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Extending the definition of additive genetic variance to
more than one gene—a viewpoint
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Abstract.  Following the Fisherian approach, the expression for additive genetic variance
is derived in a single gene system through a regression equation in two variables which are
used to obtain the additive and dominance variances. The approach is extended to two
genes with restricted linkage and inbreeding. It was brought out that additive genetic
variance delined essentially for one gene does not extend per se to multi-gene systems.
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1. Introduction

Additive genetic variance is a vital component in any genetic system not only
because it is the heritable part of total genetic variance but it is one of the main
factors in choosing proper mating designs and selection schemes to accelerate
improvement per unit time in successive filial generations. Fisher (1941) defined
additive genetic variance; in particular, he devised two parameters, ‘average
excess’ (a) and ‘average effect’ (a) of gene substitution to partition the genotypic
variance in a single gene system into additive and dominance variances. From then
on, the topic of partitioning total genetic variance into its components has been
dealt with extensively, both in single (Li 1955; Falconer 1964; Crow and Kimura
1970; Mather and Jinks 1971) and multi-gene (Crow and Kimura 1970; Weir and
Cockerham 1977; Ewens 1979) systems under most general assumptions on
inbreeding and linkage. This paper does not aim therefore to deal with that topic
again. But it does aim to obtain by a method using the Fisherian approach. not
reported so far, additive variance in a single-gene system and in a two-gene system
with restricted inbreeding and linkage. The objective is to clucidate, using this
approach, that additive variance, as defined originally by Fisher (1941) for a single-
gene system, does not extend pari passi to a two-gene system. The procedure will
first be demonstrated for a single-gene and then be extended to a two-gene system.
The difficulties in extending the definition of additive genetic variance from one to
two penes will be highlighted. '

2. Method

2.1 One gene

We use symbolic algebra for representing values of a quantitative character and
various genetic effects as described in Arunachalam and Owen (1971) (to be
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referred to henceforth as A&O). Let AA, Aa and aa be the genotypes, p, the
frequency of gene A, ¢ = | —p, that of a gene. Let the genotypic values of a
character be also represented by AA, Aa and aa.

If we define §= Ap-+ag in symbolic notation, A =S+ ¢g(A—a) and
AA = [S+g(A—a)]’ = 8§ +2qL+¢*Q. Similarly, Aa = S, + (¢ —p)L ~ pgQ
“and aa = 8§, — 2pL + p*Q where

Sl = Sz.,

L =1 (dS)/dp)
= (A—a)(Ap+aq) = p(AA — Aa) + g(Aa — aa)
= additive effect, and

Q = L(d*S/dp?) = (A —a)? = dominance effect.

Let @ (Hayman [954) be a variable taking the values 1,0 and — | for A4, A q and
aa, respectively, and ¢ = | — 67, A& O constructed a variable, w = (p—q)0+¢
and showed that 0 and w could be used to compute the additive and dominance
variances. We note that E(0) = p—q, E(0) = p*+¢° and E($) = 2pg. If we
measure the variables from their respective means and use X to denote the value of
a quantitative character, then those for the three genotypes can be generalised in
the form of & regression equation given by

X=8+(q-p+O)L+ilg+p +(q—p)o—$]0. (1)

It has further been shown by A & O that the regression coefficient of X on ¢ =
and that of X on w = —% Q. They were defined as the ‘average effects” of gene
substitution with respect to the variables 6 and w. Thus, under random mating,
additive variance = L o} = 2pgL” and dominance variance = L Q%0 = pPqrQ-,
so that the genotypic variance = 2pqL° + p g Q-

Now the genotypic frequencies under inbreeding are given by,

freq (AA) = p*f’ + pf

freq (Aa) = 2pgf’
and

freq (aa) = ¢*f' + pt 2)
where ' = | —{ and { = the inbreeding coefficient.
Rewriting (1), we get

X =M+[L+3(qg=p)Qlo—1 0, (3)
where

M=S*+(qg—p)L+35(¢*+p>)Q, which on simplification,

=+ (AA + aa)

mean value of the two homozygotes in the population.

i

When the frequencies given by (2) hold, the value of E(0) does not change and
= (p—q). Thus 6 can still be used to obtain the additive component of variance.
We note,
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E(0d) = 0,
E(0) E(d) = 2pgt'(p —q),
covariance of # and ¢

il

C(0, )
2pqt'(q = p).

i

oy = 2pq(1 + 1),
o = 2pqt' (1 = 2pqt").
We now find a variable w in terms of € and ¢ such that 6 and w are uncorrelated.

Let w= ¢+ BO
C(0,w) = C(0.p) + Boi =0, if B=— C(0,¢) 05,
4)

ie., B=(p—g)t'f, where " = 1/(1+f).

Thus
w=d+(p—q)f' {0
(5)

is uncorrelated with 6.

Substituting for ¢ in (3), we get
X=M+[L+(qg—-p)ff'Qlo—1 0w

From (4), ¢ = w+(q—p)f't"8, so that
ol = C(d,w) + (g — p)E'£C(60. ).

Also from (4),
C(¢, w), since C(0,w) = 0.

5

O, =

Hence
ol = ol +2pq(q — p) (1 =)/ (1 +1).

On simplification,
ol = dpgt' [(1 + )pg + (1 — dpg)].

From (5),
C(X,0) = [L+(q—p)it"Q]os,
and
a, = average effect of substitution of A for a with respect to the
variable 8,
= C(X.0)log = L+ (qg—p)ft"Q.
V... additive variance = ;o
=2pq(L+0)[L+(q—p) ff" Q.

L Qul. since C(0,w) = 0.

From (2), C(X,w) = —
L= -to.

Hence, «, = C(X,w)lo], =
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Vp, dominance variance = a2 02

= pqt' Q*[pq(1 + ) + " (L — 4pq)]

The expressions for V4 and Vp have earlier been derived in a slightly different form
by Crow and Kimura (1970). However, the regression and symbolic algebra
approach employed here provide an elegant alternative,

Thus the genotypic variance under inbreeding,
' Vi =Va+Vp.

It is interesting to note that, if the X values of A4, Aa and aa are denoted by d, h
and —d, following Mather and Jinks (1971),

L=d+(g—-p)h, Q= —2h, and a = d+ h(g—p)t'f".

2.2 Two genes

2.2a - Inbreeding coefficient: Following the classical definition of the inbreeding
coefficient as the correlation between uniting gametes, one can, unlike in the single-
gene case, define a set of correlation coefficients, f;, between uniting gametes
(i,j = 1,4). However, for the objectives of this paper, it is enough to confine our
attention to the case of identity of both genes in a gamete by descent. Further, it is
useful to establish correspondence in results between one- and two-gene systems by
assuming f; = f.

For the purpose of partitioning the total genetic variance, it is convenient to write
the frequencies of the 9 genotypes (ignoring position effects) in the form of a 3% 3
matrix:

A A, Asas a5, Marginal
A A, (1-f)Pi+fP, 2(L—-1)P Py (1=F)P5+1tP, (1=-H)pt+fP
Aia 2(1-0)P Py 2(1=0) (P Py + P3Py 2(1=1)P2 Py 2(0-D)pi gy
a,a, (1-H)P3+£P, 2(1=1)PPy (A =1)PE+1P, (1~-Dgi+1q
Marginal (1—1{)p3+fp, 2(1=1)p2qa (1-f)g3+1tq, 1

where P; (i = 1,4) are the frequencies of the gametes, 4,45, a,a2, A, and a,A,,
respectively, py, gene frequency of Ay, and p,, gene frequency of A,.

We now extend the use of the variables # and w to two genes. Let us consider the
case of two independent genes (D = (). Following A& Q, we define as in the
one-gene case, variables 6;, w; corresponding to the genes A; (i = 1,2) so that
E(6) = p;—q;; E(w) = p?+q?. Then any quantitative character X can be
represented as a regression equation in the variables 6 and w.

We measure the variables from their means and as in the one-gene case, set
w; = ¢—1"{"(q; — p)6;, so that E(6,) = F{w;) = 0. When f = D = 0, the vari-
ables 0y, 6, wy, w,, 8,6,, O0w;, 6w and w w, are mutually uncorrelated and have
means = zero. A character X can then be represented as a perfect regression
equation in those variables so that
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8
Y=X-EX)= > f,

i=1

where
& =0y, &5 = 0,0,
& = 0,, & = 0wy,
& = o, & = bhwy, and
& = wo, & = wiwy,

can be used to calculate the various components of variance.

When f# 0, w, and wp are correlated and E(w,w,) = 4p1q pogoft’. The
covariance matrix, [C] of the variables, & is then non-diagonal, and is given in
table 1.

The expressions, Cov(X,¢&) can easily be obtained using symbolic algebra.

Following A& O, the set of average excesses and average effects can be obtained
and the total variance partitioned. But the variables, & are correlated. The
components of variance are therefore modified by the contribution of the
covariances between correlated variables, as will be shown now.

Consider, for-instance, the case D = f = (. Here the variables are mutually
uncorrelated.

It is important to note that, in this case, the covariance matrix of the variables is
diagonal, so that the “average excesses”,

a=72C"! ' (6)
where,

QX = [CYI,OJQ,...CYS]
Z = [COV (JY, 51), ...Cov (X, §8)]
¢=1Var(g), ¢"=0, (i,j=1,8).
The eight components of variance are then given by
Var (X)) = «; Cov (X, ¢)
[Cov (X, &)/ Var (&)
= o;a; Var (&), (i=1,8),
where Var (X;) = Var(Add. 1) etc., and a; = a,. The set of variables & was called
basic set by A& O (table 1) (Add.-additive). ‘
When they considered partitioning the total genetic variance in a two-gene
system with D # 0, they could not construct such a set of mutually uncorrelated
variables. They defined another set of variables, i, such that their covariance
matrix entailed a number of zero elements, if not entirely diagonal. As a
consequence, it was difficult to explain the average effects in the Fisherian sense
(see §3.8 of A&O).
When we now consider inbreeding, such difficulties are encountered even when
D =0, since & and &, are correlated. However, we keep the basic set of variables,
&, and use the covariance matrix of &’s which is now non-diagonal.

a; = ¢ Cov (X, &) +c” Cov (X, L)+ ...+ Cov(X,&), (i=1,8).

il
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The additive component 1 of the total genetic variance is then given by,
Var (Add.1) = «, Cov(X,§&)

= c""Cov (X, &) +¢'* Cov (X, &) Cov (X, &)+ ...
+¢'® Cov (X, £) Cov (X, &). (7

We note that, were we successful in locating an ideal set of mutually uncorrelated
&'s, we would have, Var(Add.1) = ¢'' [Cov (X, &)]° since ¢¥ would then = 0.

When we consider D # 0, f ¢ 0, there are two possibilities (i) to keep the basic
set of variables, &, and (ii) to use A&QO’s corrections for D and use the set of
variables, . ‘

All these cases were analysed in a numerical example (table 2) and both the
above methods were used for the case, D = 0-1, f = 0 for illustration (cases 111 and
IV). In case V, A& O’s corrections ‘for D were used.

il

3. Discussion

The salient feature of the Fisherian approach in a single-gene system is that the
regression variables 8 and w are independent providing the values of additive and

dominance variance both under random mating and inbreeding. Such an extension

was feasible in a two-gene system only under random mating with independent

genes (D = f = (). In other cases, it was not possible to find a set of regression

variables which are mutually uncorrelated. Considering the expression (7) for

Var (Add.1), it would be evident that, when the sum of the second to eighth terms

becomes negative and its absolute value exceeds the value of the first term, it is

possible to get a negative estimate for Var (Add.1) (table 2; see also Ewens 1979).

Table 2 column a gives the components of total genetic variance as defined in this
paper. Column b gives the ‘ideal’ values of the components, were the variables, &,

mutually uncorrelated. It is found, as expected, that the latter values, though

always positive, are biased and do not add to the actual total variance given under

column a. When D = 0.1, they overestimate, in our example, many components

and total variance. A comparison of values given under a and b would provide an

idea as to what extent the mutual correlations among §&’s account for the

differences.

The only alternative is then to derive expressions for additive genetic variance of
any one gene adjusted for the association of that gene with others. In other words,
adjustment is done in a hierarchical manner like additive variance (gene 1),
additive variance (gene 2) adjusted for its association with gene 1, additive variance
(gene 3) adjusted for its association with genes 1 and 2, and so on. This approach in
essence has been followed by many workers. In this process, the elegance of
defining, in general, additive genetic variance (gene j) as equal to ‘average
excess’ X ‘average effect’” X variance of the variable defining additive variance of
gene J, is lost.

The results reported here and in A & O clearly conclude that, in genetic systems
governed by two (or more) genes, arbitrary inbreeding and linkage, (a) it is not
possible to express a quantitative character X as an exact regression equation in
such variables that account for the various components of the total genetic
variance, (b) the definition of additive (and, likewise, other) components of

{
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variance do differ in essence from those extended from a random mating single-
gene system, (c) these components of variance do contain contributions due to
their association with other components and (d) it is not possible to separate and
estimate them. Since covariance of relatives is expressed ultimately in terms of the
components of genotypic variance, in practice, it is a moot question to ask what
would be the ideal choice of mating and selection schemes in situations governed
by more than one gene. The results usually obtained in practical situations by
conceiving quantitative characters as being governed by a number of additive and
independent genes, as a close approximation to reality, can, in the light of these
results, be really far from it.
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