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In many intracellular processes, the length distribution of microtubules is controlled by depoly-
merizing motor proteins. Experiments have shown that, following non-specific binding to the surface
of a microtubule, depolymerizers are transported to the microtubule tip(s) by diffusion or directed
walk and, then, depolymerize the microtubule from the tip(s) after accumulating there. We de-
velop a quantitative model to study the depolymerizing action of such a generic motor protein,
and its possible effects on the length distribution of microtubules. We show that, when the mo-
tor protein concentration in solution exceeds a critical value, a steady state is reached where the
length distribution is, in general, non-monotonic with a single peak. However, for highly processive
motors and large motor densities, this distribution effectively becomes an exponential decay. Our
findings suggest that such motor proteins may be selectively used by the cell to ensure precise con-
trol of MT lengths. The model is also used to analyze experimental observations of motor-induced
depolymerization.

PACS numbers: 05.40.-a; 87.16.-b; 87.16.Nn

I. INTRODUCTION

In eukaryotic cells, microtubules (MT) are one type of
cytoskeletal filaments, which perform several roles: they
serve as tracks for intracellular molecular motor trans-
port, provide structural rigidity to the cell and assemble
to form a spindle during metaphase for the purpose of
separation of duplicated chromosomes to the mother and
daughter cells. MT are highly dynamic. In in vitro sit-
uations, it is observed that a growing MT can suddenly
start shrinking; this “catastrophe” is triggered by the
loss of the GTP cap by hydrolysis of GTP molecules at-
tached to the tubulin subunits of MT. A shrinking MT
occasionally get “rescued” and start polymerizing again.
This unusual process of polymerization and depolymer-
ization is referred to as ‘dynamic instability’ [1].

The situation inside the living cell is much more com-
plex and the MT kinetics in vivo is regulated by many
proteins. In particular, several motor proteins belonging
to the kinesin family are now known to function as MT
depolymerizers [2, 3, 4, 5] and are crucial in the forma-
tion and maintenance of the mitotic spindle [6]. These
include XKCM1/MCAK (mitotic centromere-associated
kinesin) and Kif2A belonging to the kinesin-13 fam-
ily and Kip3 proteins belonging to kinesin-8 family.
MCAK is known to be active at kinetochores (the pro-
tein structure which facilitates MT attachment to chro-
mosomes), whereas Kif2A is associated with centrosomes
and Kip3p regulates microtubule-cortical interactions.
Depletion/inhibition of XKCM1/MCAK has been shown
to affect spindle length and the poleward motion of chro-
mosomes during anaphase, while deletion of kinesin-8
proteins leads to defects in positioning of the spindle[6].

∗E-mail: bindu@mri.ernet.in

However, the mechanism of depolymerization of MT by
these motor proteins is only incompletely understood [7].

Recent in vitro depolymerization experiments with
surface-immobilized MT have demonstrated that the de-
polymerizing kinesins MCAK [8] and Kip3p [9, 10]use
a ‘reduction of dimensionality’ mechanism to target
the MT tips for depolymerization: after binding non-
specifically to the MT surface, these proteins use dif-
fusion (MCAK) or directed walk (Kip3p) to reach the
tip(s), and their accumulation induces depolymerization
of the MT from the tip. The depolymerization rate is,
in general, length and motor-concentration dependent; in
addition, MCAK and Kip3p are found to have vastly dif-
ferent residence times on the MT. These results indicate
that depolymerizing kinesins could be used by the cell
for precise length regulation of microtubules.

The central question of interest for us here is: what
is the nature of the length-distribution of a set of micro-
tubules in steady state, in a solution of free tubulin and
depolymerizing motor proteins (henceforth referred to as
depolymerizers for brevity)? In particular, it is impor-
tant to understand how the depolymerizers contribute to
the formation of a highly ordered structure such as the
metaphase spindle, where most of the MT would need
to be close to the spindle length. This aspect becomes
significant, if we recall that the steady state length distri-
bution of a set of microtubules undergoing dynamic insta-
bility under standard in vitro conditions has an exponen-
tially decaying form, without any preferred length [11].

In this letter, we present a theoretical framework for
understanding the depolymerizing activity of a generic
motor protein as described above. After deriving expres-
sions for the concentration profile of bound motors on
a MT, we calculate the rate of absorption of motors at
the MT tips. We then construct the rate equations for
the length distribution(s) of MT, which are then solved
perturbatively in the limits of low and high motor con-
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FIG. 1: An illustration of our model, showing the important
kinetic processes. Depolymerizer motor proteins attach to
the surface of a MT and are transported along the MT by
diffusion and/or directed walk. The motors are trapped at
the MT tips, where they induce depolymerization of the MT.
The MT grows at a motor-free tip by adding tubulin subunits.
Bound motors may detach from the surface or the tips of the
MT.

centrations. We also show that the model can be used
to analyze available experimental data on motor-induced
depolymerization.

II. MODEL DESCRIPTION

Since we are interested in length-related properties, we
consider here MT of finite length (unlike earlier theoret-
ical approaches [8, 12] to the problem, which concen-
trated on semi-infinite MT). In our model, a depolymer-

izer binds to a MT at a rate k̃+c0 per unit length (c0

being the depolymerizer concentration in solution), and
detaches at a rate k−. A bound generic depolymerizer
undergoes a biased random walk with drift speed v0 and
diffusion coefficient D. Once a depolymerizer reaches a
tip of the MT, it depolymerizes the filament at a rate vs

(measured in µm min−1) while remaining attached to the
tip. The depolymerizers accumulate at the tip, and de-
tach from there at a rate κ, which characterizes its proces-

sivity(the tendency to stay attached to the MT tip while
depolymerizing it). The tips, therefore, act as sinks for
the depolymerizers which could accumulate there. The
net rate of depolymerization, vd, is a stochastic quantity,
and depends on the number of accumulated motors. We
further assume that a GTP cap is always present at a
MT tip so that a depolymerizer-free tip will grow at a
rate vg by adding tubulin sub-units (i.e., GTP hydrolysis
is assumed to be sufficiently slow). An illustration of the
model is provided in Fig. 1.

The MT-bound depolymerizer density profile will be
denoted by c(z, t) with 0 ≤ z ≤ ℓ, ℓ being the length of
the MT at time t. The kinetics of c(z, t), in a frame of
reference attached to the moving MT tip is given by the
equation,

∂c

∂t
= D

∂2c

∂z2
− v

∂c

∂z
− k−c + k̃+c0, (1)

where v = v0 − vm and vm = vg for a growing MT and
vm = −vd for a shrinking MT. Note that steric exclu-
sion effects between motors have been neglected here for

TABLE I: A list of experimental parameter values for
MCAK [8] and Kip3p [9] depolymerizers. The depolymer-
ization rate is a function of length and motor concentration.

Quantity MCAK Kip3p
D 0.38 µm2s−1 -
v0 - 3.6 µm min−1

vd < 4µm min−1 < 2µm min−1

k̃+ 0.64nM−1µm−1s−1 assumed same
k− 1.21 s−1 ∼ 0.004s−1

κ 0.5s−1 0.03 s−1

simplicity. In general, v0 depends on c; however, at suf-
ficiently small c, modification of the last term of eq.(1)
to incorporate steric exclusion is equivalent to addition
of just a constant to the detachment rate k−[12].

So far as the surface transport on the MT is con-
cerned, the MT tips act as “traps” for the depoly-
merases; however, a depolymerase can escape from the
“trap” only by detachment from the MT during its MT-
depolymerizing activity. Therefore, we treat the ki-
netics of the tip-absorbed motor population separately
from the MT surface-bound (mobile) density of motors.
The boundary conditions on c(z, t), which are needed
to solve eq. (1), should reflect the “trapping” of motors
at the tips, and the simplest case is absorbing bound-
ary conditions: c(0, t) = c(ℓ, t) = 0 for all t. Us-
ing time-independent boundary conditions requires that
length fluctuations due to growth/shrinkage are suffi-
ciently small, and the conditions for the same are derived
now. We consider the v0 = 0 case first. A single motor
typically spends a residence time τr ∼ 1/k− on a suffi-
ciently long MT (ℓ ≫

√
Dτr), or otherwise gets absorbed

at a tip within a shorter time interval ∼ ℓ2/D. Clearly,
only those motors that bind to the MT within a ‘deple-
tion zone’ of length ℓd ∼

√
Dτr from a tip get absorbed at

the tip, within a time interval ∼ ℓ2
d/D ∼ τr, the rest will

get detached before they can reach the tip. The length
change over τr is δℓ ∼ vmτr with vm = vg or −vs, and

the condition |δℓ| ≪ ℓ is satisfied by |vm| ≪
√

Dk−. In
the case of a motor which undergoes directed walk with
velocity v0, the corresponding condition turns out to be
|vm| ≪ v0.

Table 1 lists the various experimentally measured pa-
rameters for the two depolymerizers MCAK and Kip3p.
For the purely diffusing MCAK, the above condition is
satisfied for |vm| ≪ 27µm min−1, and the analysis based
on fixed boundary conditions should work well for growth
rates of physiological interest. For walking Kip3p, the
condition is marginally satisfied for low growth/shrinkage
rates of |vm| ≪ 1µm min−1. Nevertheless, we carry our
analysis for the general case of a depolymerizer with di-
rected motion as well as diffusion, assuming that the con-
dition of small length fluctuations is satisfied. In partic-
ular, we will henceforth assume that v ≃ v0 in eq. (1).
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III. MOTOR DENSITY PROFILE AND

ABSORPTION RATES

The steady-state density profile c(z) of the motors, ob-
tained from eq. (1), under the absorbing boundary con-
ditions is

c(z) = K

[

1 − 1

sinh(βvℓ/2D)

(

e−
v(ℓ−z)

2D sinh(βvz/2D) +

e
vz
2D sinh(βv(ℓ − z)/2D)

)]

(2)

where β =
√

1 + 4Dk−/v2 and K = k̃+c0/k−. We em-
phasize that the function c(z), being the density profile
of only the motors not absorbed at the MT tips, vanish
at z = 0 and z = ℓ. However, the total concentration
of the depolymerizers at the MT tips is non-vanishing
because of the accumulation of the absorbed depolymer-
izers there. We also note that eq. (2) is invariant under
the combined transformations v → −v and z → ℓ − z.

It is interesting to look at the limiting behavior of the
density profile in eq. (2) in the limits v → 0, D > 0
(pure diffusion) and D → 0, v > 0 (pure walk), since
these special cases are of experimental interest. In the
first case, the distribution has the following well-defined
form, which is symmetric about z = ℓ/2:

cd(z) ≡ lim
v→0

c(z) = K

[

1 − 1

sinh(ℓ/λd)

(

sinh(z/λd) +

sinh((ℓ − z)/λd)

)]

; λd =
√

D/k− (3)

In the second case, after taking the limit D → 0, we
find that

cv(z) ≡ lim
D→0

c(z) = K[1 − exp(−z/λw)] ; λw = v/k−

(4)
Note that eq. (4) is non-vanishing as z → ℓ, as expected

for a pure directed walk towards the plus end. This does
not contradict the imposed boundary conditions, because
we still have limD→0 limz→l c(z) = 0.

Since the kinetics at the minus end of a MT is typically
much slower than that at the plus end, we concentrate
only on the plus-end kinetics for the rest of this paper,
though motor accumulation is allowed to occur at both
ends. The rate of absorption of motors at the plus-end
is given by ν(ℓ) = −D(∂c/∂z)z=ℓ, and has the general
form:

ν(ℓ) =
vK

2 sinh(βvℓ/2D)

[

β

(

cosh(βvℓ/2d) − evℓ/2D

)

+

sinh(βvℓ/2D)

]

.(5)

ν(ℓ) vanishes at ℓ = 0, and is a monotonically increas-
ing function of ℓ for all values of v and D. The saturation
value for the general v > 0, D > 0 case is given by

νmax = vK(1 + β)/2. (6)

For pure diffusion and pure walk, eq. (5) reduces, re-
spectively, to the limiting forms,

νd(ℓ) = k̃+c0λd tanh(ℓ/2λd) ; v → 0 (7)

and

νv(ℓ) = k̃+c0λw [1 − exp(−ℓ/λw)] = vcv(l) ; D → 0.
(8)

For short MT (ℓ ≪ λd or λw respectively), ν(ℓ) ≈
1
2 k̃+ℓ in the first case and ν(ℓ) ≈ k̃+ℓ in the second; the
difference of the factor of 2 arises from the fact that a
diffusing depolymerizer can target either of the tips. In
the opposite limit of long MT, both the rates approach
their saturation values k̃+c0λd and k̃+c0λw, respectively.
(which may also be derived directly from eq. (6)).

IV. RATE EQUATIONS

We will now study how a given depolymerizer would
affect the length distribution of a set of MT, when
a steady state is reached by a balance between de-
polymerizer binding/detachment and MT polymeriza-
tion/depolymerization processes. For simplicity, we ne-
glect the three-dimensional structure of the MT filament
and imagine the MT as a linear polymer, made of sub-
units of length b. We denote by Pn(m, t) the fraction of
polymers with m sub-units and n absorbed depolymeriz-
ers at the plus-end. Let pg = vg/b be the probability per
unit time for attachment of a subunit to a free tip and
ps = vs/b be the rate of removal of subunits per motor
(we assume henceforth that the rate of sub-unit removal
increases linearly with the number of motors). The rate
equations for Pn(m, t) are as follows: For m = 1,

∂P0(1)

∂t
= −pgP0(1) + κP1(1),

∂P1(1)

∂t
= psP1(2) − κP1(1) + ν(b)P0(1), (9)

while for m ≥ 2 and n ≥ 1,

∂P0(m)

∂t
= −pg[P0(m) − P0(m − 1)] +

κP1(m) − ν(mb)P0(m)

∂Pn(m)

∂t
= nps[Pn(m + 1) − Pn(m)] +

(n + 1)κPn+1(m) + ν(mb)Pn−1(m) −
(nκ + ν(mb))Pn(m) (10)
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We now focus on the steady state of the model. Since
a general analytic solution is difficult, we will adopt a
perturbative approach, and look at the solutions in the
limit of low and high depolymerizer concentrations. The
transition between these regimes is controlled by the di-
mensionless ratio η = νmax/κ which may be used as the
small parameter in the low density perturbation expan-
sion. This is seen through the following argument.

Let us define a distribution of the number of accu-
mulated motors: χn ≡ ∑

∞

m=1 Pn(m). It is convenient
to use the numbers αn < 1, defined through the re-
lation

∑

∞

m=1 ν(mb)Pn(m) ≡ νmaxαnχn. From eq.( 9)
and eq.( 10), it can be shown that, in steady state,
χn follows a Poisson-like distribution of the form χn =
χ0(η

n/n!)
∏n−1

i=0 αi for n ≥ 1, where χ0 is determined
through normalization:

∑

∞

n=0 χn = 1.
Low motor concentration: For η ≪ 1, we can neglect

Pn with n ≥ 2 in eq. (10), in comparison with P0 and
P1. By keeping terms upto O(η), in the continuum limit
(m ≫ 1, ℓ ≈ mb), we arrive at a single combined equation
for P0 and P1 in steady state:

vg
∂P0

∂ℓ
= −ν(ℓ)P0(ℓ) + κP1(ℓ) = vs

∂P1

∂ℓ
(11)

which has the general solution (for ℓ ≫ b)

P0(ℓ) = C exp

(

κ

vs
ℓ − 1

vg

∫ ℓ

0

ν(ℓ′)dℓ′
)

=
vs

vg
P1(ℓ) (12)

where C is a constant of normalization. In the absence
of a boundary, this solution is normalizable only when
η > ηc, where ηc = vg/vs implicitly gives a critical motor
concentration, below which a well-defined steady state
distribution does not exist. The above result for ηc is,
however, strictly true only when vg/vs ≪ 1 since the
present analysis assumes η ≪ 1. In the more general
case, a steady state should still exist at sufficiently large
η, but the critical concentration would be given by a
relation of the form ηc = f(vg/vs), with f(x) ≃ x as
x → 0.

High motor concentration: To analyze the case η ≫ 1,
it is convenient to re-express eq. (9) and eq. (10) (in the
continuum limit) as

vg

νmax

∂P0

∂ℓ
= η−1P1(ℓ) − f(ℓ)P0(ℓ)

− nvs

νmax

∂Pn

∂ℓ
= (n + 1)η−1Pn+1(ℓ) + f(l)Pn−1(ℓ) −

(nη−1 + f(ℓ))Pn(ℓ), (13)

where the function f(ℓ) ≡ ν(ℓ)/νmax ≤ 1. We now
expand all Pn(l) in a perturbation series in η−1: Pn(ℓ) =
∑

∞

m=0 η−mP
(m)
n (ℓ) for n ≥ 0, and then substitute into

eq. (13). The zeroth order distributions are then found
to satisfy the iterative equation,
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FIG. 2: The distribution in eq. (17) (normalized such that
R

P0(ℓ)dℓ = 1) is plotted against the dimensionless ‘length’
x = ℓ/2λd(eq. (3)) for three different values of ζ = η/ηc.
The other parameters were fixed at the MCAK values (table
1). We assumed vs ≃ vd and vg ≃ 1µm min−1. From table 1,
λd ≃ 0.56µm for MCAK. Inset: the mean length as a function
of ζ (computed numerically, δx = 10−5 everywhere). Using
the parameters in table 1, the critical MCAK concentration
corresponding to ηc is 1.39vg/vs nM.

− nvs

νmax

∂P
(0)
n

∂ℓ
= f(ℓ)[P

(0)
n−1(ℓ) − P (0)

n (ℓ)] (14)

and P
(0)
0 (ℓ) = P

(0)
0 (0) exp(−v−1

g

∫ ℓ

0 dℓ′ν(ℓ′)) from
eq. (13). The solution of eq. (14) is found after a few
elementary calculations:

P (0)
n (ℓ) = P (0)

n (0)e
−

1
vg

R

ℓ

0
dℓ′ν(ℓ′)

. (15)

where

P (0)
n (0) = P

(0)
0 (0)

n
∏

m=1

vg

vg + mvs
. (16)

The unknown constant P
(0)
0 is determined by normal-

ization. Eq. (15) is a monotonically decreasing function
of ℓ, however, non-monotonic terms appear in the first
order and above.

V. APPLICATION TO SPECIFIC CASES

Our results so far have been general, within the lim-
its of validity of the assumptions stated in the second
section. We will now examine their implications for the
specific depolymerizer motor proteins studied in experi-
ments.

The solution obtained in eq. (12) in the limit of low
concentrations is a non-monotonic function of the length,
increasing exponentially as ∼ e(κ/vs)ℓ for small ℓ, and de-
creasing exponentially at large ℓ, with a peak at an inter-
mediate value. The location of this peak depends on the
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ratio κ/vs, and for fixed vs, the peak is more pronounced
for large κ (low processivity) and vice-versa. The depoly-
merizers MCAK and Kip3p have very different processiv-
ities (table 1), and it is therefore interesting to look at
these specific cases in more detail. Eq. (12) reduces to
the following forms in the pure diffusion (v → 0, D > 0)
and pure walk (v > 0, D → 0) limits respectively:

P0(ℓ) ∝ eκℓ/vs [cosh(ℓ/2λd)]
−

2Kλ2
d

vg (v0 = 0) (17)

P0(ℓ) ∝ exp

[(

κ

vs
− Kλw

vg

)

ℓ − Kλ2
w

vg
e−ℓ/λw

]

(D = 0)

(18)
Fig. 2 and fig. 3 show the normalized forms of the dis-

tributions in eq. (17) and eq. (18) respectively, plotted
against the dimensionless length variables x = ℓ/λd and
x = ℓ/λw, for three values of ζ = η/ηc > 1 (the empirical
values of κ, D, v0 and vs are taken from Table 1). Al-
though, as we explained in the beginning, our theory is
more applicable to MCAK than Kip3p, the difference be-
tween the two cases is nevertheless striking: the MCAK
distribution shows a peak, while the Kip3p distribution
is essentially a monotonically decreasing function (the
peak is too close to the origin to be visible in the plot).
The contrasting behavior is primarily due to their very
different processivities.
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motors (computed numerically using eq. 19), plotted as a
function of the MT length for MCAK, for two values of the
bulk motor concentration c0. The inset shows the saturation
value (computed at ℓ = 5µm) plotted against c0.

In order to characterize the MCAK and Kip3p-induced
distributions better, we also looked at how the lengths are
spread about the mean value in each of these cases. In
fig. 4, we plot the relative MT length fluctuation ∆x/〈x〉
for MCAK and Kip3p, as a function of the dimensionless
ratio ζ = η/ηc, where ∆x =

√

〈x2〉 − 〈x〉2 is the standard
deviation. The relative fluctuation for MCAK is typically
smaller than 1, and, interestingly, also shows a minimum
of ∼ 0.3 at ζ ≃ 1.37. For Kip3p, on the other hand, the
relative fluctuation increases rapidly with ζ and saturates
at unity, which is characteristic of a purely exponential
distribution. MCAK appears to produce a tighter control
of length than Kip3p because of its lower processivity.

VI. LENGTH-DEPENDENT

DEPOLYMERIZATION

We will now focus on the analysis of the existing ex-
perimental results on motor-induced depolymerization
within our model. The rate of depolymerization of a
microtubule depends on the number n of motor proteins
accumulated at the tip. Experiments with fixed micro-
tubule length measure the mean depolymerization rate
〈vd〉 = vs〈n〉ℓ, where 〈n〉ℓ gives the mean number of mo-
tors attached to a microtubule of length ℓ. To calcu-
late this average, we define the distribution Qℓ(n) for the
number of motors attached to the tip of a MT of length
ℓ. We assume that a motor protein initially bound to
one protofilament will continue to travel along it until it
reaches a tip, without hopping between filaments. In this
case, absorption at a certain protofilament tip is possible
only if that particular tip is free, the probability of which
is given by (1 − n/n∗), where n is the total number of
motors attached at the MT tip and n∗ is the maximum
number of motors that can be absorbed at a given time.
Since a MT usually has 13 protofilaments, we assume
n∗ = 13 for concreteness.

The rate equations for Qℓ(n) are as follows. For motor-
free tips, we have



6

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0  2  4  6  8  10  12  14  16  18  20

1nM
2nM
3nM

〈n〉ℓ

ℓ(µm)

FIG. 6: The average number of tip-absorbed motors in the
presence of Kip3p, for three different values of c0. Note the
difference in length scales between this and the previous fig-
ure.

∂Qℓ(0)

∂t
= κQℓ(1) − ν(ℓ)Qℓ(0)

∂Qℓ(n)

∂t
= (n + 1)κQℓ(n + 1) +

ν(ℓ)

(

1 − n

n∗

)[

Qℓ(n − 1) − Qℓ(n)

]

+

Qℓ(n − 1)
ν(l)

n∗
− nκQℓ(n) ; 1 ≤ n < n∗

∂Qℓ(n
∗)

∂t
= −n∗κQℓ(n

∗) +
ν(ℓ)

n∗
Qℓ(n

∗ − 1) (19)

The steady state solution of eq. (19) is given by

Qℓ(n) = Qℓ(0)
1

n!

(

ν(ℓ)

κ

)n n−1
∏

j=1

(1 − j

n∗
) 1 ≤ n ≤ n∗

(20)

where Qℓ(0) is fixed by normalization:
∑n∗

n=1 Qℓ(n) =
1. The mean number of tip-accumulated motors is then

given by 〈n〉ℓ =
∑n∗

n=1 nQℓ(n).
In fig. 5, we have plotted numerically computed 〈n〉ℓ

as a function of ℓ in the case of MCAK for two differ-
ent motor concentrations c0. It is found that apprecia-
ble length-dependence of 〈n〉ℓ, and hence the mean de-
polymerization velocity 〈vd〉, is found only for ℓ < 2µm.
This is in agreement with experiments, where no length-
dependence of depolymerization was observed in the case
of MCAK, for MT longer than 2µm. The saturation
value of the depolymerization rate (plotted in the inset,
for ℓ = 5µm) depends strongly on the motor concentra-
tion, and this curve also agrees well with experimental
results [8] and previous theoretical predictions [12].

We now turn to the case of Kip3p, in which case a
strong length-dependence of depolymerization was ob-
served in experiments [9]. Fig. 6 shows the theoretical
plot of 〈n〉ℓ against ℓ for three motor concentrations. The
length-dependence here is much stronger than MCAK,
and for low concentrations, saturation is not reached
even for ℓ = 20µm. These observations qualitatively
agree with the corresponding experimental results. How-
ever, a close quantitative agreement (in particular, ex-
periments show a sharp rise in depolymerization rate be-
tween c0=3.3nM and c0=5.8nM) is missing in this case.

VII. CONCLUSIONS

To conclude, in this letter, we have formulated a gen-
eral theory for the action of MT-depolymerizing motor
proteins. Specifically, we considered the limit where the
motor density profile becomes stationary much before
the MT length distribution reaches its steady-state. We
showed that the rate of accumulation of the motors at the
MT tips, and consequently their depolymerizing activity
itself, is strongly length-dependent. This has a rather
pronounced effect on the length distribution of the MT,
which displays a peak before decaying exponentially at
large ℓ. Interestingly, the processivity of the depolymer-
izer plays an important role in determining the nature
of the length distribution: a depolymerizer with low pro-
cessivity produces a more pronounced peak in the length
distribution, and is likely to be more useful for precise
length regulation.

Our theory is relevant to future experimental studies
on the role of depolymerizing motor proteins in length
regulation of MT, especially in the context of formation of
the metaphase spindle. Indeed, very recent experiments
using fluroscent speckle microscopy have shown that the
length distribution of individual MT in a meiotic spindle
is strongly non-monotonic [13]. It would be interesting if
the predictions made in this paper could be put to test
in future in vitro experiments with depolymerizing motor
proteins, where the MT lengths are carefully monitored.
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