientatiomeggonding
to solutions in the small distribution are seemingly alike. The mininfusolution for Cuboid is justified
as minimum dimension is along Z-axis. This orientation also has 4 surfaces ifgnajdhe surface area)
almost vertical @ = 0°) leading to minimunRa

Cuboidal-Pyramid, Figure 15(a), optimal orientation is similar to optimal orientati@@uboid. Ge-
ometrical similarity between the two objects in "cuboid” part is an obvious reagoreover in lying flat
orientation, the majority of the surface area on Cuboidal-Pyramid has buld an= 0° (including two
side faces on the Pyramid head), causing overall minirRam

Next, for the Pie shape flat orientation, Figure 15(c), is the optimal orientafi@m attainment sur-
face curve, 15(b), it can be seen that all solutions have approximatelgTsvalues and distribution along
Rais also small. Minimum build time in the shown optimal orientation is self-evident. In this mmimu
Raorientationa = 0° for the side strip. It should be noted that side strip in Pie does not comdspo
majority surface area, and majority surface areas (flat faces) lie maizgith a = 90°. This behaviour is
found contrary to earlier observations where in minimdeorientations majority surface area possessed
a build anglen = 0°. To understand this behaviour other orientations are shown in which magarigce
areas haver = 0°, Figures 15(d) and 15(e). It is found thRtandRavalues are larger for these orienta-
tions. This can be explained based on the fact that though the flat veridates have = 0°, remaning
part areas on the strip are found to have largalues, and thus increasiftp The lowering ofRadue to
vertical flat surfaces is defiled by increaséRadue to strip area in this configuration.

For remaining objects in this group, single optimal orientation corresponding iononimT andRa
values is shown. In case of Fin, Figure 16(a), the shown orientatiomagsity surface area with = 0°
(minimizing Ra and minimum vertical thickness (minimizinG). The majority surface area on the Fin
comprises of a hollow feature and protruding fin-plates on the surface.

Arguments presented in Pie and Fin examples can be utilized to explain optintahtiaes for Key,
Figure 16(b). Key comprises of multiple grooves (which increase thg areba hollow in the key head.
In the shown orientation = 0° for the curved part on Key head and the grooved area at the Key end.
Occurence of minimurit in this orientation is straight-forward. MinimuRais explained on the fact that
a = 0° for the groove part, hollow and the curved side area on the Key heathylother orientatiofiRa
increases because of the largevalues associated with the curved Key head (similar to the Pie).

Optimal orientations corresponding to minimdmandRafor Plier, Connector and Sharp are shown
in Figures 16(c), 17(a) and 17(b). The flat lying positions of these sotidels are similar to optimal
orientations for other models in the group and can be explained based pretdeding discussions. For
e.g., minimumT for Sharp is evident. The minimufa can be attributed tor = 0° for side area, and
the fact that in any other orientation the faces on triangular end of Shiliripawe a greateo leading to
increase irRa To support this argument we consider a thin Sharp for which side aafradst negligible.
For such a Sharp contribution Radue to side area will be negligible, irrespectiveogfas the side area
is negligible. Thus, it is expected that for this thin Sharp minimRenorientation should occur with
majority surface area vertical (aligned along Z-axis). This does hagpshown in Figure 17(c), further
in minimum Raorientation it is found that the pointed end faces down. The facing dowxpiaiaed on
the fact that for largea values (close to 49 the 'down’ facing surface has lower roughness compared
to 'up’ facing. The minimumT orientation for thin Sharp is obviously same as shown in Figure 17(b)
leading the minimum dimension to align with Z-axis.

The examples presented here provide an important information - a pathnaxepately guess the
optimal orientation without actually carrying out optimization. A designer cayae the features on
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any new object for which build orientation is to be decided, and relate thelretmdy pre-optimal studies
carried out for other objects to come up with a guiding principles. This is goakto the principle of
Innovization- discovery of Innovative design principles through Optimization []. Fewesal routine pur-
poses an exhaustive optimization study to discover most appropriate bigifdations is impractical. In
such cases pre-existing guidelines, to arrive at optimal build orientatiensed from previosly consid-
ered optimization studies will be highly useful.

8 Conclusions

This paper presents a novel and systematic approach to address thef fstting optimal build orienta-
tions in SLS process, approximating true (or close to) Pareto-optimal sautiod addressing the issue of
decision. The entire procedure is integrated leading to the developmd@RPE- Multi-objective Rapid
Prototyping Engine. Two popular optimizers, NSGA-Il and MOPSO, areleyed to discover trade-off
fronts. Although, overall NSGA-II outperforms MOPSO, similarities in cengence and spread of trade-
off fronts found by both the optimizers indicates the closeness of obtaihetibns to global Pareto-front.
Local search emplouyed to fine tune the obtained solutions practically dhowienprovement, assuring
that solutions found by the optimizers are pretty good estimate for true Paoletions. Several sample
objects were considered for bi-objective optimization and post-optimal sisddased on the nature of the
optimal solutions, objects were divided into two groups. For the first georgasonable spread amongst
the trade-off solutions is found. The second group objects are fouhdwe a single optimal orienta-
tion which minimizes botiT andRa A closer analysis of obtained solutions in consideration with their
geometric features anfa models unfolds common key-characteristics among the optimal orientations.
Such discovery is validated through multiple examples and finally a set oflgi@dean be formed for a
designer aiding him to discover favorable orientations without actuallyicarout optimization.

In future, authors are interested in exploring classification methods thdecatilized to form classes
or groups of solid-models based on their physical features. Sevesadg existing feature extraction
algorithms can be employed for identifying key features. The groups edurther sub-divided into sev-
eral sub-groups or sub-classes based on their optimal orientatidnse aad shape of Pareto-fronts. This
pre-classification can be employed for training the learning algorithms. &vkem new solid model is
considered the trained algorithms can be used for predicting the optimakdiden The predicted optimal
orientation can be verified for its accuracy and in case of inconsistefemdaback based mechanism can
be looped back for self-rectification. Finally,%mart Systemcan be evolved which can precisely predict
the optimal orientations involving least computation.
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Figure 12:
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Figure 15:

(a) Optimal orientation for Fin (b) Optimal orientation for (c) Optimal orientation for
(6x,8y)= (1800°, 1800°), (Ra, Key, (6x,6y)= (1800°, 0.0°), Plier (©646y)= (0°, 1800°),
T)=(9.27, 45.0) (Ra T)=(9.56, 5.0) (Ra T)=(9.29,5.0)

Figure 16:
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o

(@) Optimal orientation for (b) Optimal orientation for (¢) Minimum Ra orientation

Connector  §x,6y)= (0.0°, Sharp, 6x,8y)= (0.0°, 1800°), for thin Sharp, @x,8y)= (90.0°,

1800°), (Ra T)=(9.8, 5.0) (Ra T)=(10.53, 5.0) 1800°), (Ra T)= (10.029,
25.0)

Figure 17:
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