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Abstract

The aim of this article is to characterize unitary increment process by

a quantum stochastic integral representation on symmetric Fock space.

Under certain assumptions we have proved its unitary equivalence to a

Hudson-Parthasarathy flow.

1 Introduction

In the framework of the theory of quantum stochastic calculus developed by

pioneering work of Hudson and Parthasarathy [6], quantum stochastic differential

equations (qsde) of the form

dVt =
∑

µ,ν≥0

VtL
µ
νΛν

µ(dt), V0 = 1h⊗Γ, (1.1)

(where the coefficients Lµ
ν : µ, ν ≥ 0 are operators in the initial Hilbert

space h and Λν
µ are fundamental processes in the symmetric Fock space Γ =

Γsym(L2(R+,k)) with respect to a fixed orthonormal basis (in short ‘ONB’)

{Ej : j ≥ 1} of the noise Hilbert space k ) have been formulated and con-

ditions for existence and uniqueness of a solution {Vt} are studied by Hudson

and Parthasarathy and many other authors. In particular when the coefficients

Lµ
ν : µ, ν ≥ 0 are bounded operators satisfying some conditions it is observed

that the solution {Vt : t ≥ 0} is a unitary process.

In [4], using integral representation of regular quantum martingales in sym-

metric Fock space [15], the authors show that any covariant Fock adapted unitary

evolution (with norm-continuous expectation semigroup) {Vs,t : 0 ≤ s ≤ t < ∞}
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satisfies a quantum stochastic differential equation (1.1) with constant coeffi-

cients Lµ
ν ∈ B(h). For situations where the expectation semigroup is not norm

continuous, the characterization problem is discussed in [5, 1]. In [9, 10], by ex-

tended semigroup methods, Lindsay and Wills have studied such problems for

Fock adapted contractive operator cocycles and completely positive cocyles.

In this article we are interested in the characterization of unitary evolutions

with stationary and independent increments on h⊗H, where h and H are separa-

ble Hilbert spaces. In [16, 17], by a co-algebraic treatment, the author has proved

that any weakly continuous unitary stationary independent increment process on

h ⊗ H,h finite dimensional, is unitarily equivalent to a Hudson-Parthasarathy

flow with constant operator coefficients; see also [7, 8]. In this present paper we

treat the case of a unitary stationary independent increment process on h⊗H,h
not necessarily finite dimensional, with norm-continuous expectation semigroup.

By a GNS type construction we are able to get the noise space k and the bounded

operator coefficients Lµ
ν such that the Hudson-Parthasarathy flow equation (1.1)

admits a unique unitary solution and is unitarily equivalent to the unitary process

we started with.

2 Notation and Preliminaries

We assume that all the Hilbert spaces appearing in this article are complex sep-

arable with inner product anti-linear in the first variable. For any Hilbert spaces

H,K B(H,K) and B1(H) denote the Banach space of bounded linear operators

from H to K and trace class operators on H respectively. For a linear map (not

necessarily bounded ) T we write its domain as D(T ). We denote the trace on

B1(H) by TrH or simply Tr. The von Neumann algebra of bounded linear oper-

ators on H is denoted by B(H). The Banach space B1(H,K) ≡ {ρ ∈ B(H,K) :

|ρ| := √ρ∗ρ ∈ B1(H)} with norm (Ref. Page no. 47 in [2])

‖ρ‖1 = ‖ |ρ| ‖B1(H) = sup{
∑

k≥1

|〈φk, ρψk〉| : {φk}, {ψk} are ONB of K andH resp.}

is the predual of B(K,H). For an element x ∈ B(K,H), B1(H,K) ∋ ρ 7→ TrH(xρ)

defines an element of the dual Banach space B1(H,K)∗. For a linear map T

on the Banach space B1(H,K) the adjoint T ∗ on the dual B(K,H) is given by

TrH(T ∗(x)ρ) := TrH(xT (ρ)), ∀x ∈ B(K,H), ρ ∈ B1(H,K).

For any ξ ∈ H⊗K, h ∈ H the map

K ∋ k 7→ 〈ξ, h⊗ k〉
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defines a bounded linear functional on K and thus by Riesz’s theorem there exists

a unique vector 〈〈ξ, h〉〉 in K such that

〈 〈〈ξ, h〉〉, k〉 = 〈ξ, h⊗ k〉, ∀k ∈ K. (2.1)

In other words 〈〈ξ, h〉〉 = F ∗
hξ where Fh ∈ B(K,H⊗K) is given by Fhk = h⊗ k.

Let h and H be two Hilbert spaces with some orthonormal bases {ej : j ≥ 1}
and {ζj : j ≥ 1} respectively. For A ∈ B(h ⊗H) and u, v ∈ h we define a linear

operator A(u, v) ∈ B(H) by

〈ξ1, A(u, v)ξ2〉 = 〈u⊗ ξ1, A v ⊗ ξ2〉, ∀ξ1, ξ2 ∈ H

and read off the following properties:

Lemma 2.1. Let A,B ∈ B(h⊗H) then for any u, v, ui and vi, i = 1, 2 in h

(i) A(u, v) ∈ B(H) with ‖A(u, v)‖ ≤ ‖A‖ ‖u‖ ‖v‖ and A(u, v)∗ = A∗(v, u).

(ii) h× h 7→ A(· , ·) is 1− 1, i.e. if A(u, v) = B(u, v), ∀u, v ∈ h then A = B.

(iii) A(u1, v1)B(u2, v2) = [A(|v1 >< u2| ⊗ 1H)B](u1, v2)

(iv) AB(u, v) =
∑

j≥1A(u, ej)B(ej , v) (strongly)

(v) 0 ≤ A(u, v)∗A(u, v) ≤ ‖u‖2A∗A(v, v)

(vi) 〈A(u, v)ξ1, B(p, w)ξ2〉 =
∑

j≥1〈p⊗ ζj, [B(|w >< v| ⊗ |ξ2 >< ξ1|)A∗u⊗ ζj〉
= 〈v ⊗ ξ1, [A∗(|u >< p| ⊗ 1H)Bw ⊗ ξ2〉.

Proof. We are omitting the proof of (i),(ii).

(iii) For any ξ, ζ ∈ H we have

〈ξ, A(u1, v1)B(u2, v2)ζ〉 = 〈u1 ⊗ ξ, Av1 ⊗ B(u2, v2)ζ〉 = 〈A∗u1 ⊗ ξ, v1 ⊗B(u2, v2)ζ〉
=
∑

n≥1

〈A∗u1 ⊗ ξ, v1 ⊗ ζn〉〈ζn, B(u2, v2)ζ〉

=
∑

n≥1

〈A∗u1 ⊗ ξ, v1 ⊗ ζn〉〈u2 ⊗ ζn, Bv2 ⊗ ζ〉

=
∑

n≥1

〈A∗u1 ⊗ ξ, (|v1 >< u2| ⊗ |ζn >< ζn|)Bv2 ⊗ ζ〉

= 〈u1 ⊗ ξ, A(|v1 >< u2| ⊗ 1H)Bv2 ⊗ ζ〉.

Thus it follows that

A(u1, v1)B(u2, v2) = [A(|v1 >< u2| ⊗ 1H)B](u1, v2).

3



(iv) By part(iii)

N∑

j=1

‖A(ej, u)ξ‖2

=
N∑

j=1

〈ξ, A∗(u, ej)A(ej , u)ξ〉

= 〈ξ, [A∗(PN ⊗ 1H)A](u, u)ξ〉,

where PN is the finite rank projection
∑N

j=1 |ej >< ej | on h. Since {[A∗(PN ⊗
1H)A](u, u)} is an increasing sequence of positive operators and 0 ≤ PN ⊗ 1H

converges strongly to 1h⊗H as N tends to ∞, [A∗(PN ⊗ 1H)A](u, u) converges

strongly to [A∗A](u, u) as N tends to ∞. Thus

lim
N→∞

N∑

j=1

‖A(ej, u)ξ‖2 = 〈ξ, [A∗A](u, u)ξ〉

and
N∑

j=1

‖A(ej, u)ξ‖2 ≤ ‖A u⊗ ξ‖2 ≤ ‖A‖2‖u‖2‖ξ‖2, ∀N ≥ 1.

Now let us consider the following, for ξ, ζ ∈ H

|〈ξ,
N∑

j=1

A(u, ej)B(ej, v)ζ〉|2 = |
N∑

j=1

〈A∗(ej , u)ξ, B(ej, v)ζ〉|2

≤
N∑

j=1

‖A∗(ej, u)ξ‖2
N∑

j=1

‖B(ej , v)ζ‖2

≤ ‖A‖2‖u‖2‖ξ‖2‖B‖2‖v‖2‖ζ‖2.

So

|〈ξ,
N∑

j=1

A(u, ej)B(ej , v)ζ〉| ≤ ‖A‖‖B‖‖u‖‖v‖‖ξ‖‖ζ‖

and strong convergence of
∑

j≥1A(u, ej)B(ej , v) follows.

(v) We have

〈ξ, A(u, v)∗A(u, v)ξ〉 =
∑

j≥1

〈ξ, A∗(v, u)ζj〉〈ζj, A(u, v)ξ〉

=
∑

j≥1

〈v ⊗ ξ, A∗u⊗ ζj〉〈u⊗ ζj, Av ⊗ ξ〉

= 〈v ⊗ ξ, A∗{|u >< u| ⊗
∑

j≥1

|ζj >< ζj|}Av ⊗ ξ〉.
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Since
∑

j≥1 |ζj >< ζj| converges strongly to the identity operator

〈ξ, A(u, v)∗A(u, v)ξ〉 ≤ ‖u‖2〈v ⊗ ξ, A∗Av ⊗ ξ〉

and this proves the result.

(vi)We have

〈A(u, v)ξ1, B(p, w)ξ2〉
=
∑

j≥1

〈A(u, v)ξ1, ζj〉〈ζj, B(p, w)ξ2〉

=
∑

j≥1

〈Av ⊗ ξ1, u⊗ ζj〉〈p⊗ ζj , Bw ⊗ ξ2〉

=
∑

j≥1

〈B∗p⊗ ζj, w ⊗ ξ2〉〈v ⊗ ξ1, A∗u⊗ ζj〉

=
∑

j≥1

〈p⊗ ζj, B(|w >< v| ⊗ |ξ2 >< ξ1|)A∗u⊗ ζj〉.

This proves the first part of (vi), the other part follows from

∑

j≥1

〈p⊗ ζj , B(|w >< v| ⊗ |ξ2 >< ξ1|)A∗u⊗ ζj〉

= Trh⊗H[(|u >< p| ⊗ 1H)B(|w >< v| ⊗ |ξ2 >< ξ1|)A∗]

= Trh⊗H[(|w >< v| ⊗ |ξ2 >< ξ1|)A∗(|u >< p| ⊗ 1H)B]

= 〈v ⊗ ξ1, [A∗(|u >< p| ⊗ 1H)Bw ⊗ ξ2〉

2.1 Symmetric Fock Space and Quantum Stochastic Cal-

culus

Let us briefly recall the fundamental integrator processes of quantum stochastic

calculus and the flow equation, introduced by Hudson and Parthasarathy [6]. For

a Hilbert space k let us consider the symmetric Fock space Γ = Γ(L2(R+,k)).

The exponential vector in the Fock space, associated with a vector f ∈ L2(R+,k)

is given by

e(f) =
⊕

n≥0

1√
n!
f (n),

where f (n) = f ⊗ f ⊗ · · · ⊗ f︸ ︷︷ ︸
n−copies

for n > 0 and by convention f (0) = 1. The expo-

nential vector e(0) is called the vacuum vector.
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Let us consider the Hudson-Parthasarathy (HP) flow equation on h⊗Γ(L2(R+,k)):

Vs,t = 1h⊗Γ +
∑

µ,ν≥0

∫ t

s

Vs,τL
µ
νΛν

µ(dτ). (2.2)

Here the coefficients Lµ
ν : µ, ν ≥ 0 are operators in h and Λν

µ are fundamental

processes with respect to a fixed orthonormal basis {Ej : j ≥ 1} of k :

Λµ
ν(t) =





t 1h⊗Γ for(µ, ν) = (0, 0)

a(1[0,t] ⊗Ej) for(µ, ν) = (j, 0)

a†(1[0,t] ⊗ Ek) for(µ, ν) = (0, k)

Λ(1[0,t] ⊗ |Ek >< Ej |) for(µ, ν) = (j, k).

(2.3)

Theorem 2.2. [12, 14, 3] Let H ∈ B(h) be self-adjoint, {Lk, W
j
k : j, k ≥ 1} be a

family of bounded linear operators in h such that W =
∑

j,k≥1W
j
k ⊗ |Ej >< Ek|

is an isometry (respectively co-isometry) operator in h⊗k and for some constant

c ≥ 0, ∑

k≥1

‖Lku‖2 ≤ c‖u‖2, ∀u ∈ h.

Let the coefficients Lµ
ν be as follows,

Lµ
ν =





iH − 1
2

∑
k≥1 L

∗
kLk for (µ, ν) = (0, 0)

Lj for (µ, ν) = (j, 0)

−
∑

j≥1L
∗
jW

j
k for (µ, ν) = (0, k)

W j
k − δ

j
k for (µ, ν) = (j, k).

(2.4)

Then there exists a unique isometry ( respectively co-isometry) operator valued

process Vs,t satisfying (2.2) .

3 Hilbert tensor algebra

For a product vector u = u1 ⊗ u2 ⊗ · · · ⊗ un ∈ h⊗n we shall denote the product

vector un ⊗ un−1 ⊗ · · · ⊗ u1 by u←−. For the null vector in h⊗n we shall write 0. If

{fj}∞j=1 is an ONB for h, then we have a product ONB {fj = fj1 ⊗ · · ·⊗ fjn
: j =

(j1, j2, · · · , jn), jk ≥ 1} for the Hilbert space h⊗n.

Consider Z2 = {0, 1}, the finite field with addition modulo 2. For n ≥ 1,

let Z
n
2 denotes the n-fold direct sum of Z2 and we write 0 = (0, 0, · · · , 0) and

1 = (1, 1, · · · , 1). For ǫ = (ǫ1, ǫ2, · · · , ǫn), ǫ′ = (ǫ′1, ǫ
′
2, · · · , ǫ′m) we put

ǫ⊕ǫ′ = (ǫ1, · · · , ǫn, ǫ′1, · · · , ǫ′m) ∈ Z
n+m
2 and we define ǫ∗ = 1+(ǫn, ǫn−1, · · · , ǫ1) ∈ Z

n
2 .
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Let A ∈ B(h ⊗H), ǫ ∈ Z2 = {0, 1}. We define operators A(ǫ) ∈ B(h ⊗H) by

A(ǫ) := A if ǫ = 0 and A(ǫ) := A∗ if ǫ = 1. For 1 ≤ k ≤ n, we define a unitary

exchange map Pk,n : h⊗n ⊗H → h⊗n ⊗H by putting

Pk,n(u⊗ ξ) := u1 ⊗ · · · ⊗ uk−1 ⊗ uk+1 · · · ⊗ un ⊗ (uk ⊗ ξ)

on product vectors. Let ǫ = (ǫ1, ǫ2, · · · , ǫn) ∈ Zn
2 . Consider the ampliation of the

operator A(ǫk) in B(h⊗n ⊗H) given by

A(n,ǫk) := P ∗
k,n(1h⊗n−1 ⊗A(ǫk))Pk,n.

Now we define the operator A(ǫ) :=
∏n

k=1 A(n,ǫk) := A(1,ǫ1) · · ·A(n,ǫn) in B(h⊗n ⊗
H). Please note that as here, through out this article, the product symbol

∏n

k=1

stands for product with order 1 to n. Form ≤ n, we shall write ǫ(m) = (ǫ1, ǫ2, · · · , ǫm)

and consider the operator A(ǫ(m)) =
∏m

i=1A
(m,ǫi) in B(h⊗m ⊗H) We have the fol-

lowing preliminary observation.

Lemma 3.1. (i) For product vectors u, v ∈ h⊗n

m∏

i=1

A(n,ǫi)(u, v) =
m∏

i=1

Aǫi(ui, vi)
n∏

i=m+1

〈ui, vi〉 ∈ B(H).

(ii) For ξ, ζ ∈ H
m∏

i=1

A(ǫi)(ξ, ζ) = A(ǫ(m))(ξ, ζ)⊗ 1h⊗n−m ∈ B(h⊗n).

(iii) If A is an isometry (respectively unitary) then A(n,ǫk) and A(ǫ) are isometries

(respectively unitaries).

The proof is obvious and is omitted.

We note that part (i) of this Lemma in particular gives

A(ǫ)(u, v) =

n∏

i=1

A(ǫi)(ui, vi) (3.1)

Let M0 := {(u, v, ǫ) : u = ⊗n
i=1ui, v = ⊗n

i=1vi ∈ h⊗n, ǫ = (ǫ1, ǫ2, · · · , ǫn) ∈
Zn

2 , n ≥ 1}. In M0, we introduce an equivalence relation ‘ ∼’ : (u, v, ǫ) ∼
(p,w, ǫ′) if ǫ = ǫ′ and |u >< v| = |p >< w| ∈ B(h⊗n). Expanding the vectors

in term of the ONB {ej = ej1 ⊗ · · · ⊗ ejn
: j = (j1, j2, · · · , jn), jk ≥ 1}, from

7



|u >< v| = |p >< w| we get ujvk = pjwk for each multi-indices j, k. Thus in

particular when (u, v, 0) ∼ (p, w, 0), for any ξ1, ξ2 ∈ H we have

〈ξ1, A(u, v)ξ2〉
=
∑

j,k≥1

ujvk〈ej ⊗ ξ1, Aek ⊗ ξ2〉

=
∑

j,k≥1

pjwk〈ej ⊗ ξ1, Aek ⊗ ξ2〉

= 〈ξ1, A(p, w)ξ2〉.

In fact A(u, v) = A(p, w) iff (u, v, 0) ∼ (p, w, 0) and more generally A(ǫ)(u, v) =

A(ǫ′)(p,w) iff (u, v, ǫ) ∼ (p,w, ǫ′). It is easy to see that (0, v, ǫ) ∼ (u, 0, ǫ) ∼ (0, 0, ǫ)

and we call this class the 0 of the quotient set M0.

Let us define multiplication and involution on M0/ ∼ by setting

Vector multiplication: (u, v, ǫ).(p,w, ǫ′) = (u⊗ p, v⊗ w, ǫ⊕ ǫ′) and

Involution: (u, v, ǫ)∗ = ( v←−, u←−, ǫ
∗).

Since (u⊗ p)←−−−− = pm⊗· · ·⊗ p1⊗un⊗· · ·⊗u1 = ( p←−⊗ u←−) and (ǫ⊕ ǫ′)∗ = (ǫ′)∗⊕ ǫ∗

[(u, v, ǫ).(p,w, ǫ′)]∗ = (u⊗ p, v⊗ w, ǫ⊕ ǫ′)∗

= (v⊗ w←−−−, u⊗ p←−−−, (ǫ⊕ ǫ
′)∗)

= (w←−⊗ v←−, p←−⊗ u←−, (ǫ
′)∗ ⊕ ǫ∗)

= (p,w, ǫ′)∗.(u, v, ǫ)∗.

It is clear that ǫ = ǫ′ =⇒ ǫ∗ = (ǫ′)∗ and |u >< v| = |p >< w| implies

| v←− >< u←−| = |w←− >< p←−|. Thus (u, v, ǫ) ∼ (p,w, ǫ′) implies (u, v, ǫ)∗ ∼ (p,w, ǫ′)∗.

Moreover, (u, v, ǫ) ∼ (u′, v′, ǫ′) and (p,w, α) ∼ (p′,w′, α′) implies ǫ ⊕ α = ǫ′ ⊕ α′

and |u ⊗ p >< v ⊗ w| = |u >< v| ⊗ |p >< w| = |u′ >< v′| ⊗ |p′ >< w′| =

|u′ ⊗ p′ >< v′ ⊗ w′|. So that the involution and multiplication respect ∼ .

Let M be the complex vector space spanned by M0/ ∼ . The elements of

M are formal finite linear combinations of elements of M0/ ∼ . With the above

multiplication and involution M is a ∗-algebra.

4 Unitary processes with stationary and inde-

pendent increment

Let {Us,t : 0 ≤ s ≤ t < ∞} be a family of unitary operators in B(h ⊗ H) and

Ω be a fixed unit vector in H. We shall also set Ut := U0,t for simplicity. As we

8



discussed in the previous section, let us consider the family of operators {U (ǫ)
s,t } in

B(h⊗H) for ǫ ∈ Z2 given by U
(ǫ)
s,t = Us,t if ǫ = 0, U

(ǫ)
s,t = U∗

s,t if ǫ = 1. Furthermore

for n ≥ 1, ǫ ∈ Z
n
2 fixed, 1 ≤ k ≤ n, we consider the families of operators {U (ǫk)

s,t }
and {U (ǫ)

s,t } in B(h⊗n ⊗H). By Lemma 3.1 we observe that

U
(ǫ)
s,t (u, v) =

n∏

i=1

U
(ǫi)
s,t (ui, vi).

For ǫ = 0 ∈ Zn
2 and 1 ≤ k ≤ n, we shall write U

(n,k)
s,t for the unitary operator

U
(n,ǫk)
s,t and U

(n)
s,t for the unitary U

(0)
s,t on h⊗n⊗H. For n ≥ 1, s = (s1, s2, · · · , sn), t =

(t1, t2, · · · , tn) : 0 ≤ s1 ≤ t1 ≤ s2 ≤ . . . ≤ sn ≤ tn <∞, ǫk = (α
(k)
1 , α

(k)
2 , · · · , α(k)

mk) ∈
Z

mk

2 : 1 ≤ k ≤ n,m = m1 +m2 + · · ·+mn ǫ = ǫ1 ⊕ ǫ2 ⊕ · · · ⊕ ǫn ∈ Zm
2 , we define

U
(ǫ)

s,t ∈ B(h⊗m ⊗H) by setting

U
(ǫ)

s,t :=

n∏

k=1

U
(ǫk)
sk,tk

. (4.1)

Here U
(ǫk)
sk,tk

is looked upon as an operator in B(h⊗m ⊗ H) by ampliation and

appropriate tensor flip. So for u = ⊗n
k=1uk, v = ⊗n

k=1vk ∈ h⊗m we have

U
(ǫ)

s,t(u, v) =

n∏

k=1

U
(ǫk)
sk,tk

(uk, vk).

When there can be no confusion, for ǫ = 0 we write Us,t for U
(ǫ)

s,t. For a, b ≥ 0, s =

(s1, s2, · · · , sn), t = (t1, t2, · · · , tn) we write a ≤ s, t ≤ b if a ≤ s1 ≤ t1 ≤ s2 ≤
. . . ≤ sn ≤ tn ≤ b.

Let us assume the following properties on the unitary family Us,t for further dis-

cussion to prove unitary equivalence of Us,t with an HP flow.

Assumption A

A1 (Evolution) For any 0 ≤ r ≤ s ≤ t <∞, Ur,sUs,t = Ur,t.

A2 (Independence of increments) For any 0 ≤ si ≤ ti <∞ : i = 1, 2 such

that [s1, t1) ∩ [s2, t2) = ∅

(a) Us1,t1(u1, v1) commutes with Us2,t2(u2, v2) and U∗
s2,t2

(u2, v2) for every

ui, vi ∈ h.

(b) For s1 ≤ a, b ≤ t1, s2 ≤ q, r ≤ t2 and u, v ∈ h⊗n, p,w ∈ h⊗m, ǫ ∈
Zn

2 , ǫ
′ ∈ Zm

2

〈Ω, U (ǫ)

a,b
(u, v)U

(ǫ′)
q,r(p,w)Ω〉 = 〈Ω, U (ǫ)

a,b
(u, v)Ω〉〈Ω, U (ǫ′)

q,r(p,w)Ω〉.
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A3 (Stationarity) For any 0 ≤ s ≤ t <∞ and u, v ∈ h⊗n, ǫ ∈ Zn
2

〈Ω, U (ǫ)
s,t (u, v)Ω〉 = 〈Ω, U (ǫ)

t−s(u, v)Ω〉.

Assumption B (Uniform continuity)

limt→0 sup{|〈Ω, (Ut − 1)(u, v)Ω〉| : ‖u‖, ‖v‖ = 1} = 0.

Assumption C (Gaussian Condition) For any ui, vi ∈ h, ǫi ∈ Z2 : i = 1, 2, 3

lim
t→0

1

t
〈Ω, (U

(ǫ1)
t −1)(u1, v1)(U

(ǫ2)
t −1)(u2, v2)(U

(ǫ3)
t −1)(u3, v3) Ω〉 = 0. (4.2)

Assumption D (Minimality)

The set S = {Us,t(u, v)Ω := Us1,t1(u1, v1) · · ·Usn,tn(un, vn)Ω : s = (s1, s2, · · · , sn),

t = (t1, t2, · · · , tn) : 0 ≤ s1 ≤ t1 ≤ s2 ≤ . . . ≤ sn ≤ tn < ∞, n ≥ 1, u =

⊗n
i=1ui, v = ⊗n

i=1vi ∈ h⊗n} is total in H.

Remark 4.1. (a) The hypothesis A, B and C hold in many situations, for ex-

ample for unitary solutions of the Hudson-Parthasarathy flow (2.2) with bounded

operator coefficients and having no Poisson terms.

(b) The assumption D is not really a restriction, one can as well work with re-

placing H by span closure of S. Taking 0 ≤ s1 ≤ t1 ≤ s2 ≤ . . . ≤ sn ≤ tn < ∞
in the definition of S ⊆ H is enough for totality of the set S because : for

0 ≤ r ≤ s ≤ t ≤ ∞, we have Ur,t(p, w)) =
∑

j Ur,s(p, ej)Us,t(ej, w). So if there are

overlapping intervals [sk, tk) ∩ [sk+1, tk+1) 6= ∅ then the vector ξ = Us,t(u, v)Ω in

H can be obtained as a vector in the closure of the linear span of S.

For any n ≥ 1 we have the following useful observations.

Lemma 4.2. (i) For any 0 ≤ r ≤ s ≤ t <∞,

U
(n,k)
r,t = U (n,k)

r,s U
(n,k)
s,t . (4.3)

(ii) For any 1 ≤ k1, k2, · · · , km ≤ n : ki 6= kj for i 6= j and 0 ≤ si ≤ ti < ∞ :

i = 1, 2, · · · , n
m∏

i=1

U
(n,ǫki

)

si,ti
(u, v) =

m∏

i=1

U
(n,ǫki

)

si,ti
(uki

, vki
)
∏

j 6=ki

〈uj, vj〉 (4.4)

for every u = ⊗n
i=1ui, v = ⊗n

i=1vi ∈ h⊗n and ǫ ∈ Z
n
2 .

(iii)

U
(n)
r,t = U (n)

r,s U
(n)
s,t . (4.5)
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Proof. (i) It follows from the definition and assumptions A1 and A2.

(ii) As in proof of Lemma 3.1 (i) by induction (4.4) can be proved so we are

omitting the proof here.

(iii) Since U
(n)
r,t is a product of U

(n,k)
r,t : k = 1, 2, . . . n and we have

U
(n,k)
r,t = U (n,k)

r,s U
(n,k)
s,t ,

it is enough to prove that the unitary operators U
(n,k)
r,s and U

(n,l)
s,t commute for

k 6= l. To see this let us consider the following. By part (ii) and the fact that

Ur,s(uk, vk) and Us,t(ul, vl) commute by assumption A2, we get

U (n,k)
r,s U

(n,l)
s,t (u, v) = Ur,s(uk, vk)Us,t(ul, vl)

∏

i6=k,l

〈ui, vi〉

= Us,t(ul, vl)Ur,s(uk, vk)
∏

i6=k,l

〈ui, vi〉 = U
(n,l)
s,t U (n,k)

r,s (u, v).

As all the operators U appear here are bounded this implies

U (n,k)
r,s U

(n,l)
s,t = U

(n,l)
s,t U (n,k)

r,s .

5 Filtration

For any 0 ≤ q ≤ t <∞, let H[q,t] = Span S[q,t], where S[q,t] ⊆ H is given by

{ξ[q,t] = U
(n)
r,s (u, v)Ω = Ur1,s1(u1, v1) · · ·Urn,sn

(un, vn)Ω ∈ S : q ≤ r, s < t, n ≥
1, u, v ∈ h⊗n}. We shall denote the Hilbert spaces H[0,t] and H[t,∞) by Ht] and

H[t respectively.

Lemma 5.1. For 0 ≤ t ≤ T ≤ ∞, there exist a unitary isomorphism Ξt :

Ht] ⊗H(t,T ] →HT ] such that

Ut(u, v) = Ξ∗
tUt(u, v)⊗ 1H(t,T ]

Ξt. (5.1)

Proof. Let us define a map Ξt : Ht] ⊗H[t,T ] →HT ] by

Ξt(ξ[0,t] ⊗ ζ[t,T ]) = U
(n)
r,s (u, v)U

(n)
r′,s′(p,w)Ω

for ξ[0,t] = U
(n)
r,s (u, v)Ω ∈ St] and ζ[t,T ] = U

(n)
r′,s′(p,w)Ω ∈ S[t,T ], then extending

linearly.
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Now let us consider the following. By assumption A, for ξ[0,t] and ζ[t,T ] as above

and η[0,t] = U
(n)

a,b
(x, y)Ω ∈ St] and γ[t,T ] = U

(n)

a′,b′(g, h)Ω ∈ S[t,T ], we have

〈Ξt(ξ[0,t] ⊗ ζ[t,T ]),Ξt(η[0,t] ⊗ γ[t,T ])〉
= 〈U (n)

r,s (u, v)U
(n)
r′,s′(p,w)Ω, U

(n)

a,b
(x, y)U

(n)

a′,b′(g, h)Ω〉

= 〈Ω,
[
U

(n)
r,s (u, v)U

(n)
r′,s′(p

(n),w(n))
]∗
U

(n)

a,b
(x, y)U

(n)

a′,b′(g, h)Ω〉

= 〈Ω,
[
U

(n)
r,s (u, v)

]∗
U

(n)

a,b
(x, y)Ω〉

〈Ω,
[
U

(n)
r′,s′(p,w)

]∗
U

(n)

a′,b′(g, h)Ω〉
= 〈ξ[0,t], η[0,t]〉〈ζ[t,T ], γ[t,T ]〉.

Thus we get 〈Ξt(ξ[0,t]⊗ζ[t,T ]),Ξt(η[0,t]⊗γ[t,T ])〉 = 〈ξ[0,t]⊗ζ[t,T ] , η[0,t]⊗γ[t,T ]〉. Since

by definition range of Ξt is dense in HT ], this proves Ξt is a unitary operator.

Again by similar argument as above, for any u, v ∈ h, we have

〈Ξt ξ[0,t] ⊗ ζ[t,T ], Ut(u, v) Ξt η[0,t] ⊗ γ[t,T ]〉
= 〈U (n)

r,s (u, v)Ω, Ut(u, v)U
(n)

a,b
(x, y)Ω〉

〈U (n)
r′,s′(p,w)Ω, U

(n)

a′,b′(g, h)Ω〉
= 〈ξ[0,t] , Ut(u, v)η[0,t]〉 〈ζ[t,T ], γ[t,T ]〉

This proves (5.1).

6 Expectation semigroups

Let us look at the various semigroups associated with the unitary evolution {Us,t}.
For any fixed n ≥ 1, we define a family of operators {T (n)

t } on h⊗n by setting

〈φ, T (n)
t ψ〉 := 〈Ω, U (n)

t (φ, ψ) Ω〉, ∀φ, ψ ∈ h⊗n.

Then in particular for product vectors u = ⊗n
i=1ui, v = ⊗n

i=1vi ∈ h⊗n

〈u, T (n)
t v〉 = 〈Ω, U (n)

t (u, v) Ω〉 = 〈Ω, Ut(u1, v1)Ut(u2, v2) · · ·Ut(un, vn) Ω〉.

For n = 1, we shall write Tt for the family T
(1)
t .

Lemma 6.1. The above family of operators {T (n)
t } is a semigroup of contractions

on h⊗n.

12



Proof. Since U
(n)
t is in particular contractive, for any φ, ψ ∈ h⊗n

|〈φ, T (n)
t ψ〉| = |〈φ Ω, U

(n)
t ψ Ω〉| ≤ ‖φ‖ ‖ψ‖

and contractivity of T
(n)
t follows.

In order to prove that this family of contractions T
(n)
t is a semigroup it is enough to

show that for any 0 ≤ s ≤ t and product vectors u = ⊗n
i=1ui, v = ⊗n

i=1vi ∈ h⊗n,

〈u, T (n)
t v〉 = 〈u, T (n)

s T
(n)
t−sv〉.

Consider the product orthonormal basis {ej = ej1 ⊗ ej2 ⊗ · · · ⊗ ejn
: j =

(j1, j2, · · · , jn) : j1, j2, · · · , jn ≥ 1} of h⊗n. By part (iii) of Lemma 2.1 and evolu-

tion property (4.5) of U
(n)
t ,

〈u, T (n)
t v〉 = 〈Ω, U (n)

t (u, v) Ω〉
=
∑

j

〈Ω, U (n)
s (u, ej)U

(n)
s,t (ej, v)Ω〉

=
∑

j

〈Ω, U (n)
s (u, ej) Ω〉〈Ω , U

(n)
t−s(ej, v)Ω〉

=
∑

j

〈u, T (n)
s ej〉〈ej, T

(n)
t−sv〉 = 〈u, T (n)

s T
(n)
t−sv〉.

The following Lemma will be needed in the sequel

Lemma 6.2. (i) For 1 ≤ k ≤ n,

〈Ω, U (n,k)
t (p,w)Ω〉 = 〈p, 1h(⊗k−1) ⊗ Tt ⊗ 1h(⊗n−k)w〉, ∀p,w ∈ h⊗n. (6.1)

We shall denote the ampliation 1h(⊗k−1) ⊗ Tt ⊗ 1h(⊗n−k) by T
(n,k)
t .

(ii) For any 1 ≤ m ≤ n, p,w ∈ h⊗n,

〈Ω, (
m∏

k=1

U
(n,k)
t )(p,w)Ω〉 = 〈p, T (m)

t ⊗ 1h(⊗n−m) w〉.

(iii) For any φ ∈ h⊗n,

‖(U (n,k)
t − 1)φ⊗ Ω‖2

= 〈(1− T (n,k)
t )φ, φ〉+ 〈φ, (1− T (n,k)

t )φ〉
≤ 2‖1− Tt‖ ‖φ‖2.

13



(iv)

‖(U (n)
t − 1)φ⊗ Ω‖2

= 〈(1− T (n)
t )φ, φ〉+ 〈φ, (1− T (n)

t )φ〉
≤ 2‖(1− T (n)

t )‖ ‖φ‖2.

(v) For any v ∈ h

∑

m≥1

‖(Ut − 1)(em, v)Ω‖2 = 2Re〈v, (1− Tt)v〉 ≤ 2‖v‖2‖Tt − 1‖. (6.2)

Proof. (i) It follows from the fact that for product vectors

〈Ω, U (n,k)
t (p,w)Ω〉 = 〈pk, T

(n,k)
t wk〉

∏

i6=k

〈pi, wi〉. (6.3)

The part (ii) follows from Lemma 4.2 (ii).

Proof of (iii) and (iv) are similar so we prove only for U
(n,k)
t . We have

‖(U (n,k)
t − 1) φΩ‖2

= 〈φΩ, [(U
(n,k)
t − 1)∗(U

(n,k)
t − 1)]φΩ〉

≤ 〈φΩ, [2− (U
(n,k)
t )∗ − U (n,k)

t ]φΩ〉 (since U
(n,k)
t is in particular contractive)

= 〈(1− T (n,k)
t )φ, φ〉+ 〈φ, (1− T (n,k)

t )φ〉

Thus the statement follows.

(v) For any v ∈ h

∑

m≥1

‖(Ut − 1)(em, v)Ω‖2

=
∑

m≥1

〈Ω, (Ut − 1)∗(v, em))(Ut − 1)(em, v)Ω〉

= 〈Ω, [(Ut − 1)∗(Ut − 1)](v, v)Ω〉
≤ 〈Ω, [2− U∗

t − Ut](v, v)Ω〉
= 〈v, [2− T ∗

t − Tt]v〉 = 2Re〈v, (1− Tt)v〉 ≤ 2‖v‖2‖Tt − 1‖.

Now we are ready to prove

Proposition 6.3. Under the assumption B the semigroup {T (n)
t } is uniformly

continuous.
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Proof. Assumption B on the family of unitary operators {Us,t} implies that the

semigroup of contractions {Tt} on h is uniformly continuous. To apply induc-

tion let us assume that for some m ≥ 1, the contractive semigroups {T (n)
t } are

uniformly continuous for all 1 ≤ n ≤ m− 1. Now, for any φ, ψ ∈ h⊗m

〈φ⊗ Ω, (U
(m)
t − 1)ψ ⊗ Ω〉

= 〈φ⊗ Ω,

(
[
m−1∏

k=1

U
(m,k)
t ][U

(m,m)
t ]− 1

)
ψ ⊗ Ω〉

= 〈[
m−1∏

k=1

U
(m,k)
t ]∗φ⊗ Ω,

(
[U

(m,m)
t ]− 1

)
ψ ⊗ Ω〉

+ 〈φ⊗ Ω,

(
[
m−1∏

k=1

U
(m,k)
t ]− 1

)
ψ ⊗ Ω〉.

Taking absolute value, by Lemma 6.2 we get

|〈φ, (T
(m)
t − 1h⊗m)ψ〉|

≤ ‖φ‖ ‖ψ‖
√

2‖T (m,m)
t − 1h⊗m‖+ |〈φ,

(
[T

(m−1)
t ⊗ 1h]− 1h⊗m

)
ψ〉|

≤ ‖φ‖‖ψ‖
[√

2‖Tt − 1‖+ ‖T (m−1)
t − 1‖

]
.

So uniform continuity of T
(m−1)
t and Tt implies that T

(m)
t is uniformly continuous.

Let us denote the bounded generator of the uniformly continuous semigroup T
(n)
t

on h⊗n by G(n) and for n = 1 by G.

For m,n ≥ 1, we define a family of operators {Z(m,n)
t : t ≥ 0} on the Banach

space B1(h
⊗m,h⊗n) by

Z
(m,n)
t ρ = TrH[U

(n)
t (ρ⊗ |Ω >< Ω|)(U (m)

t )∗], ρ ∈ B1(h
⊗m,h⊗n).

Then in particular for product vectors u, v ∈ h⊗m, p,w ∈ h⊗n.

〈p, Z(m,n)
t (|w >< v|)u〉 := 〈U (m)

t (u, v)Ω, U
(n)
t (p,w) Ω〉. (6.4)

Lemma 6.4. The above family {Z(m,n)
t } is a semigroup of contractive maps on

B1(h
⊗m,h⊗n). Furthermore, assumption B implies that {Z(m,n)

t } is uniformly

continuous.
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Proof. For ρ ∈ B1(h
⊗m,h⊗n)

‖Z(m,n)
t ρ‖1 = ‖TrH[U

(n)
t (ρ⊗ |Ω >< Ω|)(U (m)

t )∗]‖1
= sup{

∑

k≥1

|〈φ(n)
k , T rH[U

(n)
t (ρ⊗ |Ω >< Ω|)(U (m)

t )∗]φ
(m)
k 〉| : {φ(l)

k }

is an ONB of h⊗l, l = m,n}
≤ sup

φ(l)

∑

j,k≥1

|〈φ(n)
k ⊗ ζj, U

(n)
t (ρ⊗ |Ω >< Ω|)(U (m)

t )∗φ
(m)
k ⊗ ζj〉|

≤ ‖U (n)
t (ρ⊗ |Ω >< Ω|)(U (m)

t )∗‖1.

Since for any l ≥ 1, {U (l)
t } is in particular a contractive family of operators

‖Z(m,n)
t ρ‖1 ≤ ‖ρ⊗ |Ω >< Ω|‖1 = ‖ρ‖1.

In order to prove that the family of contractions {Z(m,n)
t } is a semigroup it is

enough to verify that property for the rank one operator ρ = |w >< v| : w =

⊗n
i=1wi ∈ h⊗n, v = ⊗m

i=1vi ∈ h⊗m. Therefore, it suffices to prove that for p =

⊗n
i=1pi ∈ h⊗n, u = ⊗m

i=1ui ∈ h⊗m

〈p, Z(m,n)
t (ρ)u〉 = 〈p, Z(m,n)

s Z
(m,n)
t−s (ρ)u〉.

By Lemma 4.2, part (iv) of Lemma 2.1 and assumption A for 0 ≤ s ≤ t, u, v ∈
h⊗m and product ONB {e(m)

j = ej1⊗· · ·⊗ejm
} of h⊗m and {e(n)

k
= ek1⊗· · ·⊗ekn

}
of h⊗n

〈U (m)
t (u, v)Ω, U

(n)
t (p,w) Ω〉

=
∑

j,k

〈U (m)
s (u, e

(m)

j )Ω, U (n)
s (p, e

(n)

k
) Ω〉〈U (m)

t−s (e
(m)

j , v)Ω, U
(n)
t−s(e

(n)

k
, p) Ω〉.

This give

〈p, Z(m,n)
t (ρ)u〉

=
∑

j,k

〈p, Z(m,n)
s (|e(n)

k
>< e

(m)

j |)u〉〈e
(n)

k
, Z

(m,n)
t−s (ρ)e

(m)

j 〉

=
∑

j,k

〈e(m)

j , (Z(m,n)
s )∗(|u >< p|)e(n)

k
〉〈e(n)

k
, Z

(m,n)
t−s (ρ)e

(m)

j 〉

=
∑

j

〈e(m)

j , (Z(m,n)
s )∗(|u >< p|)Z(m,n)

t−s (ρ)e
(m)

j 〉

= Tr[(Z(m,n)
s )∗(|u >< p|)Z(m,n)

t−s (ρ)]

= Tr[|u >< p|Z(m,n)
s Z

(m,n)
t−s (ρ)]

= 〈p, Z(m,n)
s Z

(m,n)
t−s (ρ)u〉.

16



In order to prove uniform continuity of Z
(m,n)
t we consider

‖(Z(m,n)
t − 1)(|w >< v|)‖1

= sup{
∑

k≥1

|〈φ(n)
k , (Z

(m,n)
t − 1)(|w >< v|)φ(m)

k 〉| : {φ
(l)
k }

is an ONB of h⊗l, l = m,n}
= sup

φ(l)

∑

k≥1

|〈U (m)
t (φ

(m)
k , v)Ω, U

(n)
t (φ

(n)
k ,w)Ω〉 − 〈φ(m)

k , v〉〈φ(n)
k ,w〉|

≤ sup
φ(l)

∑

k≥1

|〈(U (m)
t − 1)(φ

(m)
k , v)Ω, U

(n)
t (φ

(n)
k ,w)Ω〉|

+ sup
φ(l)

∑

k≥1

|〈φ(m)
k , v〉〈Ω, (U (n)

t − 1)(φ
(n)
k ,w)Ω〉|

≤ sup
φ(l)

[
∑

k≥1

‖(U (m)
t − 1)(φ

(m)
k , v)Ω‖2

] 1
2
[
∑

k≥1

‖U (n)
t (φ

(n)
k ,w)Ω‖2

] 1
2

+ sup
φ(l)

[
∑

k≥1

|〈φ(m)
k , v〉|2

] 1
2
[
∑

k≥1

‖(U (n)
t − 1)(φ

(n)
k ,w)Ω‖2

] 1
2

So by Lemma 6.2

‖(Z(m,n)
t − 1)(|w >< v|)‖1

≤
√

2‖v‖ ‖w‖
(√
‖T (m)

t − 1‖+

√
‖T (n)

t − 1‖
)

Now for any ρ =
∑

k λk|φ(n)
k >< φ

(α)
k | ∈ B1(h

⊗m,h⊗n) we have

‖Z(m,n)
t (ρ)− ρ‖1

≤
√

2
∑

k

|λk|
(√
‖T (m)

t − 1‖+

√
‖T (n)

t − 1‖
)

≤
√

2‖ρ‖1
(√
‖T (m)

t − 1‖+

√
‖T (n)

t − 1‖
)
.

Thus by uniform continuity of the semigroup T
(m)
t and T

(n)
t it follows that the

semigroup Z
(m,n)
t is uniformly continuous on B1(h

⊗m,h⊗n).

We shall denote the bounded generator of the semi-group Z
(m,n)
t by L(m,n). For

n ≥ 1 we shall write Z
(n)
t for the semi-group Z

(n,n)
t on the Banach space B1(h

⊗n)

and shall denote its generator by L(n). Moreover, we denote the semigroup Z
(1)
t

and its generator L(1) by just Zt and L respectively.
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Lemma 6.5. For any n ≥ 1, Z
(n)
t is a positive trace preserving semigroup on

B1(h
⊗n).

Proof. Positivity follows from

〈u, Z(n)
t (|v >< v|)u〉 = ‖U (n)

t (u, v)Ω‖2 ≥ 0 ∀ u, v ∈ h⊗n.

To prove that Z
(n)
t is trace preserving it is enough to show that

Tr[Z
(n)
t (|u >< v|)] = 〈v, u〉.

By definition and Lemma 2.1

Tr[Z
(n)
t (|u >< v|)] =

∑

k

〈ek, Z
(n)
t (|u >< v|)ek〉

=
∑

k

〈U (n)
t (ek, v)Ω, U

(n)
t (ek, u)Ω〉

= 〈Ω, (U (n)
t )∗U

(n)
t (v, u)Ω〉.

Since U
(n)
t is unitary, we get

Tr[Z
(n)
t (|u >< v|)] = 〈v, u〉.

This Lemma gives

Tr(L(n)ρ) = 0, ∀ρ ∈ B1(h
⊗n). (6.5)

We also need another class of semigroup. For m,n ≥ 1 we define a family of

maps F
(m,n)
t on the Banach space B1(h

⊗m,h⊗n) by

F
(m,n)
t ρ = TrH[(U

(n)
t )∗(ρ⊗ |Ω >< Ω|)U (m)

t ], ∀ρ ∈ B1(h
⊗m,h⊗n) (6.6)

So in particular for product vectors u, v ∈ h⊗m, p,w ∈ h⊗n,

〈p, F (m,n)
t (|w >< v|)u〉 = 〈(U (m)

t )∗(u, v)Ω, (U
(n)
t )∗(p,w) Ω〉.

Lemma 6.6. For any m,n ≥ 1, {F (m,n)
t : t ≥ 0} is a uniformly continuous

contractive semigroup.

Proof. Similarly as for the semigroup Z
(m,n)
t .

For n ≥ 1, we shall write F
(n)
t for the semi-group F

(n,n)
t on the Banach space

B1(h
⊗n) and in particular Ft for the semigroup F

(1)
t on B1(h). We conclude this

section by the following useful observation.
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Lemma 6.7. Under the Assumption C, for any n ≥ 3, u, v ∈ h⊗n, ǫ ∈ Zn
2

lim
t→0

1

t
〈Ω, (U

(ǫ1)
t − 1)(u1, v1) · · · (U (ǫn)

t − 1)(un, vn) Ω〉 = 0. (6.7)

Proof. We have

|1
t
〈[(U (ǫ1)

t − 1)(u1, v1)(U
(ǫ2)
t − 1)(u2, v2)]

∗ Ω,

(U
(ǫ1)
t − 3)(u3, v3) · · · (U (ǫn)

t − 1)(un, vn) Ω〉|2

≤ 1

t2
‖[(U (ǫ1)

t − 1)(u1, v1)(U
(ǫ2)
t − 1)(u2, v2)]

∗ Ω‖2

‖(U ǫ3
t − 1)(u3, v3) · · · (U (ǫn)

t − 1)(un, vn) Ω‖2

≤ Cu,v
1

t
‖[(U (ǫ1)

t − 1)(u1, v1)(U
(ǫ2)
t − 1)(u2, v2)]

∗ Ω‖2

1

t
‖(U (ǫn−1)

t − 1)(un−1, vn−1)(U
(ǫn)
t − 1)(un, vn) Ω‖2

for some constant Cu,v independent of t. So to prove (6.7) it is enough to show

that for any u, v, p, w ∈ h and ǫ, ǫ′ ∈ Z2

lim
t→0

1

t
‖(U (ǫ)

t − 1)(u, v)(U
(ǫ′)
t − 1)(p, w) Ω‖2 = 0. (6.8)

So let us look at the following

‖(U (ǫ)
t − 1)(u, v)(U

(ǫ′)
t − 1)(p, w) Ω‖2

= 〈(U (ǫ)
t − 1)(u, v)(U

(ǫ′)
t − 1)(p, w) Ω, (U

(ǫ)
t − 1)(u, v)(U

(ǫ′)
t − 1)(p, w) Ω〉

= 〈(U (ǫ′)
t − 1)(p, w) Ω, [(U

(ǫ)
t − 1)(u, v)]∗(U

(ǫ)
t − 1)(u, v)(U

(ǫ′)
t − 1)(p, w) Ω〉.

By part (v) of Lemma 2.1 the above quantity is

≤ ‖u‖2〈(U (ǫ′)
t − 1)(p, w) Ω, [(U

(ǫ)
t − 1)∗(U

(ǫ)
t − 1)](v, v)(U

(ǫ′)
t − 1)(p, w) Ω〉. Since

by contractivity of the family U
(ǫ)
t , (U

(ǫ)
t )∗U

(ǫ)
t ≤ 1, we get

‖(U (ǫ)
t − 1)(u, v)(U

(ǫ′)
t − 1)(p, w) Ω‖2

≤ ‖u‖2〈(U (ǫ′)
t − 1)(p, w) Ω, [1− (U

(ǫ)
t )∗ + 1− U (ǫ)

t ](v, v)(U
(ǫ′)
t − 1)(p, w) Ω〉

= −‖u‖2〈(U (ǫ′)
t − 1)(p, w) Ω, [U

(1+ǫ)
t − 1](v, v)(U

(ǫ′)
t − 1)(p, w) Ω〉

− ‖u‖2〈(U (ǫ′)
t − 1)(p, w) Ω, (U

(ǫ)
t − 1)(v, v)(U

(ǫ′)
t − 1)(p, w) Ω〉.

Thus by Assumption C we get (6.8) and the proof is complete.

7 Representation of Hilbert tensor algebra and

Hudson-Parthasarathy (HP) equation

We define a scalar valued mapK onM×M by setting, for (u, v, ǫ), (p,w, ǫ′) ∈M0,

K ((u, v, ǫ), (p,w, ǫ′)) := lim
t→0

1

t
〈(U (ǫ)

t −1)(u, v)Ω, (U ǫ′

t −1)(p,w) Ω〉, when it exists.
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Lemma 7.1. (i)The map K is a well defined positive definite kernel on M.

(ii) Up to unitary equivalence there exists a unique separable Hilbert space k, an

embedding η : M → k and a ∗-representation π of M, π : M → B(k) such that

{η(u, v, ǫ) : (u, v, ǫ) ∈M0} is total in k, (7.1)

〈η(u, v, ǫ), η(p,w, ǫ′)〉 = K ((u, v, ǫ), (p,w, ǫ′)) (7.2)

and

π(u, v, ǫ)η(p,w, ǫ′) = η(u⊗ p, v⊗ w, ǫ⊕ ǫ′)− 〈p,w〉η(u, v, ǫ). (7.3)

Proof. (i) First note that for any (u, v, ǫ) ∈M0, u = ⊗n
i=1ui, v = ⊗n

i=1vi,

ǫ = (ǫ1, ǫ2, · · · , ǫn) we can write

(U
(ǫ)
t − 1)(u, v) =

n∏

i=1

U
(ǫi)
t (ui, vi)−

n∏

i=1

〈ui, vi〉

=
∑

1≤i≤n

(Ut − 1)(ǫi)(ui, vi)
∏

j 6=i

〈uj, vj〉

+
∑

2≤l≤n

∑

1≤i1<...<im≤n

l∏

k=1

(Ut − 1)ǫik (uik , vik)
∏

j 6=ik

〈uj, vj〉. (7.4)

Now by Lemma 6.7, for elements (u, v, ǫ), (p,w, ǫ′) ∈M0, ǫ ∈ Z
m
2 and ǫ′ ∈ Z

n
2 , we

have

K ((u, v, ǫ), (p,w, ǫ′)) = lim
t→0

1

t
〈(U (ǫ)

t − 1)(u, v)Ω, (U ǫ′

t − 1)(p,w) Ω〉

=
∑

1≤i≤m, 1≤j≤n

∏

k 6=i

〈uk, vk〉
∏

l 6=j

〈pl, wl〉 lim
t→0

1

t
〈(Ut − 1)(ǫi)(ui, vi) Ω, (Ut − 1)ǫ′j(pj , wj) Ω〉.

Hence existence of the above limit follows from the fact that the semigroups Tt

on h and Zt, Ft on B1(h) are uniformly continuous and

〈(Ut − 1)(ǫi)(ui, vi) Ω, (Ut − 1)ǫ′j(pj, wj) Ω〉
= 〈U (ǫi)

t (ui, vi)Ω, U
ǫ′j
t (pj, wj) Ω〉 − 〈ui, vi〉〈pj, wj〉

−〈ui, vi〉〈Ω, [(U
ǫ′j
t − 1)(pj, wj)] Ω〉

−〈Ω, [(U
(ǫi)
t − 1)(ui, vi)]Ω〉〈pj, wj〉.

Thus K is well defined on M0. Now extend this to the ∗-algebra M sesqui-linearly.

In particular we have

K((u, v, 0), (p, w, 0))

= lim
t→0
{〈p, Zt − 1

t
(|w >< v|)u〉 − 〈u, v〉 〈p, Tt − 1

t
w〉 − 〈u, Tt − 1

t
v〉 〈p, w〉}

= 〈p,L(|w >< v|)u〉 − 〈u, v〉〈p,G w〉 − 〈u,G v〉〈p, w〉. (7.5)
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Positive definiteness follows from the fact that, setting

ξi(t) = [U
(ǫi)
t (ui, vi)− 〈ui, vi〉]Ω,

N∑

i,j=1

c̄icjK
(
(ui, vi, ǫi), (uj , vj , ǫj)

)

= lim
t→0

1

t
‖

N∑

i=1

ciξi(t)‖2 ≥ 0.

(ii) Kolmogorov’s construction (Ref. [14]) to the pair (M,K) gives the Hilbert

space k and embedding η satisfying (7.1). The separability of k follows from (7.1)

and the verifiable fact ‖η(u, v, ǫ)− η(p,w, ǫ)‖k → 0 as ‖u− p‖ and ‖v−w‖ → 0.

Setting π by (7.3) we show that the map π(u, v, ǫ) extends to a bounded linear

operator on k with ‖π(u, v, ǫ)‖ ≤ ‖u‖ ‖v‖. For any ξ =
∑N

i=1 ciη(ui, vi, ǫi) ∈ k let

us consider

‖π(u, v, ǫ)ξ‖2

=
N∑

i,j=1

c̄icj〈π(u, v, ǫ)η(ui, vi, ǫi), π(u, v, ǫ)η(uj , vj , ǫj)〉

=

N∑

i,j=1

c̄icj〈[η(u⊗ ui, v⊗ vi, ǫ⊕ ǫi)− 〈u
(ǫi)
i , v

(ǫi)
i 〉η(u, v, ǫ)],

[η(u⊗ uj, v⊗ vj, ǫ⊕ ǫj)− 〈u
(ǫj)

j , v
(ǫj)

j 〉η(u, v, ǫ)]〉

= lim
t→0

1

t

N∑

i,j=1

c̄icj〈U (ǫ)
t (u(ǫ), v(ǫ))[U

(ǫi)
t − 1](ui, vi)Ω, U

(ǫ)
t (u(ǫ), v(ǫ))[U

(ǫj)

t − 1](u
(ǫj)

j , v
(ǫj)

j )Ω〉

= lim
t→0

1

t
〈φ(t), [U

(ǫ)
t (u(ǫ), v(ǫ))]∗U

(ǫ)
t (u(ǫ), v(ǫ))φ(t)〉

= lim
t→0

1

t
‖U (ǫ)

t (u(ǫ), v(ǫ))φ(t)‖2,

where φ(t) :=
∑N

i,=1 ci[U
(ǫi)
t − 1](u

(ǫi)
i , v

(ǫi)
i )Ω ∈ H. In the above identities we

have used the fact that for any ǫ ∈ Zm
2 , α ∈ Zn

2 and product vectors p(ǫ),w(ǫ) ∈
h(ǫ), x(α), y(α) ∈ h(α)

[U ǫ⊕α
t − 1](p(ǫ) ⊗ x(α),w(ǫ) ⊗ y(α))− 〈x(α), y(α)〉[U (ǫ)

t − 1](p(ǫ),w(ǫ))

= U
(ǫ)
t (p(ǫ),w(ǫ))[U

(α)
t − 1](x(α), y(α)). (7.6)

21



Since U
(ǫ)
t (u(ǫ), v(ǫ)) has its norm bounded by ‖u‖2 ‖v‖2 we get

‖π(u, v, ǫ)ξ‖2 ≤ ‖u‖2 ‖v‖2 lim
t→0

1

t
‖φ(t)‖2

=
N∑

i,j=1

c̄icj lim
t→0

1

t
〈[U (ǫi)

t − 1](u
(ǫi)
i , v

(ǫi)
i )Ω, [U

(ǫj)

t − 1](u
(ǫj)

j , v
(ǫj)

j )Ω〉

= ‖u‖2 ‖v‖2‖ξ‖2

which proves that π(u, v, ǫ) extends to a bounded operator on k with

‖π(u, v, ǫ)‖ ≤ ‖u‖ ‖v‖.

In order to prove that π is a ∗-representation of the algebra M it is enough

to show that for any ǫ ∈ Zm
2 , ǫ

′ ∈ Zn
2 , ǫ

′′ ∈ Z
q
2 and product vectors p,w ∈

h⊗m, p′,w′ ∈ h⊗n, x, y ∈ h⊗q

(i) π(u, v, ǫ)π(p,w, ǫ′)η(x, y, ǫ′′) = π(u⊗ p, v⊗ w, ǫ⊕ ǫ′)η(x, y, ǫ′′)

(ii) 〈π(u, v, ǫ)η(p,w, ǫ′), η(x, y, ǫ′′)〉 = 〈η(p,w, ǫ′), π( u←−, v←−, ǫ
∗)η(x, y, ǫ′′)〉.

By the definition of π

π(u, v, ǫ)π(p,w, ǫ′)η(x, y, ǫ′′)

= π(u, v, ǫ)[η(p⊗ x,w⊗ y, ǫ′ ⊕ ǫ′′)− 〈x, y〉η(p,w, ǫ′)]
= η(u⊗ p⊗ x, v⊗ w⊗ y, ǫ⊕ ǫ′ ⊕ ǫ′′)− 〈p⊗ x,w⊗ y〉η(u, v, ǫ)
−〈x, y〉[η(u⊗ p, v⊗ w, ǫ⊕ ǫ′)− 〈p,w〉η(u, v, ǫ)]
= η(u⊗ p⊗ x, v⊗ w⊗ y, ǫ⊕ ǫ′ ⊕ ǫ′′)− 〈x, y〉η(u⊗ p, v⊗ w, ǫ⊕ ǫ′)

and (i) follows. To see (ii) let us look at the left hand side. By (7.6)

〈π(u, v, ǫ)η(p,w, ǫ′), η(x, y, ǫ′′)〉

= lim
t→0

1

t
〈U (ǫ)

t (u, v)(U
ǫ′

t − 1)(p,w) Ω, (U
ǫ′′

t − 1)(x, y) Ω〉

= lim
t→0

1

t
〈(U ǫ′

t − 1)(p,w) Ω, U ǫ∗

t ( v←−, u←−)(U ǫ′′

t − 1)(x, y) Ω〉
= 〈η(p,w, ǫ′), π( u←−, v←−, ǫ

∗)η(x, y, ǫ′′)〉 = RHS.

Thus

π(u, v, ǫ)π(p,w, ǫ′) = π(u⊗ p, v⊗ w, ǫ⊕ ǫ′)
π(u, v, ǫ)∗ = π( u←−, v←−, ǫ

∗). (7.7)
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Lemma 7.2. (a) For any (u, v, ǫ) ∈M0, u = ⊗n
i=1ui, v = ⊗n

i=1vi

and ǫ = (ǫ1, ǫ2, · · · , ǫn)

η(u, v, ǫ) =

n∑

i=1

∏

k 6=i

〈uk, vk〉η(ui, vi, ǫi) (7.8)

(b) η(u, v, 1) = −η(u, v, 0), ∀u, v ∈ h.

Proof. (a) For any (p,w, ǫ′) ∈M0, by (7.4) and Lemma 6.7, we have

〈η(u, v, ǫ), η(p,w, ǫ′)〉 = K ((u, v, ǫ), (p,w, ǫ′))

= lim
t→0

1

t
〈(U (ǫ)

t − 1)(u, v)Ω, (U ǫ′

t − 1)(p,w) Ω〉

=
n∑

i=1

∏

k 6=i

〈uk, vk〉 lim
t→0

1

t
〈(Ut − 1)(ǫi)(ui, vi) Ω, (U ǫ′

t − 1)(p,w) Ω〉

=

n∑

i=1

∏

k 6=i

〈uk, vk〉〈η(ui, vi, ǫi), η(p,w, ǫ
′)〉.

Since {η(p,w, ǫ′) : (p,w, ǫ′) ∈M0} is a total subset of k, (7.8) follows.

(b) For any u, v ∈ h, (p,w, ǫ) ∈M0, we have

〈η(u, v, 1), η(p,w, ǫ〉+ 〈η(u, v, 0), η(p,w, ǫ〉

= lim
t→0

1

t
〈(Ut + U∗

t − 2)(u, v)Ω, (U
(ǫ)
t − 1)(p,w) Ω〉

= − lim
t→0

1

t
〈[(U∗

t − 1)(Ut − 1)](u, v)Ω, (U
(ǫ)
t − 1)(p,w) Ω〉 (since Ut is unitary)

= − lim
t→0

1

t

∑

m≥1

〈(Ut − 1)(em, u)Ω, (Ut − 1)(em, v)(U
(ǫ)
t − 1)(p,w) Ω〉.

That this limit vanishes can be seen from the following

|1
t

∑

m≥1

〈(Ut − 1)(em, u)Ω, (Ut − 1)(em, v)(U
(ǫ)
t − 1)(p,w) Ω〉|2

≤
∑

m≥1

1

t
‖(Ut − 1)(em, u)Ω‖2

∑

m≥1

1

t
‖(Ut − 1)(em, v)(U

(ǫ)
t − 1)(p,w) Ω‖2.

By Lemma 6.2 (v) and Lemma 2.1 (iv) the above quantity is equal to

2Re〈u, 1− Tt

t
u〉1
t
〈(U (ǫ)

t − 1)(p,w) Ω, [(U∗
t − 1)(Ut − 1)](v, v)(U

(ǫ)
t − 1)(p,w) Ω〉

≤ 2Re〈u, 1− Tt

t
u〉1
t
〈(U (ǫ)

t − 1)(p,w) Ω, (2− U∗
t − Ut)(v, v)(U

(ǫ)
t − 1)(p,w) Ω〉
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Therefore, since Tt is continuous, by Assumption C

lim
t→0

1

t

∑

m≥1

〈(Ut − 1)(em, u)Ω, (Ut − 1)(em, v)(U
(ǫ)
t − 1)(p,w) Ω〉 = 0.

Thus 〈η(u, v, 1), η(p,w, ǫ〉 = −〈η(u, v, 0), η(p,w, ǫ〉. As {η(p,w, ǫ : (p,w, ǫ) ∈M0}
is total in k, η(u, v, 1) = −η(u, v, 0).

Remark 7.3. Writing η(u, v) for the vector η(u, v, 0) ∈ k,

Span{η(u, v) : u, v ∈ h} = k. (7.9)

Remark 7.4. The ∗-representation π of M in k is trivial

π(u, v, ǫ)η(p,w, ǫ′) = 〈u, v〉η(p,w, ǫ′) (7.10)

Now we fixed an ONB {Ej : j ≥ 1} for the separable Hilbert space k. Then we

have the following crucial observations.

Lemma 7.5. (a) There exists a unique family {Lj : j ≥ 1} in B(h) such that

〈u, Ljv〉 = 〈Ej , η(u, v)〉 and
∑

j≥1 ‖Lju‖2 ≤ 2‖G‖‖u‖2, ∀ u ∈ h, so that∑
j≥1L

∗
jLj converges strongly.

(b) The family of operators {Lj : j ≥ 1} is linearly independent, i.e.
∑

j≥1 cjLj =

0 for some c = (cj) ∈ l2(N) implies cj = 0, ∀j.

(c) If we set iH := G + 1
2

∑
j≥1L

∗
jLj then H is a bounded self-adjoint operator

on h.

Proof. (a) By (7.5), for any u, v ∈ h

‖η(u, v)‖2

= 〈u,L(|v >< v|)u〉 − 〈u, v〉〈u,G v〉 − 〈u,G v〉〈u, v〉
≤ [‖L‖+ 2‖G‖] ‖u‖2 ‖v‖2.

So for each j ≥ 1, the map ηj(u, v) := 〈Ej , η(u, v)〉, defines a bounded quadratic

form on h and hence by Riesz’s representation theorem there exists a unique

bounded operator Lj ∈ B(h) such that 〈u, Ljv〉 = ηj(u, v). Now consider the

following
∑

j

‖Lju‖2 =
∑

j,k

|ηj(ek, u)|2 =
∑

k

‖η(ek, u)‖2

=
∑

k

[
〈ek,L(|u >< u|)ek〉 − 〈ek, u〉〈ek, G u〉 − 〈ek, G u〉〈ek, u〉

]

= TrL(|u >< u|)− 〈u,G u〉 − 〈u,G u〉.
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Since Zt is trace preserving
∑

j

‖Lju‖2 = −〈u,G u〉 − 〈u,G u〉 ≤ 2‖G‖ ‖u‖2. (7.11)

(b) Let
∑

j≥1 cjLj = 0 for some c = (cj) ∈ l2(N). Then for any u, v ∈ h we have

0 = 〈u,
∑

j≥1

cjLjv〉 =
∑

j≥1

cj〈u, Ljv〉 = 〈
∑

j≥1

cjEj, η(u, v)〉.

Since Span{η(u, v) : u, v ∈ h} = k, it follows that
∑

j≥1 cjEj = 0 ∈ k and hence

cj = 0, ∀j.
(c) The boundedness of G and (7.11) imply that

∑
j≥1L

∗
jLj is a bounded self-

adjoint operator and hence H is bounded. For any u ∈ h by the identity (7.11)

〈u, (2G+
∑

j≥1

L∗
jLj)u〉

= 〈u, 2Gu〉+
∑

j

‖Lju‖2 = 〈u,Gu〉 − 〈Gu, u〉

= −〈(2G+
∑

j≥1

L∗
jLj)u, u〉

Thus 〈u,Hu〉 = 〈Hu, u〉 and by applying the Polarization principle to the sesqui-

linear form (u, v) 7→ 〈u,Hu〉 it proves that H is self-adjoint.

Lemma 7.6. The generator L of the uniformly continuous semigroup Zt on B1(h)

satisfies

Lρ = Gρ+ ρG∗ +
∑

j≥1

LjρL
∗
j , ∀ρ ∈ B1(h). (7.12)

Proof. By (7.5), for any u, v, p, w ∈ h we have

〈η(u, v), η(p, w)〉 =
∑

j≥1

〈u, Ljv〉〈p, Ljw〉

= 〈p,L(|w >< v|)u〉 − 〈u, v〉〈p,G w〉 − 〈u,G v〉〈p, w〉,

which gives

〈p,L(|w >< v|) u〉
= 〈p, |Gw >< v| u〉+ 〈p, |w >< Gv| u〉+

∑

j≥1

〈p, |Ljw >< Ljv| u〉

= 〈p,G|w >< v| u〉+ 〈p, |w >< v|G∗ u〉+
∑

j≥1

〈p, Lj|w >< v|L∗
j u〉.

Since all the operators involved are bounded (7.12) follows.
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7.1 Associated Hudson-Parthasarathy (HP) Flows

Recall from previous section that starting from the family of unitary operators

{Us,t} with hypothesis A,B,C we obtained the noise Hilbert space k and bounded

linear operators G,Lj : j ≥ 1 on the initial Hilbert space h. Now define a family

of operator {Lµ
ν : µ, ν ≥ 0} in B(h) by

Lµ
ν =





G = iH − 1
2

∑
k≥1L

∗
kLk for (µ, ν) = (0, 0)

Lj for (µ, ν) = (j, 0)

−L∗
k for (µ, ν) = (0, k)

0 for (µ, ν) = (j, k).

(7.13)

Note that the indices µ, ν vary over non negative integers while j, k vary over non

zero positive integers.

Let us consider the HP type quantum stochastic differential equation in h ⊗
Γ(L2(R+,k)):

Vs,t = 1h⊗Γ +
∑

µ,ν≥0

∫ t

s

Vs,rL
µ
νΛν

µ(dr) (7.14)

with bounded operator coefficients Lµ
ν given by (7.13). By Theorem 2.2, there

exists unique unitary solution {Vs,t} of the above HP equation. We shall write

Vt := V0,t for simplicity. The family {V ∗
s,t} satisfies:

dV ∗
s,t =

∑

µ,ν≥0

(Lν
µ)∗V ∗

s,tΛ
ν
µ(dt), Vs,s = 1h⊗Γ (7.15)

and for any u, v ∈ h, Vs,t(u, v) and Vs,t(u, v)
∗ satisfy the following qsde on Γ :

dVs,t(u, v) =
∑

µ,ν≥0

Vs,t(u, L
µ
νv)Λ

ν
µ(dt), Vs,s(u, v) = 〈u, v〉1Γ. (7.16)

dV ∗
s,t(u, v) =

∑

µ,ν≥0

V ∗
s,t(L

ν
µu, v)Λ

ν
µ(dt), V

∗
s,s(u, v)] = 〈u, v〉1Γ. (7.17)

As for the family of unitary operators {Us,t} on h⊗H, for ǫ = (ǫ1, ǫ2, · · · , ǫn) ∈ Zn
2

we define V
(ǫ)
s,t ∈ B(h⊗n ⊗ Γ) by setting V

(ǫ)
s,t ∈ B(h⊗ Γ) by

V
(ǫ)
s,t = Vs,t for ǫ = 0

= V ∗
s,t for ǫ = 1.

We shall write V
(n)
s,t for V

(0)
s,t , 0 ∈ Zn

2 .

Lemma 7.7. The family of unitary operators {Vs,t} satisfy

(i) For any 0 ≤ r ≤ s ≤ t <∞, Vr,t = Vr,sVs,t.
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(ii) For [q, r) ∩ [s, t) = ∅, Vq,r(u, v) commute with Vs,t(p, w) and Vs,t(p, w)∗ for

every u, v, p, w ∈ h.

(iii) For any 0 ≤ s ≤ t <∞,
〈e(0), Vs,t(u, v)e(0)〉 = 〈e(0), Vt−s(u, v)e(0)〉 = 〈u, Tt−sv〉, ∀u, v ∈ h.

Proof. (i) For fixed 0 ≤ r ≤ s ≤ t < ∞, we set Wr,t = Vr,sVs,t and Wr,s = Vr,s.

Then by (7.14) we have

Wr,t = Vr,s +
∑

µ,ν≥0

∫ t

s

Vr,sVs,qL
µ
νΛν

µ(dq)

= Wr,s +
∑

µ,ν≥0

∫ t

s

Wr,qL
µ
νΛν

µ(dq).

Thus the family of unitary operators {Wr,t} also satisfies the HP equation (7.14)

and, hence by uniqueness of the solution of this qsde, Wr,t = Vr,t, ∀t ≥ s and the

result follows.

(ii) For any 0 ≤ s ≤ t < ∞ Vs,t ∈ B(h ⊗ Γ[s,t]). So for p, w ∈ h, Vs,t(p, w) ∈
B(Γ[s,t]) and the statement follows.

(iii) Let us set a family of contraction operators {S̃s,t} on h by

〈u, S̃s,tv〉 = 〈u⊗ e(0), Vs,tv ⊗ e(0)〉, ∀u, v ∈ h.

Then for fixed s ≥ 0, this one parameter family {S̃s,t} satisfies the following

differential equation

dS̃s,t

dt
= S̃s,tG

where G (= L0
0) is the generator of the uniformly continuous semigroup {Tt} so

S̃s,t = Tt−s and this proves the claim.

Consider the family of maps Z̃s,t defined by

Z̃s,tρ = TrH[Vs,t(ρ⊗ |e(0) >< e(0)|)V ∗
s,t], ∀ρ ∈ B1(h).

As for Zt, it can be easily seen that Z̃s,t is a contractive family of maps on B1(h)

and in particular, for any u, v, p, w ∈ h

〈p, Z̃s,t(|w >< v|) u〉 = 〈Vs,t(u, v)e(0), Vs,t(p, w)e(0)〉.
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Lemma 7.8. The family Z̃t := Z̃0,t is a uniformly continuous semigroup of con-

traction on B1(h) and Z̃s,t = Z̃t−s = Zt−s.

Proof. By (7.16) and Ito’s formula

〈p, [Z̃s,t − 1](|w >< v|) u〉
= 〈Vs,t(u, v)e(0), Vs,t(p, w)e(0)〉 − 〈u, v〉〈p, w〉

=

∫ t

s

〈Vs,τ(u, v)e(0), Vs,τ(p,Gw)e(0)〉dτ +

∫ t

s

〈Vs,τ(u,Gv)e(0), Vs,τ(p, w)e(0)〉dτ

+

∫ t

s

〈Vs,τ(u, Ljv)e(0), Vs,τ(p, Ljw)e(0)〉dτ

=

∫ t

s

〈p, Z̃s,τ(|Gw >< v|) u〉dτ +

∫ t

s

〈p, Z̃s,τ(|w >< Gv|) u〉dτ

+
∑

j≥1

∫ t

s

〈p, Z̃s,τ(|Ljw >< Ljv|) u〉dτ

=

∫ t

s

〈p, Z̃s,τL(|w >< v|) u〉dτ,

where L is the generator of the uniformly continuous semigroup Zt. Since the

maps L and Z̃a,b : 0 ≤ a ≤ b are bounded, for fixed s ≥ 0, Z̃s,t satisfies the

differential equation

Z̃s,t(ρ) = ρ+

∫ t

s

Z̃s,τL(ρ)dτ, ρ ∈ B1(h).

Hence Z̃t is a uniformly continuous semigroup on B1(h) and Z̃s,t = Z̃t−s = Zt−s.

8 Minimality of HP Flows

In this section we shall show the minimality of the HP flow Vs,t discussed above.

We prove that the subset S ′ := {ζ = Vs,t(u, v)e(0) := Vs1,t1(u1, v1) · · ·Vsn,tn(un, vn)e(0) :

s = (s1, s2, · · · , sn), t = (t1, t2, · · · , tn) : 0 ≤ s1 ≤ t1 ≤ s2 ≤ . . . ≤ sn ≤ tn <

∞, n ≥ 1, u = ⊗n
i=1ui, v = ⊗n

i=1vi ∈ h⊗n} is total in the symmetric Fock space

Γ(L2(R+,k)).

We note that for any 0 ≤ s < t ≤ τ <∞, u, v ∈ h by the HP equation (7.14)

1

t− s [Vs,t − 1](u, v)e(0)

=
1

t− s{
∑

j≥1

∫ t

s

Vs,λ(u, Ljv)a
†
j(dλ) +

∫ t

s

Vs,λ(u,Gv)dλ}e(0)

= γ(s, t, u, v) + 〈u,Gv〉 e(0) + ζ(s, t, u, v) + ς(s, t, u, v), (8.1)
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here these vectors in the Fock space Γ are given by

γ(s, t, u, v) := 1
t−s

∑
j≥1〈u, Ljv〉a†j([s, t]) e(0)

ζ(s, t, u, v) := 1
t−s

∑
j≥1

∫ t

s
(Vs,λ − 1)(u, Ljv)a

†
j(dλ) e(0)

ς(s, t, u, v) := 1
t−s

∫ t

s
(Vs,λ − 1)(u,Gv)dλ e(0).

Note that any ξ ∈ Γ can be written as ξ = ξ(0)e(0) ⊕ ξ(1) ⊕ · · · , ξ(n) is in the

n-fold symmetric tensor product L2(R+,k)⊗n ≡ L2(Σn)⊗ k⊗n), where Σn is the

n-simplex {t = (t1, t2, · · · , tn) : 0 ≤ t1 < t2 < . . . < tn <∞}.
Lemma 8.1. Let τ ≥ 0. For any u, v ∈ h, 0 ≤ s ≤ t ≤ τ, define constants

Cτ = 2eτ and Cτ,v = Cτ{
∑

j≥1 ‖Ljv‖2 + τ‖G v‖2}. Then

a.

‖(Vs,t − 1)ve(0)‖2 ≤ Cτ,v(t− s). (8.2)

b. For any u ∈ h

‖
∑

j≥1

∫ t

s

Vs,λ(u, Ljv)a
†
j(dλ)e(0)‖2

≤ Cτ‖u‖2
∑

j≥1

∫ t

s

‖Vs,λLjv ⊗ e(0)‖2 dλ

≤ Cτ (t− s)‖u‖2
∑

j≥1

‖Ljv‖2.

Proof. a. By estimates of quantum stochastic integration (Proposition 27.1, [14])

‖(Vs,t − 1)ve(0)‖2

= ‖
∑

j≥1

∫ t

s

Vs,λLja
†
j(dλ) ve(0) +

∫ t

s

Vs,λGdλ ve(0)‖2

≤ Cτ

∫ t

s

{
∑

j≥1

‖Ljv‖2 + ‖Gv‖2}dλ

= Cτ,v(t− s).

b. For any φ in the Fock space Γ(L2(R+,k)),

〈φ,
∑

j≥1

∫ t

s

Vs,λ(u, Ljv)a
†
j(dλ)e(0)〉|2

= |〈u⊗ φ, {
∑

j≥1

∫ t

s

Vs,λLja
†
j(dλ)}ve(0)〉|2

≤ ‖u⊗ φ‖2‖{
∑

j≥1

∫ t

s

Vs,λLja
†
j(dλ)}ve(0)‖2.
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By estimates of quantum stochastic integration the above quantity is

≤ Cτ‖u⊗ φ‖2
∑

j≥1

∫ t

s

‖Vs,λLjve(0)‖2 dλ.

Since φ is arbitrary and Vs,λ’s are contractive the statement follows.

Lemma 8.2. Let τ ≥ 0. For any u, v ∈ h, 0 ≤ s ≤ t ≤ τ

(a) ‖(Vs,t − 1)(u, v) e(0)‖2 ≤ 2Cτ,v‖u‖2(t− s).

(b) sup{‖ζ(s, t, u, v)‖2 : 0 ≤ s ≤ t ≤ τ} <∞ and

‖ς(s, t, u, v)‖ ≤ ‖u‖
√

2Cτ,Gv(t− s), ∀ 0 ≤ s < t ≤ τ.

(c) For any ξ ∈ Γ(L2(R+,k)), lims→t〈ξ, ζ(s, t, u, v)〉 = 0 and

lim
s→t
〈ξ, γ(s, t, u, v)〉 =

∑

j≥1

〈u, Ljv〉ξ(1)
j (t) = 〈ξ(1)(t), η(u, v)〉, a.e. t ≥ 0.

Proof. (a) By identity (8.1) and Lemma 8.1 (b) we have

‖(Vs,t − 1)(u, v) e(0)‖2

= ‖
∑

j≥1

∫ t

s

Vs,α(u, Ljv)a
†
j(dα) e(0) +

∫ t

s

Vs,α(u,Gv) e(0)dα‖2

≤ 2‖
∑

j≥1

∫ t

s

Vs,α(u, Ljv)a
†
j(dα) e(0)‖2 + [

∫ t

s

‖Vs,α(u,Gv) e(0)‖dα]2

≤ 2‖u‖2[Cτ (t− s)
∑

j≥1

‖Ljv‖2 + [(t− s)‖G v‖]2]

≤ 2Cτ,v‖u‖2(t− s).

(b) 1. As in the Lemma 8.1 (b) we have

‖ζ(s, t, u, v)‖2 =
1

(t− s)2
‖
∑

j≥1

∫ t

s

(Vs,λ − 1)(u, Ljv)a
†
j(dλ) e(0)‖2

≤ ‖u‖2
(t− s)2

‖
∑

j≥1

∫ t

s

‖(Vs,λ − 1)Ljv e(0)‖2dλ.

Now by Lemma 8.1 (a), the above quantity is

≤ Cτ‖u‖2
(t− s)2

∑

j≥1

Cτ (t− s)2{
∑

i≥1

‖LiLjv‖2 + τ‖G Lj v‖]2}

≤ C2
τ‖u‖2{

∑

j≥1

∑

i≥1

‖LiLjv‖2 + τ
∑

j≥1

‖G Lj v‖2}.
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Since
∑

j≥1 ‖Lj v‖2 = −2Re〈v,Gv〉, the above quantity is bounded and is inde-

pendent of s, t.

2. We have

‖ς(s, t, u, v)‖ =
1

(t− s)‖
∫ t

s

(Vs,λ − 1)(u,Gv)dλ e(0)‖

≤ 1

(t− s)

∫ t

s

‖(Vs,λ − 1)(u,Gv) e(0)‖dλ.

By (a) the estimate follows.

(c) 1. For any f ∈ L2(R+,k). Let us consider

〈e(f), ζ(s, t, u, v)〉 = 〈e(f),
1

t− s
∑

j≥1

∫ t

s

(Vs,λ − 1)(u, Ljv)a
†
j(dλ) e(0)〉

=
1

t− s
∑

j≥1

∫ t

s

fj(λ)〈e(f), (Vs,λ − 1)(u, Ljv) e(0)〉dλ

=
1

t− s

∫ t

s

G(s, λ)dλ,

where G(s, λ) =
∑

j≥1 fj(λ)〈e(f), (Vs,λ−1)(u, Ljv) e(0)〉. Note that the complex

valued function G(s, λ) is uniformly continuous in both the variables s, λ on [0, τ ]

and G(t, t) = 0. So we get

lim
s→t
〈e(f), ζ(s, t, u, v)〉 = 0.

Since ζ(s, t, u, v) is uniformly bounded in s, t

lim
s→t
〈ξ, ζ(s, t, u, v)〉 = 0, ∀ξ ∈ Γ.

2. We have

〈ξ, γ(s, t, u, v)〉 = 1

t− s
∑

j≥1

〈u, Ljv〉
∫ t

s

ξ
(1)
j (λ)dλ. (8.3)

Since

|
∑

j≥1

〈u, Ljv〉ξ(1)
j (t)|2 ≤ ‖u‖2

∑

j≥1

‖Ljv‖2|ξ(1)
j (t)|2 ≤ C‖v‖2‖ξ(1)(t)‖2,

the function
∑

j≥1〈u, Ljv〉ξ(1)
j (·) is in L2 and hence locally integrable. Thus we

get

lim
s→t
〈ξ, γ(s, t, u, v)〉 =

∑

j≥1

〈u, Ljv〉ξ(1)
j (t) a.e. t ≥ 0.
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Lemma 8.3. For n ≥ 1, t ∈ Σn and uk, vk ∈ h : k = 1, 2, · · · , n, ξ ∈ Γ(L2(R+,k))

and disjoint intervals [sk, tk),

(a) lims→t〈ξ,
∏n

k=1M(sk, tk, uk, vk) e(0)〉 = 0,

where M(sk, tk, uk, vk) =
(Vsk,tk

−1)

tk−sk
(uk, vk)−〈uk, G vk〉− γ(sk, tk, uk, vk) and

lims→t means sk → tk for each k.

(b) lims→t〈ξ,⊗n
k=1γ(sk, tk, uk, vk)〉 = 〈ξ(n)(t1, t2, · · · , tn), η(u1, v1)⊗· · ·⊗η(un, vn)〉.

Proof. (a) First note that M(s, t, u, v)e(0) = ζ(s, t, u, v)+ ς(s, t, u, v). So by the

above observations {M(s, t, u, v)e(0)} is uniformly bounded in s, t and

lims→t〈e(f),M(s, t, u, v)e(0)〉 = 0, ∀f ∈ L2(R+,k). Since the intervals [sk, tk)’s

are disjoint for different k’s,

〈e(f),

n∏

k=1

M(sk, tk, uk, vk) e(0)〉 =

n∏

k=1

〈e(f[sk,tk)),M(sk, tk, uk, vk) e(0)〉

and thus lims→t〈e(f),
∏n

k=1M(sk, tk, uk, vk) e(0)〉 = 0. By Lemma 8.2, the vec-

tor
∏n

k=1M(sk, tk, uk, vk) e(0) is uniformly bounded in sk, tk and the convergence

can be extended to Fock Space.

(b) It can be proved similarly as part (c) of the previous Lemma.

Lemma 8.4. Let ξ ∈ Γ be such that

〈ξ, ζ〉 = 0, ∀ζ ∈ S ′, (8.4)

Then

(i) ξ(0) = 0.

(ii) ξ(1)(t) = 0, for a.e. t ∈ [0, τ ].

(iii) For any n ≥ 0, ξ(n)(t) = 0, for a.e. t ∈ Σn : ti ≤ τ.

(iv) The set S ′ is total in the Fock space Γ.

Proof. (i) For any s ≥ 0, Vs,s = 1h⊗Γ so in particular (8.4) gives, for any u, v ∈ h

0 = 〈ξ, Vs,s(u, v)e(0)〉 = 〈u, v〉ξ(0)

and hence ξ(0) = 0.
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(ii) By (8.4), 〈ξ, [Vs,t − 1](u, v)e(0)〉 = 0 for any 0 ≤ s < t ≤ τ < ∞, u, v ∈ h.

By HP equation (7.14) and Lemma 8.1 we have

0 = lim
s→t

1

t− s〈ξ, [Vs,t − 1](u, v)e(0)〉

=
∑

j≥1

〈u, Ljv〉ξ(1)
j (t) =

∑

j≥1

ηj(u, v)ξ
(1)
j (t).

So 〈ξ(1)(t), η(u, v)〉 = 0, ∀u, v ∈ h. Since {η(u, v) : u, v ∈ h} is total in k it follows

that ξ(1)(t) = 0 for 0 ≤ t ≤ τ.

(iii) We prove this by induction. The result is already proved for n = 0, 1. For

n ≥ 2, assume as induction hypothesis that for all m ≤ n − 1, ξ(m)(t) = 0,

for a.e. t ∈ Σm : ti ≤ τ, i = 1, 2, · · · , m. We now show that ξ(n)(t) = 0, for a.e.

t ∈ Σn : ti ≤ τ.

Let 0 ≤ s1 < t1 ≤ s2 < t2 < . . . < sn < tn ≤ τ and ui, vi ∈ h : i = 1, 2 · · · , n. By

(8.4) and part (i) we have

〈ξ,
n∏

k=1

(Vsk,tk − 1)

tk − sk

(uk, vk) e(0)〉 = 0.

Thus

0 = lim
s→t
〈ξ,

n∏

k=1

(Vsk,tk − 1)

tk − sk

(uk, vk) e(0)〉 (8.5)

= lim
s→t
〈ξ,

n∏

k=1

{M(sk, tk, uk, vk) + 〈uk, G vk〉+ γ(sk, tk, uk, vk)} e(0)〉.

Let P,Q,R and P ′, R′ be two sets of disjoint partitions of {1, 2, · · · , n} such that

Q and R are non empty. We write |S| for the cardinality of set S. Then by

Lemma 8.3 (b) the right hand side of (8.5) is equal to

∑

P ′,R′

〈ξ(|R′|)(tr′1 , · · · , tr′|R′|
),⊗k∈R′η(uk, vk)〉

∏

k∈P ′

〈uk, G vk〉

+ lim
s→t

∑

P,Q,R

〈ξ,
∏

k∈P

〈uk, G vk〉
∏

k∈Q

{M(sk, tk, uk, vk)}
∏

k∈R

{γ(sk, tk, uk, vk)} e(0)〉.

Thus by the induction hypothesis,

0 = 〈ξ(n)(t1, t2, · · · , tn), η(u1, v1)⊗ · · · ⊗ η(un, vn)〉 (8.6)

+ lim
s→t

∑

P,Q,R

〈ξ,
∏

k∈P

〈uk, G vk〉
∏

k∈Q

{M(sk, tk, uk, vk)}
∏

k∈R

{γ(sk, tk, uk, vk)} e(0)〉.
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We claim that the second term in (8.6) vanishes. To prove the claim, it is enough

to show that for any two non empty disjoint subsets Q ≡ {q1, q2, · · · , q|Q|}, R ≡
{r1, r2, · · · , r|R|} of {1, 2, · · · , n},

lim
s→t
〈ξ,
∏

q∈Q

{M(sq, tq, uq, vq)}
∏

r∈R

{γ(sr, tr, ur, vr)} e(0)〉 = 0. (8.7)

Writing ψ for the vector
∏

q∈Q{M(sq, tq, uq, vq)}e(0), we have

〈ξ,
∏

q∈Q

{M(sq, tq, uq, vq)}
∏

r∈R

{γ(sr, tr, ur, vr)} e(0)〉

= 〈ξ, ψ ⊗⊗r∈R

1[sr,tr]η(ur, vr)

tr − sr

〉

= 〈ξ, ψ ⊗⊗r∈R

1[sr,tr]η(ur, vr)

tr − sr

〉

=
∑

l≥|R|

〈ξ(l), ψ(l−|R|) ⊗⊗r∈R

1[sr,tr]η(ur, vr)

tr − sr

〉

= 〈
∑

l≥|R|

〈〈ξ(l), ψ(l−|R|)〉〉,⊗r∈R

1[sr,tr ]η(ur, vr)

tr − sr

〉. (8.8)

Here 〈〈ξ(l), ψ(l−|R|)〉〉 ∈ L2(R+,k)⊗|R| is defined as in (2.1) by

〈 〈〈ξ(l), ψ(l−|R|)〉〉, ρ(|R|) 〉 = 〈ξ(l), ψ(l−|R|) ⊗ ρ(|R|)〉 (8.9)

=

∫

Σl

〈ξ(l)(x1, x2, · · · , xl), ψ
(l−|R|)(x1, x2, · · · , xl−|R|)⊗ ρ(|R|)(xl−|R|+1, · · · , xl)〉k⊗l dx

for any ρ(|R|) ∈ L2(R+,k)⊗|R|.

By Lemma 8.3 (a),

lim
sq→tq
〈ξ,
∏

q∈Q

{M(sq, tq, uq, vq)}
∏

r∈R

{γ(sr, tr, ur, vr)} e(0)〉 = 0. (8.10)

However, we need to prove (8.7) where the limit s → t has to be in arbitrary

order. On the other hand, by (8.8) and (8.9) we get

lim
sq→tq

lim
sr→tr
〈ξ,
∏

q∈Q

{M(sq, tq, uq, vq)}
∏

r∈R

{γ(sr, tr, ur, vr)} e(0)〉

= lim
sq→tq

lim
sr→tr
〈
∑

l≥|R|

〈〈ξ(l), ψ(l−|R|)〉〉,⊗r∈R

1[sr,tr ]η(ur, vr)

tr − sr

〉

= lim
sq→tq

lim
sr→tr
〈
∫

Σ|R|

〈[
∑

l≥|R|

〈〈ξ(l), ψ(l−|R|)〉〉](x1, x2, · · · , x|R|),

⊗r∈R

1[sr,tr](xr) η(ur, vr)

tr − sr

〉dx

= lim
sq→tq
〈
∑

l≥|R|

〈〈ξ(l), ψ(l−|R|)〉〉(tr1, · · · , tr|R|
),⊗r∈Rη(ur, vr)〉, (8.11)
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for almost all t ∈ Σ|R|. We fix t ∈ Σ|R| and define families of vectors ξ̃(l) : l ≥ 0

in L2(R+,k)⊗l by

ξ̃(0) = 〈ξ(|R|)(tr1 , · · · , tr|R|
),⊗r∈Rη(ur, vr)〉 ∈ C

ξ̃(l)(x1, x2, · · · , xl) = 〈〈ξ(|R|+l)(x1, · · · , xl, tr1, · · · , tr|R|
),⊗r∈Rη(ur, vr)〉〉,

which defines a Fock space vector ξ̃. Therefore, from (8.11), we get that

lim
sq→tq

lim
sr→tr
〈ξ,
∏

q∈Q

{M(sq, tq, uq, vq)}
∏

r∈R

{γ(sr, tr, ur, vr)} e(0)〉 = lim
sq→tq
〈ξ̃ , ψ〉

= lim
sq→tq
〈ξ̃ , [

∏

q∈Q

M(sq, tq, uq, vq)] e(0)〉,

which is equal to 0 by Lemma 8.3 (a). Thus from (8.6) we get that

〈ξ(n)(t1, t2, · · · , tn), η(u1, v1)⊗ · · · ⊗ η(un, vn)〉 = 0.

Since {η(u, v) : u, v ∈ h} is total in k, it follows that ξ(n)(t1, t2, · · · , tn) = 0 for

almost every (t1, t2, · · · , tn) ∈ Σn : tk ≤ τ.

(iv) Since τ ≥ 0 is arbitrary ξ(n) = 0 ∈ L2(R+,k)⊗n : n ≥ 0 and hence ξ = 0.

Which proves the totality of S ′ ⊆ Γ.

9 Unitary Equivalence

Here we shall show that the unitary evolution {Us,t} on h⊗H is unitarily equiv-

alent to the HP flow {Vs,t} on h ⊗ Γ(L2(R+,k)) discussed above. Let us recall

that the subset S = {ξ = Us,t(u, v)Ω := Us1,t1(u1, v1) · · ·Usn,tn(un, vn)Ω : s =

(s1, s2, · · · , sn), t = (t1, t2, · · · , tn) : 0 ≤ s1 ≤ t1 ≤ s2 ≤ . . . ≤ sn ≤ tn < ∞, n ≥
1, u = ⊗n

i=1ui, v = ⊗n
i=1vi ∈ h⊗n} is total in H and the subset

S ′ := {ζ = Vs,t(u, v)e(0) := Vs1,t1(u1, v1) · · ·Vsn,tn(un, vn)e(0) :

u, v ∈ h⊗n, s = (s1, s2, · · · , sn), t = (t1, t2, · · · , tn)} is total in Γ.

Lemma 9.1. Let Us,t(u, v)Ω, Us′,t′(p,w)Ω ∈ S.
Then there exist an integer m ≥ 1, a = (a1, a2, · · · , am), b = (b1, b2, · · · , bn) : 0 ≤
a1 ≤ b1 ≤ a2 ≤ . . . ≤ an ≤ bm < ∞, an ordered partition R1 ∪ R2 ∪ R3 =

{1, 2, · · · , m} with |Ri| = mi and a family of product vectors xkl
, ykl
∈ h⊗m1+m2 , kl ≥

1 : l = 1, 2 · · · , m1 +m2, gkl
, hkl
∈ h⊗m2+m3 , kl ≥ 1 : l = 1, 2, · · · , m2 +m3 such

that

Us,t(u, v) =
∑

k

∏

l∈R1∪R2

Ual,bl
(xkl

, ykl
) (9.1)
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Us′,t′(p,w) =
∑

k

∏

l∈R2∪R3

Ual,bl
(gkl

, hkl
). (9.2)

Proof. This follows from the evolution hypothesis of the family of unitary oper-

ators {Us,t}.

Remark 9.2. Since the family of unitaries {Vs,t} on h⊗Γ, enjoy all the properties

satisfied by the family of unitaries {Us,t} on h ⊗ H, the above Lemma also hold

if we replace Us,t by Vs,t.

Lemma 9.3. For Us,t(u, v)Ω, Us′,t′(p,w)Ω ∈ S.

〈Us,t(u, v)Ω, Us′,t′(p,w)Ω〉 = 〈Vs,t(u, v)e(0), Vs′,t′(p,w)e(0)〉. (9.3)

Proof. We have by previous Lemma and Assumption: A

〈Us,t(u, v)Ω, Us′,t′(p,w)Ω〉

=
∑

k

∏

l∈R1

〈Ubl−al
(xkl

, ykl
)Ω,Ω〉

∏

l∈R2

〈Ubl−al
(xkl

, ykl
)ΩUbl−al

(gkl
, hkl

)Ω〉

∏

l∈R3

〈Ω, Ubl−al
(gkl

, hkl
)Ω〉

=
∑

k

∏

l∈R1

〈Tbl−al
ykl
, xkl
〉
∏

l∈R2

〈gkl
, Zbl−al

(|hkl
>< ykl

|) xkl
〉
∏

l∈R3

〈gkl
, Tbl−al

hkl
〉

=
∑

k

∏

l∈R1

〈Vbl−al
(xkl

, ykl
)e(0), e(0)〉

∏

l∈R2

〈Vbl−al
(xkl

, ykl
)e(0)Vbl−al

(gkl
, hkl

)e(0)〉

∏

l∈R3

〈e(0), Vbl−al
(gkl

, hkl
)e(0)〉.

Now by Remark (9.2), the above quantity is equal to 〈Vs,t(u, v)e(0), Vs′,t′(p,w)e(0)〉.

Theorem 9.4. There exist a unitary isomorphism Ξ : h⊗H → h⊗ Γ such that

Ut = Ξ∗ Vt Ξ, ∀ t ≥ 0. (9.4)

Proof. Let us define a map Ξ : H → Γ by setting, for any ξ = Us,t(u, v)Ω ∈
S, Ξξ := Vs,t(u, v)e(0) ∈ S ′ and then extending linearly. So by definition and

totality of S ′, the range of Ξ is dense in Γ. To see that Ξ is a unitary operator

from H to Γ it is enough to note that

〈Ξ ξ,Ξ ξ′〉 = 〈ξ, ξ′〉, ∀ ξ, ξ′ ∈ S (9.5)
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which is already proved in the previous Lemma.

Now consider the ampliated unitary operator 1h ⊗ Ξ from h ⊗ H to h ⊗ Γ and

denote it by the same symbol Ξ. In order to prove (9.4) it is enough to show that

〈u⊗ ξ, Utv ⊗ ξ′〉 = 〈Ξ(u⊗ ξ), VtΞ(v ⊗ ξ′)〉, ∀ u, v ∈ h, ξ, ξ′ ∈ S. (9.6)

Note that Ξ Ut(u, v)ξ
′ = Vt(u, v) Ξ ξ′. Now by unitarity of Ξ, we have

〈u⊗ ξ, Utv ⊗ ξ′〉 = 〈ξ, Ut(u, v)ξ
′〉 = 〈Ξ ξ,Ξ Ut(u, v)ξ

′〉
= 〈Ξ ξ, Vt(u, v) Ξ ξ′〉 = 〈u⊗ Ξ ξ, Vt v ⊗ Ξ ξ′〉 = 〈Ξ(u⊗ ξ), Vt Ξ(v ⊗ ξ′)〉
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