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Nöthnitzer Strasse 38, D-01187 Dresden, Germany.
3Physics Department, University of Colorado, Boulder, CO 80309-0390, U.S.A.

(Dated: April 21, 2008)

Helicases are molecular motors that unwind double-stranded nucleic acids (dsNA), such as DNA
and RNA). Typically a helicase translocates along one of the NA single strands while unwinding
and uses adenosine triphosphate (ATP) hydrolysis as an energy source. Here we model of a helicase
motor that can switch between two states, which could represent two different points in the ATP
hydrolysis cycle. Our model is an extension of the earlier Betterton-Jülicher model of helicases
to incorporate switching between two states. The main predictions of the model are the speed
of unwinding of the dsNA and fluctuations around the average unwinding velocity. Motivated by
a recent claim that the NS3 helicase of Hepatitis C virus follows a flashing ratchet mechanism,
we have compared the experimental results for the NS3 helicase with a special limit of our model
which corresponds to the flashing ratchet scenario. Our model accounts for one key feature of the
experimental data on NS3 helicase. However, contradictory observations in experiments carried out
under different conditions limit the ability to compare the model to experiments.

PACS numbers: 87.16.Nn,82.39.-k,87.10.+e,87.15.Aa,05.40.-a,82.20.-w

Helicases are enzymes that unwind double-stranded nucleic acids (dsNA) [1]. Helicase proteins typically translocate
along one of the single strands and perform mechanical work while consuming chemical energy (usually supplied by
the hydrolysis of ATP). Therefore, these NA translocases are molecular motors [2, 3] which share common features
with cytoskeletal molecular motors [4, 5].

All helicases undergo a biochemical cycle which typically involves ATP binding, ATP hydrolysis, and release of the
hydrolysis products adenosine diphosphate (ADP) and and inorganic phosphate (Pi). An important question in the
study of helicase mechanisms is to understand how the ATP hydrolysis cycle is coupled to the binding state and the
motion of the helicase [6, 7]. Helicases may exhibit changes in helicase/NA binding affinity when the helicase is bound
to ATP, ADP/Pi, or neither; coordination of hydrolysis between different helicase subunits, and conformational
changes in the helicase triggered by different steps in the hydrolysis cycle. Some helicases form hexamers (which
include six ATPase domains), while others are members of the non-hexameric (dimeric or monomeric) group; different
types of mechanochemical cycle have been suggested for the different structural classes [6, 8]. In all cases, one seeks
to explain how the helicase coordinates NA binding and hydrolysis to move along single-stranded NA and unwind
double-stranded NA.

Here we develop a generic model of a helicase that switches between two biochemical states while translocating on
ssNA. This is a simplified representation of the different states of the helicase during the ATP hydrolysis cycle. The
model may be generally applicable to helicases for which the transition between two states is the key feature of the
motion. In other words, this model should be a good approximation for helicases with more than two biochemical
states if one transition is far slower than the others. We incorporate such a two-state picture by extending the original
Betterton-Jülicher (BJ) model [9, 10, 11] of NA helicases [12].

Our work is also connected to two-state models that have been used extensively for a variety of molecular motors
[13, 14, 15, 16]. Under a mean-field approximation, such models can be easily solved when periodic boundary
conditions are imposed. However, the problem is usually more difficult with open boundary conditions. The model
for helicase motion is even more complex because the position of one boundary (i.e., the ssNA-dsNA junction) varies
randomly with time. Thus our work is also an extension of previous work on two-state models to the more difficult
case of a fluctuating boundary.

The two-state model developed here is consistent with the observation that binding and hydrolysis of ATP can
modulate the affinity of a helicase for the nucleic-acid track [17, 18, 19]. The flashing-ratchet mechanism suggested
qualitatively for the hepatitis C virus non-structural protein 3 (HCV NS3) helicase [20, 21] can be captured by a special
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FIG. 1: Schematic of the model. The protein can exist in either of two chemical states (labeled 1 and 2) at each lattice site
(labeled n). Sliding transitions (where n changes but the chemical state does not) occur at rate s1f , etc., depending on the
state and whether the transition is forward (toward increasing n) or backward (toward decreasing n). Chemical transitions
(where the chemical state changes but n does not) occur at rates ω12 (for the transition from 1 to 2) and ω21 (for the transition
from 2 to 1). Coupled transitions, where both the chemical state and n change, occur at rates rf (for the transition from 2
to 1 coupled to forward motion), rb (for the transition from 1 to 2 coupled to backward motion), qf (for the transition from 1
to 2 coupled to forward motion), and qb (for the transition from 2 to 1 coupled to backward motion). The nucleic acid single
strand-double strand junction is at site m. The junction moves toward increasing m when the NA opens by one base (rate α)
and toward decreasing m when the NA closes (rate β).

case of the generic model proposed here. In the flashing-ratchet [13] picture, the motor protein switches between two
states: one where the protein is tightly bound to the track, and another where the motor is weakly bound and can
diffuse along the track. In this paper we make quantitative comparisons between our theoretical predictions for a
passive helicase which follows the flashing-ratchet mechanism, and the experimental data for NS3 helicase.

In section I we describe the ingredients of the model: the helicase, which can switch between two states and
translocate on ssNA, and the fluctuating NA ss-ds junction. In section II we calculate the single-strand translocation
rate of the helicase. Section III contains the model equations for double-strand unwinding, the transformation of the
equations using midpoint and difference variables, and the general solutions for the velocity and diffusion coefficient.
We describe the results for a hard-wall interaction between the helicase and junction in section IV. Using rate
constants estimated from experiments on NS3 helicase, in section V we specialize to the flashing-ratchet scenario and
make predictions specific to NS3. In section VI we summarize our results.

I. THE MODEL

Here we develop a physical model for a helicase that moves on ssNA while cycling between two chemical states
(labeled 1 and 2). Levin et al. suggested such a two-state model for NS3 helicase motion [20, 21]. In this paper, we
first consider a general two-state model, and later focus on the specific flashing-ratchet picture.

In the traditional continuous models of Brownian ratchets, one first writes a Fokker-Planck equation. We use a
discrete model, so our approach is based on master equations. The discrete approach can be useful when comparing
to experiments. In the Fokker-Planck approach, one needs the explicit functional form of the fluctuating potential,
which has not been measured for any real motor. In the discrete model, we bypass this difficulty by capturing the
motor mechanism through a choice of rate constants (or transition probabilities), many of which can be obtained from
experiments (see section V).

In the discrete model, we represent the ssNA by a one-dimensional lattice where each site corresponds to a single
base. We label each site by the integer index i. As in the BJ model [9], we neglect the sequence inhomogeneity of the
ssNA (in principle, the model can be extended to capture this feature, which may be important in some limits [22]).
The position of the helicase is denoted by the integer n. Most helicases have a fixed direction of translocation, either
3′ to 5′ or 5′ to 3′ along the left-right asymmetric ssNA [6]. In our model the helicase translocates toward increasing
n (from left to right in fig. 1). At any spatial position n, the helicase can be either in biochemical state 1 or 2.

The model is fully described by the allowed transitions between states and the corresponding reaction rates. In
general, we could have all transitions sketched in fig. 1. Helicase “sliding” corresponds to transitions along the
ssNA without a change in biochemical state of the protein. In state 1, these sliding transitions occur at rate s1f

(for increasing n) and s1b (for decreasing n). When the helicase is in state 2, the forward/backward sliding rates
are s2f and s2b. Physically, these transitions occur because of Brownian motion of the protein, decoupled from any
biochemical state change.

The helicase can undergo “chemical” transitions which correspond to a change in biochemical state without physical
translocation along the ssNA. At fixed n, the rate of transition from state 1 to 2 occurs at rate ω12, while the reverse
transition occurs at rate ω21. Finally, “coupled” mechanochemical transitions are those where a change of biochemical
state and physical translocation occur together. If the helicase is located at n and is in state 2, then it can make a
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transition to state 1 while moving forward to site n+1 at rate rf ; the corresponding reverse rate is rb. The transition
of the helicase from state 1 to 2 while moving forward from n to n + 1 occurs at rate qf ; the corresponding reverse
rate is qb.

If any of these reactions is coupled to ATP hydrolysis, then the forward/reverse transitions may be out of equilibrium
and break the detailed balance relation. The Levin et al. model of HCV NS3 helicase suggests that ATP binding is
required to remove the helicase from the tightly bound state [20, 21], implying that the 1 → 2 transition at rate ω12 is
determined by the ATP concentration. In the Levin et al. flashing-ratchet model, ATP hydrolysis and product release
is coupled to the translocation and chemical transition back to state 1, which in our representation means that rates
ω21 and rf would be coupled to ATP hydrolysis and would therefore be out of equilibrium (see section V).

The junction between ssNA and dsNA is labeled by m (see fig. 1). The dsNA opens and closes due to thermal
fluctuations. When the helicase and junction are far apart, the opening rate is α and the closing rate β. We assume
that these rates are independent of the NA base sequence and that the only fluctuations are those for which the NA
opens or closes at the ss-ds fork. Following the BJ model [9], we neglect the possibility of any jump > 1 bp in the
position of the ssNA-dsNA junction. However, this approximation is justified because, at the temperatures of our
interest (i.e., sufficiently below the melting temperature of the dsDNA) the spontaneous formation of bubbles is rare.
Since the NA breathing results from thermal fluctuations, the rates α and β satisfy detailed balance: α

β
= e−∆G,

where ∆G is the free energy of one base-pair bond in units of kT .
The main quantity of interest is the speed of unwinding of dsNA by a helicase. We derive an analytical expression

for the unwinding velocity. We compare the predicted velocity with the corresponding experimental data for a specific
helicase, NS3 helicase of hepatitis C virus. Although we also derive an analytical expression for the diffusion constant
of the helicase, we do not compare it with experimental data for any specific helicase.

In this work we analyze passive unwinding, which is equivalent to a hard-wall interaction potential in the BJ model
[10]. In passive unwinding, the helicase acts as a block to NA closing when adjacent to the junction. The protein
moves forward only when thermal fluctuations open a basepair at the NA ss-ds junction. This means that when the
helicase and junction are adjacent (j = 1), the helicase cannot hop forward (all helicase forward rates, s1f (j = 1),
s2f (j = 1), rf (j = 1), and qf (j = 1), are zero) and the NA cannot close (β(j = 1) = 0). Otherwise, the rates are
unaffected by the helicase-junction interaction.

II. SINGLE-STRAND TRANSLOCATION

In order to motivate our approach, we first formulate the equations for a helicase sufficiently far from the ssNA-dsNA
junction so that it translocates on ssNA without any dsNA unwinding activity. Let Pµ(n, t) denote the probability
that, at time t, the helicase is located at site n and is in the chemical state µ. We will drop the reference to the time
dependence of Pµ(n). The master equations governing the time evolution of Pµ(n) are

dP1(n)

dt
= −(ω12 + s1f + s1b + qf + rb)P1(n) + s1fP1(n − 1) + rfP2(n − 1)

+ s1bP1(n + 1) + qbP2(n + 1) + ω21P2(n), (1)

and

dP2(n)

dt
= −(ω21 + s2f + s2b + rf + qb)P2(n) + s2fP2(n − 1) + qfP1(n − 1)

+ s2bP2(n + 1) + rbP1(n + 1) + ω12P1(n). (2)

Summing these equations, we find the total probability P(n) = P1(n) + P2(n) satisfies

dP(n)

dt
= −(s1f + s1b + qf + rb)P1(n) − (s2f + s2b + rf + qb)P2(n) + (s1f + qf )P1(n − 1) + (s2f + rf )P2(n − 1)

+ (s1b + rb)P1(n + 1) + (s2b + qb)P2(n + 1). (3)

These equations have a translationally invariant steady-state solution where Pµ(n) is independent of n. In this case,
we expect that the probability in state 2 is a multiple of the probability in state 1:

P2(n) = σP1(n), (4)

which means that P(n) = (1 + σ)P1(n).
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In this case, the master equation for the total probability can be written as a hopping model with effective rates
kf for forward transitions and kb for backward transitions. At steady state,

0 = kfP(n − 1) − (kf + kb)P(n) + kbP(n + 1), (5)

where

kf =
s1f + qf + σ(s2f + rf )

1 + σ
, (6)

kb =
s1b + rb + σ(s2b + qb)

1 + σ
. (7)

and the expression

σ =
ω12 + qf + rb

rf + qb + ω21
. (8)

has been obtained from eqn. (1) at steady state, assuming translational invariance. The mean single-strand translo-
cation velocity is vss = kf − kb.

III. DOUBLE-STRAND UNWINDING: MODEL EQUATIONS

In this section we extend the formulation of the preceding section by incorporating helicase-catalyzed dsNA un-
winding. Let Pµ(n, m; t) denote the probability that, at time t, the helicase is at located at n and is in the chemical
state µ, while the ss-ds junction is at m. We will drop the reference to the time dependence of Pµ(n, m). The master
equations governing the time evolution of Pµ(n, m) are given by

dP1(n, m)

dt
= −(α + β + ω12 + s1f + s1b + qf + rb)P1(n, m) + s1fP1(n − 1, m) + rfP2(n − 1, m)

+ s1bP1(n + 1, m) + qbP2(n + 1, m) + ω21P2(n, m) + αP1(n, m − 1) + βP1(n, m + 1) (m > n). (9)

and

dP2(n, m)

dt
= −(α + β + ω21 + s2f + s2b + rf + qb)P2(n, m) + s2fP2(n − 1, m) + qfP1(n − 1, m)

+ s2bP2(n + 1, m) + rbP1(n + 1, m) + ω12P1(n, m) + αP2(n, m − 1) + βP2(n, m + 1) (m > n). (10)

Note that the rates depend on the separation m − n; this notation is omitted for clarity. We assume the interaction
potential is the same for both chemical states, so that the position-dependent NA opening and closing rates α and β
are independent of the chemical state.

Next we change variables to work with the difference j = m − n and midpoint l = 2l
′

= m + n positions of the
helicase-junction complex. Rewriting eqns. (9) and (10) we have

dP1(j, l)

dt
= −(α + β + ω12 + s1f + s1b + qf + rb)P1(j, l) + s1fP1(j + 1, l − 1) + rfP2(j + 1, l − 1)

+ s1bP1(j − 1, l + 1) + qbP2(j − 1, l + 1) + ω21P2(j, l) + αP1(j − 1, l − 1) + βP1(j + 1, l + 1)

(j > 0). (11)

and

dP2(j, l)

dt
= −(α + β + ω21 + s2f + s2b + rf + qb)P2(j, l) + s2fP2(j + 1, l − 1) + qfP1(j + 1, l − 1)

+ s2bP2(j − 1, l + 1) + rbP1(j − 1, l + 1) + ω12P1(j, l) + αP2(j − 1, l − 1) + βP2(j + 1, l + 1)

(j > 0). (12)

Again, the rates vary with j. However, the rates are independent of l, so we can sum over the position of the complex
center of mass:

P1(j) =
∑

l

P1(j, l)

P2(j) =
∑

l

P2(j, l) (13)
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Applying the sum over l to eqns.̃(11) and (12) we find

dP1(j)

dt
= −(α + β + ω12 + s1f + s1b + qf + rb)P1(j) + (s1f + β)P1(j + 1) + rfP2(j + 1)

+ (s1b + α)P1(j − 1) + qbP2(j − 1) + ω21P2(j). (14)

and

dP2(j)

dt
= −(α + β + ω21 + s2f + s2b + rf + qb)P2(j) + (s2f + β)P2(j + 1) + qfP1(j + 1)

+ (s2b + α)P2(j − 1) + rbP1(j − 1) + ω12P1(j). (15)

We consider the total probability by summing eqns. (14) and (15). Defining the total probability current

I(j) = αP (j) − βP (j + 1) + (s1b + rb)P1(j) + (s2b + qb)P2(j) − (s1f + qf )P1(j + 1) − (s2f + rf )P2(j + 1), (16)

the total probability satisfies

dP (j)

dt
= −I(j) + I(j − 1). (17)

At steady state P (j) is time independent, so I(j) = I(j − 1). Further, since U(j) → ∞ as j → −∞, this constant
probability flux must be zero, i.e., I(j) = 0 for all j.

Adding the two eqns. (11) and (12) and defining P(j, l) = P1(j, l) + P2(j, l), we get

dP(j, l)

dt
= −(α + β)P(j, l) + αP(j − 1, l − 1) + βP (j + 1, l + 1) + (s1f + qf )P1(j + 1, l − 1)

+ (rf + s2f )P2(j + 1, l − 1) + (s1b + rb)P1(j − 1, l + 1) + (qb + s2b)P2(j − 1, l + 1)

+ ω21P2(j, l) + ω12P1(j, l) − (ω12 + s1f + s1b + qf + rb)P1(j, l)

− (ω21 + s2f + s2b + rf + qb)P2(j, l). (18)

The probability distribution in l at time t is

Π(l; t) =
∑

j

P(j, l; t) (19)

Note that, by definition, Π(l; t) is independent of the chemical state of the helicase For times much longer than the
relaxation time of the difference variable j, we can assume

Pµ(j, l) = Pµ(j) Π(l) (µ = 1 or 2) (20)

Starting from the eqn. (18), one can derive

dΠ(l)

dt
= uΠ(l − 1) − (u + w)Π(l) + wΠ(l + 1) (21)

where

u =
∑

j

αP (j) + (s1f + qf )P1(j) + (s2f + rf )P2(j), (22)

and

w =
∑

j

βP (j) + (s1b + rb)P1(j) + (s2b + qb)P2(j). (23)

Thus the motion of the helicase-junction complex is a combination of drift and diffusion. Note that in the special case
u = w the drift vanishes and the dynamics of l becomes purely diffusive.

As in ref. [10], the average speed of unwinding is v = 1
2 (u − w), or

v =
1

2

∑

j

(α − β)P (j) + (s1f + qf − s1b − rb)P1(j) + (s2f + rf − s2b − qb)P2(j). (24)

Similarly, the diffusion coefficient is D = 1
4 (u + w), which is

D =
1

4

∑

j

(α + β)P (j) + (s1f + qf + s1b + rb)P1(j) + (s2f + rf + s2b + qb)P2(j). (25)

Note that if the sliding transitions represent unbiased diffusion, then the forward and backward rates sµf and sµb are
equal. Then the terms involving the sliding rates drop out from the expression for v but not from that for D.
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IV. SOLUTION

In order to evaluate the expressions for the unwinding velocity and diffusion coefficient, we must determine P1(j)
and P2(j) in terms of the rate constants. Consider the result of summing eqns. (14) and (15) over j to determine
equations for the total probability of being in state 1, P1 and the total probability of being in state 2, P2. We can
write these equations as

dP1

dt
= −k12P1 + k21P2, (26)

dP2

dt
= −k21P2 + k12P1, (27)

where the rate constant k12 depends on ω12, qf , and rb, and k21 depends on ω21, rf , and qb. The steady-state solution
has P2 = k12/k21P1.

This observation suggests a translationally invariant solution for P1(j) and P2(j) when the rates are constant. We
consider the case where the relative probability of being in state 1 or 2 is translationally invariant (independent of j).
This must occur if the hopping rates are constant or spatially vary in the same way (for example, if states 1 and 2 have
the same interaction potential with the dsNA). Since we are primarily interested in a passive helicase with constant
rates, we will focus on this case. Because of the translational invariance, the probability in state 2 is a multiple of the
probability in state 1, so that

P2(j) = γP1(j). (28)

The zero-current relation requires that eqn. (16) equal zero, which requires

(β + s1f + qf )P1(j + 1) + (β + s2f + rf )P2(j + 1) = (α + s1b + rb)P1(j) + (α + s2b + qb)P2(j). (29)

We can plug in to eqn. (28) and solve for the unknown constant γ. We can rewrite eqn. (29) as a recursion relation
that relates P1(j + 1) to P1(j):

P1(j + 1)

P1(j)
=

α(1 + γ) + s1b + rb + γ(s2b + qb)

β(1 + γ) + s1f + qf + γ(s2f + rf )
= c. (30)

Note that c is a function of γ. While it is possible to solve coupled equations for c and γ in general, the resulting
expressions are long and not useful for developing intuition. Instead, we use the approximation relevant for helicases
that α and β, the opening and closing rates of the NA, are several orders of magnitude larger than the other rates
in the problem (see reference [10], where experimental data from reference [23] was used to estimate the opening rate
α ∼ 107 s−1; other rates in the problem are of order 102 s−1). In this case, eqn. (30) reduces to

c ≈
α

β
. (31)

Throughout the remainder of this paper, we will use this approximate value of c. Note that because α and β are
constant, c is also constant and eqn. (30) shows that P1(j) has power-law decay with increasing j (as in the BJ model
for a passive helicase [10]).

Using eqns. (28) and (30) in eqn. (14) at steady state, and imposing the requirement that P1(j) cannot vanish for
arbitrary j, we find a unique expression for γ:

γ =
s1f (1 − c) − s1b(c

−1 − 1) + rb + qf + ω12

crf + c−1qb + ω21
. (32)

With this result, we can evaluate eqns. (24) and (25) and express v and D in a fashion analogous to the expressions
in the simpler BJ model:

v =
1

2

∑

j

P1(j)(a + k+
− b − k−), (33)

D =
1

4

∑

j

P1(j)(a + k+ + b + k−), (34)



7

if we define the effective rates

a = α(1 + γ), (35)

b = β(1 + γ), (36)

k+ = γ(s2f + rf ) + s1f + qf , (37)

k− = γ(s2b + qb) + s1b + rb. (38)

Next we evaluate the sums in eqns. (33) and (34), noting that P1(j) = P1c
j and taking into account that for j = 1

the rates k+ and b are zero. The result is

v =
ck+ − k−

2(1 + γ)
, (39)

D =
α

2
+

ck+ + k−

4(1 + γ)
(40)

Equations (39) and (40) are the main results.
Note that under most conditions the NA opening and closing rate α is orders of magnitude larger than the other

rates, and therefore D ≈ α/2.

V. COMPARISON WITH NS3 HELICASE

The NS3 helicase of the hepatitis C virus (HCV) is important for HCV replication, and is therefore a potential
drug target [24]. NS3 is also an interesting model helicase because it is the only currently known helicase capable of
unwinding both dsRNA and dsDNA [25, 26]. The flashing-ratchet mechanism proposed for NS3 helicase in ref. [21] is
a special case of the two-state model which we have developed in the preceding sections. In this section, we first briefly
summarize the experimental data on NS3 helicase and their mutually contradictory interpretations which highlight the
current debates in the literature. Then, we present analytical results for the special case of our model which captures
the flashing ratchet mechanism. We compare these theoretical predictions with the corresponding experimental data
for NS3 helicase. The comparisons are, however, limited by the contradictions between the observations in different
experiments, many of which have been performed under different conditions.

A. Summary of experimental results on NS3 helicase

To compare our model to experiments on NS3 helicase, we would ideally like to know the enzyme step size, the
single-strand translocation rate, and the double-strand unwinding rate—including information on how it varies with
NA sequence or applied force. Interpretation of experimental data on NS3 is complicated by differences in experiments
done by different research groups. Some groups study the full-length NS3 protein, including the helicase and protease
domains [27, 28, 29, 30, 31], while others study the helicase domain only [20, 21, 28, 32, 33, 34, 35]. Moreover,
genetically different versions of NS3 can have different properties [36]. The NS3 protein can also function in different
oligomeric states. In bulk solution experiments, full-length NS3 seems to function best as a dimer or higher-order
oligomer [37], but single-molecule experiments can observe unwinding by NS3 monomers [30, 31]. The helicase domain
NS3h appears not to form dimers in solution [18, 33, 38], but multiple copies of the protein can bind to ssNA and
unwind dsNA [33]. In at least one experiment, the kinetic parameters did not vary with the length of the ss tail used
to load NS3h, suggesting that the helicase mechanism may not depend on whether the protein is a monomer or dimer
[35].

Contradictory claims have been made in the literature on the qualitative description of NS3 helicase as well as
on its quantitative characteristics. First, we consider the empirical evidence for the stepping pattern and the step
size of NS3 helicase. Recently a detailed computational model of NS3, based on known crystal structures, supported
the idea of single-base “inchworm” motion taken by NS3 monomers. This model of Zheng et al. proposes a major
protein conformational change which is triggered by ATP binding and is coupled to forward motion of the helicase
[39]. Models based on structural studies of NS3 have suggested single-base steps [18, 40]. Similarly, structures of the
distantly related Hel308 helicase, which shows some structural similarities to NS3, supports the idea of a ratchet-like
mechanism during the ATP cycle [41]. However, most experimental efforts to determine the step size don’t support
single-base steps. Bulk kinetic experiments have given a kinetic step size of 9-17 basepairs, depending on protein form



8

FIG. 2: Schematic of the simplified model that represents a flashing ratchet. The protein can exist in either of two chemical
states (labeled 1 and 2) at each lattice site (labeled n). Sliding transitions (where n changes but the state does not) occur
only in state 2 at rate s2. Chemical transitions (where the state changes but n does not) occur at rates ω12 (for the transition
from 1 to 2) and ω21 (for the transition from 2 to 1). A coupled transition (where both the state and n change) occurs at rate
rf (for the transition from 2 to 1 coupled to forward motion). The nucleic acid single strand-double strand junction is at site
m. The junction moves toward increasing m when the NA opens by one base (rate α) and toward decreasing m when the NA
closes (rate β).

and unwinding substrate [27, 29, 35]. Single-molecule experiments on monomers of full-length NS3 have suggested
a step size of 11 basepairs with 3 basepair substeps [30] or 3 basepairs with 1 basepair substeps [31]. The most
recent single-molecule work has proposed that the fundamental step size is one basepair, with pauses occurring less
frequently as part of the ssNA bound to the helicase occasionally “rips” off [31].

Next we summarize the current estimates of ss translocation rate and the speed of double-strand unwinding by NS3
helicase. The maximum ss translocation rate can be estimated from experiments that measure the ATP hydrolysis
rate. In one experiment, the NS3h rate of ATP hydrolysis had a maximum kcat of 80 s−1 in the presence of the
single-stranded oligo dU18 [32]. Assuming that during ss translocation the helicase hydrolyzes 1 ATP per step, this
measurement sets an upper bound on the ss translocation velocity of 80 bases s−1. The double-strand unwinding
velocity of NS3 has been estimated from bulk and single-molecule experiments. In one single-turnover bulk kinetic
study, the maximum unwinding rate of NS3h was 2.7 bp s−1 [35]; similar results were found by another group [28].
Full-length NS3 may unwind at higher velocities, up to 16.5 bp s−1 [27, 28]. In single-molecule experiments with
applied force, full-length NS3 monomers unwind at force-independent rates of 50 bp s−1 [30]. This relatively high
velocity may be possible because of the applied force that reduces the energetic cost of opening the NA. In single-
molecule FRET experiments on full-length NS3 monomers where no force is applied, an unwinding rate of k ≈ 0.9
s−1 was measured for one base pair substeps [31]—a value closer to the bulk value measured for NS3h.

Finally, we examine the experimental data to investigate whether the unwinding by NS3 helicase is active or
passive. The dependence of the unwinding rate on the base-pair binding free energy was measured both in single-
molecule and bulk experiments. In the work of Dumont et al., the RNA unwinding rate of full-length NS3 monomers
was approximately independent of applied force in the range 9-17 pN [30]. In this experiment, the applied force
was relatively high: the double strand melted at a force of 20 pN. In single-molecule experiments using a similar
experimental setup, Cheng et al. [42] observed a significant effect of varying the RNA sequence on the NS3 unwinding
rate. This observation of Cheng et al. indicates that a passive unwinding mechanism may not be adequate to explain
the behavior of full-length NS3 helicase. Further, the apparent contradiction between the observations of Cheng et
al. [42] and Dumont et al. [30] may be reconciled if we abandon the simple physical picture in which the base-pair
binding free energy can be altered in a similar way by applied force or by changing the sequence. Recent bulk
measurements examined the effects of sequence variation on the unwinding rate of NS3h [43]; this work is discussed
below where we compare our theoretical predictions to experimental results.

In order to motivate our minimal model for the NS3 helicase, we now discuss the affinity of NS3h to NA and its
modulation during the ATP hydrolysis cycle. Binding experiments on NS3h found that when the helicase is bound to
an ATP analogue, it binds to NA more weakly than when not bound to ATP or ADP [33, 34]. The change in binding
free energy is approximately 6 kT at room temperature (15 kJ mol−1) [21]. In addition, the affinity of NS3h for ADP
is low, so release of hydrolysis products is expected to be rapid [34]. These observations are the basis of the proposed
flashing-ratchet mechanism of NS3h. (However, we note that another work has found no dependence of NA binding
on the ATP hydrolysis state [28]; the source of this difference is unclear.)

B. Flashing-ratchet model of NS3 helicase

Here we consider a special case of our model which corresponds to a flashing ratchet mechanism. Levin et al. pro-
posed that NS3 helicase switches between two states: one tightly bound to the ssNA, the other weakly bound [20, 21].
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This scenario is referred to in the physics literature as a flashing ratchet [13]. When applying the flashing ratchet
scenario to NS3, the tightly bound state is represented by a periodic sawtooth potential (with periodicity of one
ssNA base pair) and the weakly bound state is represented by a uniform (weakly position-independent) potential [21].
When comparing to the flashing-ratchet scenario, we will consider state 1 to represent the strongly bound (S) state
and state 2 the weakly bound (W) state. By comparing the theoretical predictions for this special case of our model
with the experimental data for NS3 helicase, we test whether or not NS3 follows the flashing ratchet mechanism.

We assume that no sliding is possible in the tightly-bound state 1, so s1f = s1b = 0, and that the sliding is unbiased
in state 2, so s2f = s2b = s2. To connect with the flashing-ratchet scenario and for simplicity, we assume that the
rates qf = qb = rb = 0 (see fig. 2). With these assumptions, we find that the rate of ss translocation is (from eqns. (6)
and (7))

vss = ω12
rf

rf + ω12 + ω21
, (41)

and the rate of ds unwinding is

vu =
ω12

2

(crf − (1 − c)s2)

crf + ω12 + ω21
. (42)

The excitation rate ω12 is associated with ATP binding, and so is assumed proportional to ATP concentration.
Therefore we write ω12 = ωo[ATP]. The rates ω21 and rf represent the relaxation from the weakly bound to the
tightly bound state that occurs after ATP hydrolysis, product release, and diffusion in the weakly bound state. For
a flashing ratchet, a high rate of forward motion will occur when the positions of the energy barriers and the time
constants are such that forward movement (rate rf ) and return to the same place after one cycle (rate ω21) occur
with equal probability. To match this optimal case, we therefore assume that ω21 = rf . Further, we assume that the
sliding rate s2 is small compared to the other rates; for concreteness we will suppose s2 = ǫrf with ǫ = 0.1 unless
otherwise stated. The velocities then become

vss =
rfωo[ATP]

ωo[ATP] + 2rf

, (43)

vu =
(c − ǫ(1 − c))

2

rfωo[ATP]

ωo[ATP] + (1 + c)rf

. (44)

Both vss and vu are consistent with the Michaelis-Menten equation for enzyme kinetics, but with slightly different
forms. Their ratio is

vu

vss

=
(c − ǫ(1 − c))

2

ωo[ATP] + 2rf

ωo[ATP] + (1 + c)rf

. (45)

In other words, we predict that the ratio of the unwinding velocity to the single-strand translocation velocity depends
on ATP concentration. If we average over sequence variation in DNA [9], we get the estimate c = α/β ≈ 1/7. For the
purpose of quantitative illustration of the variation of vu

vss

with ATP concentration, let us assume ǫ = 1/10. Then,
vu

vss

≈ 0.029 at high ATP concentration and vu

vss

≈ 0.05 at low ATP concentration. This suggests that the ratio of the
unwinding velocity to the single-strand translocation velocity could vary significantly with ATP concentration—the
change is almost a factor of 2 for this example.

Next, we estimate vu and vss for NS3 helicase. The single-strand translocation and unwinding velocities are fully
determined by the parameters c, rf , ωo, ǫ, and ATP concentration; we now extract estimates of rf and ωo from
experimental data. In experiments at high ATP concentration and in the presence of ssNA, NS3h shows a maximum
ATP hydrolysis rate of 80 s−1 [32]. If we take this value as the limiting ss-translocation rate and assume single
base-pair steps, then vss = 80 nt s−1 in the limit of high ATP concentration. Using this estimate of vss in eqn. (43),
we get the estimate rf = 80 s−1. This, in turn, implies that at high ATP concentration the unwinding velocity
vu ≈ 0.029vss ≈ 2.3 bp s−1. This value is comparable to the values of 2.7 bp s−1 [35] found for NS3h and 0.9 bp
s−1 found for the one-bp substeps of full-length NS3 [31]. We note that the unwinding velocity vu ≪ vss, as should
be expected for this model which assumes a passive helicase mechanism. Experiments studying how NS3 ATPase
activity [32] and unwinding [30] vary with ATP concentration found a similar Michaelis constant Km ≈ 90 µM. Using
this value of Km in eqn. (43), we estimate ωo = 2rf/Km ≈ 1.8 µM−1 s−1.

The only remaining unknown parameter is ǫ = s2/rf , the ratio of the sliding rate to the forward transition rate.
A smaller value of ǫ means that the sliding transitions in the weakly bound state are less probable (see fig. 2). A
higher value of ǫ means that sliding transitions in the weakly bound state are more probable. This parameter has an
important effect on the dependence of the helicase velocity on the base-pair binding free energy.
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FIG. 3: Dependence of the unwinding velocity on the base-pair binding free energy. The reference state is a value c = 1/7,
which represents a sequence-averaged value for DNA. The additional destabilization energy ∆G (in units of kT ) represents a
free energy change that favors NA opening. When ǫ increases, the dependence of the velocity on ∆G becomes more pronounced.
However, decreasing ǫ can not flatten the curve indefinitely.

To study the effects of varying the base-pair binding free energy, we focus on the limit of high ATP concentration.
In this case, if ∆G is the free energy of destabilization of base-pair binding, the parameter c = α/β varies according
to c = coe

∆G. Therefore, at high ATP concentration, the unwinding velocity varies as

lim
[ATP ]→∞

vu =
(co(1 + ǫ)e∆G − ǫ)

2
rf . (46)

The unwinding velocity increases exponentially if the NA is destabilized, as one would expect for a passive helicase.
However, the precise shape of the curve of unwinding velocity versus ∆G depends on ǫ. In the limit ǫ → 0, which
physically means no helicase sliding transitions occur in the weakly bound state, the unwinding velocity varies with
∆G as a simple exponential:

lim
[ATP ]→∞,ǫ→0

vu =
corf

2
e∆G. (47)

As ǫ increases, the helicase can slide in the weakly bound state. This allows more rapid unwinding by the helicase:
when the dsNA is destabilized, the ds base just ahead of the helicase has an increased probability to be open. Rather
than wait for the helicase chemical transitions to move forward, the helicase can take advantage of this increased
junction open probability and slide forward. This allows the steeper rate of increase of vu with ∆G seen in fig. 3. This
prediction is qualitatively consistent with the result of Tackett et al. [44], who found that full-length NS3 unwound
double strands with higher melting temperatures less efficiently. However, in the single-molecule experiments of
Dumont et al. the unwinding rate of full-length NS3 monomers was practically independent of applied force in the
range 9-17 pN [30]. This disagrees with the prediction of this model, if the only effect of the applied force is to
change the binding free energy per base pair. However, this physical interpretation is clearly not valid, because recent
experiments from the same lab find a significant variation in the RNA unwinding rate of full-length NS3 with the
variation of the base composition of the RNA [42]. Reconciliation of the apparent contradictions in these experimental
observations is possible by assuming an active helicase mechanism which, however, is not incorporated in the current
version of our model. Analyzing data from bulk experiments, Donmez et al. [43] claimed that the the variation of NS3h
unwinding velocity with base-pair binding free energy is inconsistent with a passive helicase mechanism. However,
this conclusion is drawn from an analysis based on a reported single-strand translocation velocity of 6.4 bases s−1,
which is much lower than the value of 80 bases s−1 mentioned above. A ss translocation rate of 80 bases s−1 is
an upper limit, assuming the helicase hydrolyzes 1 ATP per single-base step. If the helicase on average hydrolyzes
> 1 ATP per step, the ss translocation rate would be lower. A lower ss translocation rate would lead to an even
larger disagreement between the passive helicase model we presented and the experimental data. We believe that a
conclusive comparison between our model of a flashing-ratchet mechanism for NS3 helicase and the experimental data
is not possible because of the contradictory reports of experimental studies.
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VI. CONCLUSION

In this paper we have developed a general model of unwinding of a double-stranded nucleic acid molecule by a
helicase motor. To capture some of the key features of the helicase mechanochemical cycle, we have modeled helicase
switching between two chemical states. In this model, the sites of a discrete lattice represent the positions of the
individual bases on the ssNA. At any spatial position, the helicase can exist in either of the two allowed chemical
states. This model should be generally applicable to helicases where one of the transitions in the mechanochemical
cycle is much slower than the other transitions. In this work, we have considered only a passive helicase mechanism—
the helicase at the junction must wait for thermal fluctuations to open the dsNA before it can advance. In future
work, it would be valuable to extend the model to include active destabilization of the dsNA by the helicase.

To compare the model in detail to experimental data, we focused on a special case which captures the flashing-
ratchet mechanism proposed for the NS3 helicase [21]. Solving the master equations for this model at steady state,
we have calculated the speed of unwinding and the speed of single-strand translocation. The ratio of the unwinding
velocity to the ss translocation velocity varies with ATP concentration as well as with the base-pair binding free
energy.

Our comparison to experimental data on NS3 helicase suggests that the model captures some features of the
experiments. However, the experimental literature on NS3 contains contradictory results. This may be a result of the
different genetic variants, protein truncations, oligomeric states, substrates, and buffer conditions used by different
laboratories. A set of detailed experiments by different labs under consistent conditions may be important to fully
understand the unwinding mechanism of NS3 helicase.
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