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KIF1A kinesins are single-headed motor proteins which move on cylindrical nano-tubes called
microtubules (MT). A normal MT consists of 13 protofilaments on which the equispaced motor
binding sites form a periodic array. The collective movement of the kinesins on a MT is, therefore,
analogous to vehicular traffic on multi-lane highways where each protofilament is the analogue of
a single lane. Does lane-changing increase or decrease the motor flux per lane? We address this
fundamental question here by appropriately extending a recent model [Phys. Rev. E 75, 041905
(2007)]. By carrying out analytical calculations and computer simulations of this extended model,
we predict that the flux per lane can increase or decrease with the increasing rate of lane changing,
depending on the concentrations of motors and the rate of hydrolysis of ATP, the “fuel” molecules.
Our predictions can be tested, in principle, by carrying out in-vitro experiments with fluorescently
labelled KIF1A molecules.

Members of the kinesin superfamily of motor proteins
move along microtubules (MTs) which are cylindrical
nano-tubes [1, 2]. A normal MT consists of 13 protofil-
aments each of which is formed by the head-to-tail se-
quential lining up of basic subunits. Each subunit of a
protofilament is a 8 nm heterodimer of α-β tubulins and
provides a specific binding site for a single head of a ki-
nesin motor. Often many kinesins move simultaneously
along a given MT; because of close similarities with vehic-
ular traffic [3], the collective movement of the molecular
motors on a MT is sometimes referred to as molecular
motor traffic [4, 5, 6, 7, 8].

The effects of lane changing on the flow properties of
vehicular traffic has been investigated extensively using
particle-hopping models [3] which are, essentially, appro-
priate extensions of the totally asymmetric simple exclu-
sion process (TASEP) [9, 10, 11]. Models of multi-lane
TASEP, where the particles can occasionally change lane,
have also been investigated analytically [12, 13]. Two-
lane generalizations of generic models of cytoskeletal
molecular motor traffic have also been reported [14, 15].

Recently a quantitative theoretical model has been de-
veloped [16, 17] (from now onwards, we shall refer to it
as the NOSC model) for the traffic of KIF1A proteins,
which are single-headed kinesins [18, 19, 20], by explicitly
capturing the essential features of the mechano-chemical
cycle of each individual KIF1A motor, in addition to their
steric interactions. In this communication we extend the
NOSC model by adding to the master equation all those
terms which correspond to lane changing. Solving these
equations analytically, we address a fundamental ques-
tion: does lane changing increase or decrease flux per
lane? We show that the answer to this question depends
on the parameter regime of our model. We establish the
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levels of accuracy of our analytical results by compar-
ing with the corresponding numerical data obtained from
computer simulations of the model. We interpret the re-
sults physically and suggest experiments for testing our
theoretical predictions.

FIG. 1: (Color online) A schematic representation of our
model, together will the allowed transitions and the corre-
sponding rate constants.

The equispaced binding sites for KIF1A on a given
protofilament of the MT are labelled by the integer in-
dex i (i = 1, ..., L). We use the integer index j to label
the protofilaments; the position of each binding site is
denoted completely by the pair (i, j). Because of the
tubular geometry of the MT, periodic boundary condi-
tions along the j-direction would be a natural choice.
We impose periodic boundary conditions also along the
i-direction, as it not only simplifies our analytical calcu-
lations but is also adequate to answer the fundamental
questions which we address in this communication.

In each mechano-chemical cycle a KIF1A motor hy-
drolyzes one molecule of adenosine triphosphate (ATP)
which supplies the mechanical energy required for its
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movement. The experimental results on KIF1A motors
[18, 19, 20] indicate that a simplified description of its
mechano-chemical cycle in terms of a 2-state model [16]
would be sufficient to understand their traffic on a MT.
In the two “chemical” states labelled by the symbols S
and W the motor is, respectively, strongly and weakly
bound to the MT.

In the NOSC model, a KIF1A molecule is allowed to
attach to (and detach from) a site with rates ωa (and
ωd). The rate constant ωb corresponds to the unbiased
Brownian motion of the motor in the state W . The rate
constant ωh is associated with the process driven by ATP
hydrolysis which causes the transition of the motor from
the state S to the state W . The rate constants ωf and
ωs, together, capture the Brownian ratchet mechanism
[21, 22] of a KIF1A motor. Moreover, any movement
of the motor under these rules is, finally, implemented
only if the target site is not already occupied by another
motor.

The rules of time evolution in the extended NOSC
model proposed here are identical to those in the NOSC
model, except for the following additional lane-changing
rules (see fig.1):
a motor weakly-bound (i.e., in state W ) to the binding
site i on the protofilament j is allowed to move to the
positions (i, j + 1) and (i, j − 1)
(i) without simultaneous change in its chemical state,
both the corresponding rates being ωbl;
(ii) with simultaneous transition to the chemical state S,
the corresponding rate constants being ωfl+ and ωfl−,
respectively.

Let Si(j, t) and Wi(j, t) denote the probabilities for a
motor to be in the “chemical” states S and W , respec-
tively, at site i on the protofilament j. In the extended
NOSC model, under mean-field approximation, the mas-
ter equations for the probabilities Si(j, t) and Wi(j, t) are
given by

dSi(j, t)

dt
= ωa[1 − Si(j, t) − Wi(j, t)] − ωhSi(j, t) − ωdSi(j, t) + ωsWi(j, t) + ωfWi−1(j, t)[1 − Si(j, t) − Wi(j, t)]

+ωfl+[Wi(j − 1, t)][1 − Si(j) − Wi(j)] + ωfl−[Wi(j + 1, t)][1 − Si(j) − Wi(j)], (1)

dWi(j, t)

dt
= ωhSi(j, t) − ωsWi(j, t) − ωfWi(j, t)[1 − Si+1(j, t) − Wi+1(j, t)]

−ωbWi(j, t)[2 − Si+1(j, t) − Wi+1(j, t) − Si−1(j, t) − Wi−1(j, t)]

+ωb[Wi−1(j, t) + Wi+1(j, t)][1 − Si(j, t) − Wi(j, t)]

+ωbl[Wi(j − 1, t) + Wi(j + 1, t)][1 − Si(j, t) − Wi(j, t)]

−ωblWi(j, t)[2 − Si(j + 1, t) − Wi(j + 1, t) − Si(j − 1, t) − Wi(j − 1, t)]

−ωfl+Wi(j, t)[1 − Si(j + 1, t) − Wi(j + 1, t)] − ωfl−Wi(j, t)[1 − Si(j − 1, t) − Wi(j − 1, t)]. (2)

Rate constant numerical value/range (s−1)
ωa 0.1 - 10.0
ωd 0.1
ωh 0 - 250
ωs 145
ωf 55

TABLE I: Rate constants of the NOSC model which have
been extracted from empirical data on single KIF1A experi-
ments [17].

In the steady state under periodic boundary conditions,
S̃ = Si(j, t) and W̃ = Wi(j, t), independent of t and
irrespective of i and j; from eqs.(1) and (2), we get

S̃ =
−Ω̃h − Ω̃s − (Ω̃s − 1)K +

√

D̃

2K(1 + K)
(3)

W̃ =
Ω̃h + Ω̃s + (Ω̃s + 1)K −

√

D̃

2K
, (4)

where K = ωd/ωa, Ω̃h = ωh/ω̃f , Ω̃s = ωs/ω̃f , with
ω̃f = ωf + ωfl+ + ωfl−, and

D̃ = 4Ω̃sK(1 + K) + (Ω̃h + Ω̃s + (Ω̃s − 1)K)2. (5)

The average total density of the motors attached to each
filament of the MT in the steady state is given by

ρ = S̃ + W̃ =
Ω̃h + Ω̃s + (Ω̃s + 1)K −

√

D̃ + 2

2(1 + K)
. (6)

Using the expressions (3) and (4) for S̃ and W̃ , respec-
tively, in the expression

J = ωfW̃ (1 − S̃ − W̃ ) (7)

for the flux of KIF1A motors per lane of the MT highway,



3

 4

 6

 8

 10

 12

 14

 16

 18

 0  0.5  1  1.5  2  2.5

J

ωfl/ωf

MF-ωs/ωf=0.01
MF-ωs/ωf=0.4
MF-ωs/ωf=2.0

Sim-ωs/ωf=0.01
Sim-ωs/ωf=0.4
Sim-ωs/ωf=2.0

 0.3

 0.6

 0.9

 0  1  2
ρ

ωfl/ωf

FIG. 2: (Color online) Flux per lane (and, in the inset, av-
erage density of the motors on each lane) are plotted against
ωfl/ωf for a few values of ωs/ωf . Our mean-field predictions
(labelled MF) are plotted by lines while the discrete data
points (labelled Sim) have been obtained from our computer
simulations of the model.
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FIG. 3: (Color online) Same as in Fig.2, except that the data
are plotted against K for a few values of ωfl/ωf .

we get

J =

ωf

[

K2
−

(

Ω̃h + (1 + K)Ω̃s −

√

D̃

)2]

4K(1 + K)
. (8)

For graphical presentation of our main results, we use
the estimates of the rate constants, listed in table I, which
were extracted earlier [17] from empirical data on single
KIF1A (we use ωh = 125 s−1). Since no estimate of ωfl+

and ωfl− are available, we use ωfl+ = ωfl− = ωfl and
vary the single parameter ωfl/ωf over a wide range to
explore the consequences of different rates of lane chang-
ing. The flux per lane (obtained from (8)) and the aver-
age density ρ (given by (6)) are plotted against ωfl/ωf in
Fig. 2 for several different values of ωs/ωf and compared
with the corresponding simulation data.
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FIG. 4: (Color online) Same as in Fig.2, except that the data
are plotted against ωh/ωf for a few values of K.

Recall that flux is essentially an average of the product
of the density and speed of the motors. For sufficiently
high ωs/ωf , the density ρ is small even in the absence
of lane changing (ωfl = 0) and, consequently, the motors
feel hardly any steric hindrance; increasing ωfl/ωf in this
regime of ωs/ωf has very little effect on the average speed
of the motors and it is the decreasing density that is
responsible for the monotonic decrease of J with ωfl.

In sharp contrast, at sufficiently low values of ωs/ωf ,
J varies non-monotonically with ωfl/ωf . In this regime
of ωs/ωf , at ωfl = 0, the high density of ρ causes steric
hindrances which, in turn, leads to small J . When ωfl

is “switched on”, ρ decreases with increasing ωfl and J
increases up to a maximum because of the weakening
of the hindrance effects. But, beyond a certain range
of ωfl/ωf , the density of motors becomes so low that
the movement of the motors is practically free of mu-
tual hindrance; the decrease of J beyond its maximum is
caused by the further reduction of density. Larger differ-
ence between the predictions of our approximate analyt-
ical calculations and computer simulation data at lower
values of ωs/ωf arises from the fact that the mean-field
approximation neglects correlations which increases with
increasing densitity of the motors.

The above interpretation of trends of variations of J in
Fig. 2 in terms of the corresponding variation of ρ is con-
sistent with the results shown in Figs. 3 and 4. But, why
does ρ decrease monotonically with increasing ωfl/ωf?
Increasing ωfl, keeping all the other rate constants un-
altered, leads to higher overall rate of transitions into
strongly-bound states. Since, detachments of the motors
from the microtubule track take place from the strongly
bound state (see footnote [23]), the steady-state density
is lower for higher values of ωfl/ωf .

An approximate expression for J , which is obtained by
retaining only the terms upto the first order in ωfl in a
Taylor expansion of the right hand side of (8), is given
by
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J = J0 − 4

(

ωfl

ωf

)

J0 +

(

ωfl

2
√

D(1 + K)

)(

[(1 + K)Ωs + K]2 + [(1 + K)Ωs −

√

D]2 − [Ωh −

√

D]2 − [Ωh − K]2
)

+ O(ω2
fl)(9)

where J0 is the flux corresponding to ωfl = 0 (i.e., in the
absence of lane changing). The approximate formula (9)
still provides a reasonably good estimate of the flux even
when ωfl is as large as ωf .

In this communication we have extended the NOSC
model for KIF1A traffic on MT [16, 17] by incorporating
processes which correspond to shifting of the motors from
one protofilament to another. These processes are analo-
gous to lane changing of vehicles on multi-lane highways.
On the basis of analytical treatment and computer simu-
lations of the extended NOSC model, we have predicted
the effects of such lane-changing on J , the steady-state
flux of the KIF1A motors per lane. Over a wide region
of parameter space, J decreases monotonically with in-
creasing value of ωfl, a rate constant for lane-changing.
However, in some regions of parameter space, J varies
non-monotonically with increasing ωfl. We have inter-
preted the results by correlating the observed trends of
variation of J with the corresponding variation of ρ, the
average density of motors on a lane, and establishing the

dependence of ρ on ωfl.
Double-headed conventional kinesin rarely changes

lane [24]. Double-headed dyneins may change lane in-

vitro [25, 26] but, perhaps, not in-vivo [27]. The bound
head of a double-headed motor imposes constraints on
the stepping of the unbound head. Since such constraints
do not exist for single-headed kinesins, KIF1A may find
it easier to change lane. However, KIF1A may dimerize
in-vivo [28]. Therefore, in-vitro experiments with fluo-
rescently labelled KIF1A would be able to test our theo-
retical predictions. In particular, variations of J with K
and ωh (see figs.3 and 4) can be probed by varying con-
centration of KIF1A and ATP molecules, respectively, in
the solution.
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