On the Gene Delivery Efficacies of pH-Sensitive Cationic Lipids via Endosomal Protonation: A Chemical Biology Investigation

Rajkumar Sunil Singh,1,3 Christine Gonçalves,2,3 Pierre Sandrin,2 Chantal Pichon,2 Patrick Midoux,2,* and Arabinda Chaudhuri1,**
1Division of Lipid Science and Technology
Indian Institute of Chemical Technology
Hyderabad 500 007
India
2Centre de Biophysique Moléculaire
Centre National de la Recherche Scientifique
UPR 4301
Rue Charles Sadron
45071 Orléans, Cedex 02
France

Summary

In an effort to probe the importance of endosomal protonation in pH-sensitive, cationic, lipid-mediated, non-viral gene delivery, we have designed and synthesized a novel cholesterol-based, endosomal pH-sensitive, histidylated, cationic amphiphile (lipid 1), its less pH-sensitive counterpart with an electron-deficient, tosylated histidine head group (lipid 2) as well as a third new cholesterol-based, cationic lipid containing no histidine head group (lipid 3). For all the novel liposomes and lipoplexes, we evaluated hyposochemical characteristics, including lipid:DNA interactions, global surface charge, and sizes. As anticipated, lipid 2 showed lower efficacies than lipid 1 for the transfection of 293T7 cells with the cytoplasmic gene expression vector pT7Luc at lipid:DNA mole ratios of 3.6:1 and 1.8:1; both lipids were greatly inhibited in the presence of Bafilomycin A1. This demonstrates the involvement of imidazole ring protonation in the endosomal escape of DNA. Conversely, endosome escape of DNA with lipid 3 seemed to be independent of endosome acidification. However, with nuclear gene expression systems in 293T7, HepG2, and HeLa cells, the transfection efficacies of lipid 2 at a lipid:DNA mole ratio of 3.6:1 were found to be equal to or somewhat lower than those of lipids 1 and 3. Interestingly, at a lipid:DNA mole ratio of 1.8:1, lipids 2 and 3 were remarkably more transfection efficient than lipid 1 in both HepG2 and HeLa cells. Mechanistic implications of such contrasting relative transfection profiles are delineated.

Introduction

The problems of developing a clinically viable, gene-therapeutic approach and designing safe and efficient gene delivery reagents are inseparable from each other; shortcomings in one adversely affect the success of the other [1]. Contemporary gene delivery reagents, more popularly known as “Transfection Vectors,” are broadly divided into two major classes: viral and nonviral. The gene delivery efficiencies of viral vectors are, in general, superior to their non-viral counterparts. However, potential adverse immunogenic aftermath associated with the use of viral vectors is increasingly making nonviral gene delivery reagents the vectors of choice in gene therapy [2]. Use of cationic lipids as a promising alternative to viral transfection vectors has been amply demonstrated in reports by researchers around the globe [3–6], our own reports included [7–9]. The distinct advantages associated with the use of cationic transfection lipids include their (i) robust manufacturability, (ii) ease in handling and preparation techniques, (iii) ability to deliver large DNA molecules, and (iv) low immunogenic response.

The lipid-mediated intracellular transfection pathways presently believed to be cationic [10, 11] begin by endocytic cellular uptake of the lipid:DNA complex (lipoplex). The second step is the release of DNA from an endosome into the cytosol. An important point needs to be emphasized here. The term “endosomal release of DNA into cytosol” (used frequently throughout the text) does not mean a single mechanistic event of the cellular transfection pathway but rather is used in a somewhat broader sense. The mechanistic detail of DNA release from endosomes into cytosol remains elusive. One possibility is that disruption of endosomes liberates lipoplexes into cytosol and that DNA dissociation from the liberated lipoplexes follows as a separate mechanistic event. Alternatively, DNA dissociation from lipoplexes may occur before endosome disruption, during endosome disruption, or not at all. The endosomally released DNA then gets translocated into the cell nucleus so that it can access the nuclear transcription apparatus and is finally expressed in the cytosol. A key cellular barrier impeding the transfection efficacies of cationic lipids is the inefficient release of endosomally trapped DNA into the cell cytosol [10, 11]. Assault from the various hydrolytic enzymes is, understandably, the fate of a therapeutic foreign gene if it remains endosomally trapped for a long time before being released to the cytosol. In order to protect DNA from such hydrolytic digestion by enhanced endosomal release, Wolff and his coworkers pioneered the design and synthesis of pH-sensitive, cationic transfection lipids containing weakly basic lysosomotropic imidazole head groups [12]. The rationale behind their approach was that the weakly basic imidazole head group, with its pKa, being within the acidity range of endosome lumens (pH 5.5–6.5), acts as a proton sponge while inside the endosome compartments. This so-called “endosomal buffering” is believed not only to inhibit the degradative enzymes (which perform optimally within the acidic pH range of the endosome-lysosome compartments) but also to induce stronger electrostatic repulsions among the protonated imidazole head groups of the cationic liposomes, leading to osmotic swelling and eventual endosomal bursting due to water entry [12, 13]. This elegant approach has subsequently been exploited in designing the next generation...
of cationic transfection lipids [14] and cationic polymers [15–17], the most such design being our own of histidylated cationic lipid [18].

We envisioned that if endosomal protonation of weakly basic head groups indeed plays a major role in the transfection efficacies of pH-sensitive cationic lipids, covalent grafting of an electron-withdrawing substituent in the basic head group should lead to compromised transfection efficacy. With such a rationale in mind, in the present investigation we have designed and synthesized a novel cholesterol-based, endosomal pH-sensitive, histidylated, cationic amphiphile, 1, its less pH-sensitive counterpart, 2, having an electron-deficient, tosylated histidine head group as well as a third new cholesterol-based, cationic lipid, 3, containing no histidine head group (Figure 1). We have evaluated their in vitro gene delivery efficiencies in 293T7, HeLa, and HepG2 cells by using a nuclear-expression gene vector and in 293T7 cells by using a cytoplasmic gene expression vector. Compared to lipid 1, lipid 2 showed poor efficacies in transfecting 293T7 cells with a cytoplasmic gene expression vector (pT7Luc) at lipid:DNA mole ratios of 3.6:1 and 1.8:1, as expected. Their transfection efficiencies were reduced significantly in the presence of Bafilomycin A1, which prevents endosome acidification. This is consistent with the involvement of imidazole ring protonation in the endosomal escape of DNA. However, with nuclear gene expression systems, the transfection efficacies of lipid 2 at a lipid:DNA mole ratio of 3.6:1 was found to be either equal to or somewhat less than those of lipids 1 and 3. Interestingly, at a lipid:DNA mole ratio of 1.8:1, lipids 2 and 3 were remarkably more transfection efficient than lipid 1 in both HepG2 and HeLa cells.
Results and Discussion

Chemistry

Lipids 1–3 were synthesized from the same common synthetic intermediate, 2-aminoethyl-cholesteryl-ether (ACE), prepared conventionally in three steps by conversion of the corresponding alcohol, 2-hydroxyethyl cholesterol ether, to its bromo and azido intermediates; this was followed by reduction (details of synthetic schemes and experimental procedures are provided in the supporting information). Carbonyl-di-imidazole-mediated coupling of N,N′-di-trityl-L-histidine with ACE, acid deprotection of the resulting N,N′-di-trityl-L-histidinyl intermediate, and finally, chloride ion exchange of the functionality substituted by a hydrogen atom (Figure 1C). Di-cyclohexyl-carbodiimide-mediated coupling of N,N′-di-BOC-L-histidine with ACE afforded the di-BOC intermediate (product of step a, Figure 1B; BOC stands for di-tert-butyl-pyrocarbonate). As expected, both the N′-BOC peak (at δ 1.6 ppm) and the N″-BOC peak (at δ 1.4 ppm) in the 1H NMR spectra of the reagent N,N′-di-BOC-L-histidine (commercially available) were present in the 1H NMR spectra of the resulting di-BOC intermediate formed in step a of Figure 1B (1H NMR spectra of this di-BOC intermediate are provided in Figure S3 of the Supplemental Data available with this article online).

The di-BOC intermediate formed in step a of Figure 1B, upon selective histidine-BOC deprotection with 2N HCl/dioxan, afforded the mono-BOC intermediate containing an unsubstituted histidine (the product formed in step b, Figure 1B). In complete agreement with selective removal of the N″-BOC group, the product formed in step b, Figure 1B, showed disappearance of the N″-BOC peak (at δ 1.6 ppm) and retention of the N′-BOC peak (at δ 1.4 ppm) of the starting di-BOC intermediate (1H NMR spectra of this N″-BOC intermediate, formed in step b, Figure 1B, are provided in Figure S4 of the Supplemental Data). Tosylation of this mono-BOC intermediate provided the N″-BOC-N‴-tosyl intermediate II (Figure 1B). The 1H NMR spectra of the intermediate II showed the expected downfield shift for both of the imidazole ring protons adjacent to the N‴-tosyl group (Figure 1B) as compared to their values in the starting unsubstituted histidine intermediate (the observed values were 7.80 (H5-im) and 7.00 (H6-im) for the tosyl intermediate II and 7.70 (H5-im) and 6.82 (H6-im) for the starting unsubstituted histidine intermediate, respectively; 1H NMR spectra are provided in Figures S4 and S5 of the Supplemental Data). These 1H NMR shifts are fully consistent with the similar relative downfield shifts reported previously for both of the adjacent protons of the tosylated histidine molecule in the 1H NMR spectra in comparison to their unsubstituted histidine counterpart [19]. Acid deprotection of II and subsequent chloride ion exchange finally afforded lipid 2, the structural analog of lipid 1 containing an electron-deficient imidazole head group (Figure 1B). The 1H NMR spectra of lipid 2 (provided in Figure S6 of the Supplemental Data) confirmed the disappearance of the nine N‴-BOC protons and retention of both of the downfield-shifted, tosylated imidazole ring protons observed for intermediate II. Similar chemical shifts for H-2 and H-5 protons of the imidazole rings of lipids 1 and 2 are likely to originate from the fact that the acid deprotection step using relatively concentrated trifluoroacetic acid (2:1 trifluoroacetic acid [TFA]:water) provides mainly the dicationic form of lipid 1, whereas the acid deprotection step with diluted trifluoroacetic acid (1:4 TFA:dichloromethane) affords predominantly the mono-cationic form of lipid 2 (Figure 1). Di-cyclohexyl-carbodiimide-mediated coupling of ACE with N″-BOC-alanine, acid deprotection of the resulting product, and finally, chloride ion exchange provided lipid 3, the structural analog of lipid 1 with the histidine functionality substituted by a hydrogen atom (Figure 1C).

Relative Endosomal pH Sensitivities and Physicochemical Characterizations of the Liposomes and Lipoplexes of Lipids 1–3

Relative pH sensitivities of lipids 1–3 in the endosomal acidity range (pH 6.5–5.5) were measured from the extent of surface-potential changes of the corresponding liposomes (1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine [DOPE] was used as the colloid, and the lipid:DOPE mole ratio was 2:1) and lipoplexes across the pH range 7.0–5.4 at lipid:DNA (L:D) mole ratios 3.6:1 and 1.8:1 (zeta potentials, Table 1). The surface potentials of lipid 1 were observed to be significantly higher than those of liposome 2, particularly within the endosomal pH-range (Table 1, z potentials in absence of DNA for lipids 1 and 2 at pH 6.3 and 5.4). Such significantly higher global surface potentials for lipid 1 than for liposome 2 at pH 6.3 and 5.4 demonstrated the more endosomal-pH-sensitive nature of lipid 1 compared to lipid 2. The higher pH sensitivity of lipid 1 compared to lipid 2 most likely originates from the relatively less basic nature of lipid 2 than lipid 1 (as a result of the electron-withdrawing tosyl functionality in the histidine ring of lipid 2). In other words, the extent of endosomal protonation for lipid 1 is likely to be significantly higher than that for lipid 2, thereby conferring enhanced positive surface charge on the liposome 1 at the lower pH end (Table 1). Interestingly, the surface potentials of liposome 3 with no histidine functionality in the head group were found to be highly positive in the entire endosomal-pH range in the absence of DNA (Table 1). The surface potential of liposome 3 in the absence of DNA increased by about 20 mV as the pH decreased from 7.0 to 6.3 (from 37 mV at pH 7.0 to 57 mV at pH 6.3, Table 1). The corresponding increase for liposome 1 was about 40 mV (from ~8 mV at pH 7.0 to 31 mV at pH 6.3, Table 1). This relatively lower increase in surface potential for liposome 3 was consistent with the relatively less endosomal-pH-sensitive character of lipid 3 compared to lipid 1.

According to the current beliefs about an endosomal DNA escape mechanism mediated by pH-sensitive cationic transfection lipids, endosomal release of DNA into the cytosol should critically depend upon efficient protonation of the weakly basic head groups of pH-sensitive lipids in the acidic lumen of endosomes. In other words, efficient cytosolic release of DNA and, therefore, enhanced transfection efficiency is expected from the rela-
tively more endosomal-pH-sensitive lipid 1 (compared to lipids 2 and 3). A careful look at the global surface charges (potential values) of lipoplexes 1–3 across the pH range 7.0–5.4 at an L:D ratio 3.6:1 revealed that they were remarkably negative for lipoplexes 1 and 2, whereas those for lipid 3 were positive at neutral pH (Table 1). Lipoplex 1 became positive (about 60 mV enhancement) when the pH dropped from 7.0 to 5.4 as a result of the imidazole protonation of lipid 1, whereas lipid 2 remained negative, as expected because of the electron-withdrawing tosyl functionality in the histidine ring of this lipid. The global surface charges of lipoplex 3 increased less (33 mV) between pH 7.4 and L:D of 7.2:1 (not shown), indicating that DNA interactions were positive at neutral the lipoplex sizes by using quasi-elastic laser light scattering (QELS) techniques. As shown by agarose gel electrophoresis, the majority of DNA associated with lipoplex 1 did not migrate at an L:D of 3:6:1 but rather migrated at ratios of 1:8:1 and 0.9:1 (Figure 2). DNA migration was not completely retarded with lipid 2 at an L:D of 3:6:1, but complete retardation was reached at an L:D of 7:2:1 (not shown), indicating that DNA interactions with liposome 1 were stronger than with liposome 2. In contrast, liposome 3 interacted with DNA more strongly than with liposomes 1 and 2. DNA was completely retarded even at an L:D of 1:8:1 with lipid 3.

QELS measurements showed that lipoplexes 1 and 3 (at L:D 3:6:1) exhibited a size of 205 ± 60 nm and 188 ± 55 nm, respectively, whereas lipoplex 2 exhibited a population of 428 ± 166 nm mixed with aggregates of 2058 nm. The size of lipoplexes 1 and 3 increased up to 328 ± 118 nm and 323 ± 50 nm, respectively, under physiological salt concentration, whereas lipoplex 2 aggregated.

Transfection with Cytoplasmic Gene Expression Vector

The cytosolic delivery of DNA can be assessed by the use of T7 cytoplasmic gene expression vector (pT7Luc) in 293T7 cells. These cells stably express a low level of T7 RNA polymerase, an enzyme necessary for the cytoplasmic transcription of genes controlled by the bacteriophage T7 RNA polymerase promoter. Use of this system that is capable of ensuring cytoplasmic expression of transferred genes is an elegant way to avoid nuclear barrier of the transfection pathway [22]. In an effort to probe the relative cytosolic DNA delivery efficiencies, we measured transfection efficacies of lipids 1–3 in 293T7 cells by using pT7Luc. Transfection efficacy of the less pH-sensitive lipid 2 was completely abolished at an L:D ratio of 1:8:1 and was about 10-fold lower than that of lipid 1 at an L:D ratio of 3:6:1 (Figure 3A). If one assumes that the accessibility of the T7 RNA polymerase was the same in lipoplexes 1 and 2 at an L:D ratio of 3:6:1, this result indicates that the endosomal release of DNA was better with lipid 1 than with lipid 2 containing an electron-deficient histidine head group.

Table 1. Zeta Potentials (ζ) of Liposomes and Lipoplexes at Lipid:DNA Mole Ratios 3.6 and 1.8

<table>
<thead>
<tr>
<th>Lipid Potential (mV)*</th>
<th>Lipid/DNA molar ratio</th>
<th>Lipid DNA</th>
<th>Lipid/DNA molar ratio</th>
<th>Lipid DNA</th>
<th>Lipid/DNA molar ratio</th>
<th>Lipid DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 7.0</td>
<td>–8 ± 2</td>
<td>–44.5 ± 6</td>
<td>–44.9 ± 2</td>
<td>–15 ± 8</td>
<td>–28 ± 3</td>
<td>–31 ± 9</td>
</tr>
<tr>
<td>pH 6.3</td>
<td>31 ± 3</td>
<td>–28 ± 4</td>
<td>–40 ± 2</td>
<td>4.3 ± 7</td>
<td>–20.5 ± 2</td>
<td>–21 ± 1</td>
</tr>
<tr>
<td>pH 5.4</td>
<td>36 ± 9</td>
<td>–18 ± 12</td>
<td>–35 ± 2</td>
<td>17 ± 2.5</td>
<td>–13 ± 2</td>
<td>–17 ± 2.5</td>
</tr>
</tbody>
</table>

*The ζ potentials were measured by the laser light-scattering technique with ZetaSizer 3000 (Malvern Instruments, Orsay, France). The system was calibrated with DTS 5050 standard from Malvern.
Cationic Lipids and Gene Delivery

Figure 2. Electrophoretic DNA Migration Related to the Lipid:DNA Mole Ratio

Lanes 2–4 correspond to the migration of lipoplexes at a lipid:DNA mole ratio (L:D) of 3.6:1, 1.8:1, and 0.9:1, respectively. Lane 1 corresponds to the migration of DNA alone. Electrophoresis was conducted for 1 hr under 80 V/cm through a 0.6% agarose gel containing ethidium bromide (1 μg/ml) in 95 mM Tris, 89 mM boric acid, and 2.5 mM EDTA (pH 8.6).

Figure 3 also shows that the luciferase activity was 5- to 500-fold higher with lipid 3 than with lipid 1, depending on the L:D ratio. If one assumes that the accessibility of the T7 RNA polymerase was the same in lipoplexes 1 and 3, this result indicates that the endosomal release of DNA was better with lipid 3 than with lipid 1.

The involvement of acid-mediated endosomal escape of DNA was assessed with Bafilomycin A1 and chloroquine. Bafilomycin A1 prevents endosomal acidification by inhibiting the vacuolar ATPase endosomal proton pump [23]. The luciferase activity with lipids 1 and 2 was inhibited by 85% and 76%, respectively, in the presence of 280 nM Bafilomycin A1, whereas with lipid 3 it was reduced by 45% (Figure 3B). At a lower concentration (55 nM), bafilomycin inhibition of lipids 1 and 2 was 69% and 67%, respectively, whereas that of lipid 3 was 8% (data not shown). This means that the endosomal escape of DNA with lipids 1 and 2 requires endosome acidification and involves the histidine head group of the lipids. Endosomal pH rises upon protonation of the weakly basic imidazole head groups of lipids 1 and 2. Such increased luminal pH could induce membrane reorganization and thereby facilitate DNA release into the cytosol. In contrast, the cytosolic release of DNA with lipid 3 is less dependent on endosome acidification.

In the presence of 100 μM chloroquine, the luciferase activity with lipid 2 was reduced by 45%, whereas that with lipids 1 and 3 was not significantly changed (Figure 3B). The meaning of the effect of chloroquine on the transfection efficiency of lipids 1–3 is more difficult to explain than that of Bafilomycin A1. Indeed, chloroquine is a weak base known to interfere with endocytosis processes, particularly by raising the luminal pH of acidic vesicles and by delaying the delivery to lysosomes and lysosomal degradations. In addition, chloroquine increased transfection efficiency of polyplexes and was found to dissociate polyplexes [24]. As evidenced by Bafilomycin A1 experiments, lipids 1 and 2 need endosome acidification. The decrease of lipid 2 efficiency could come from either chloroquine neutralization of vesicles containing lipoplex 2 or inhibition of the delivery of lipoplex 2 in acidic vesicles. Chloroquine had no effect on lipid 1 because DNA escape might occur at a weak acidic pH in early vesicles where chloroquine accumulation is weak. This is in agreement with the pKa values of the imidazole groups of lipids 1 and 2. As with Bafilomycin A1, chloroquine had no effect on lipid 3 efficiency, confirming that DNA delivery in the cytosol did not depend on endosome acidification. This is also the case for liposomes made with DOTAP. Conversely, the transfection efficiency was reduced in the presence of both Bafilomycin A1 and chloroquine with liposomes made with DC-Chol:DOPE [22].
Transfection Biology in Nuclear-Expression Systems

The transfection profiles of lipids 1–3 at an L:D of 3.6:1 in 293T7, HeLa, and HepG2 cells when nuclear expression vectors were used were found to be not significantly different than those in the cytosolic expression systems described above for 293T7 cells (Figure 4). Although the histidine ring of lipid 2 was less basic than that of lipid 1 and therefore was less likely to undergo endosomal protonation, the transfection efficiency of lipid 2 was observed to be comparable to that of lipids 1 and 3 in HeLa cells and only somewhat less competent in 293T7 and HepG2 cells. The transfection with lipoplex 3 without a histidine head group was comparable to that of the other lipoplexes in all three cell lines. At an L:D ratio of 3.6:1, the less-pH-sensitive lipid 3 was observed to be almost 250-fold more transfection efficient than the pH-sensitive cationic lipid 1 in both HeLa and HepG2 cells. Surprisingly, despite being less pH sensitive than lipid 1, lipid 2 showed remarkably high transfection efficiencies in the three cell lines at L:D 1.8:1. The MTT-based cell viability assay in both HeLa and HepG2 cells (Figure 5) demonstrated that lipids 1–3 were completely nontoxic in the entire concentration range used, thereby ruling out any possible role of cytotoxicity in transfection efficiency modulation for the present lipids.

The transfection profiles of lipids 1–3 at an L:D ratio of 3.6:1 in 293T7 cells in the presence of Bafilomycin A1 or chloroquine when nuclear expression vectors were used (Figure 4D) were not significantly different from those obtained when cytosolic expression vectors were used (Figure 3B). The luciferase activity with lipids 1–3 was inhibited by 93%, 50%, and 57%, respectively, in the presence of 280 nM Bafilomycin A1 (Figure 4D). In the presence of 100 μM chloroquine, the luciferase activity with lipid 2 was reduced by 22%, whereas that with lipids 1 and 3 was not significantly changed. This suggests that the extent of DNA’s escape from the endocytic vesicles is directly related to the transfection efficiency.

Clearly, the relative transfection efficiencies of liposome 2 cannot be explained only on the basis of the pH sensitivity of lipid 2 or lipoplex 2 and of their capacity for endosomal escape. Because there are multiple steps leading to cell transfection, the cytosolic delivery of DNA and the nuclear import of DNA are probably not the only major limiting factors. Indeed, the uptake mechanisms of lipoplexes could also be a critical step. Flow cytometry measurement indicated that the amount of DNA taken up by 293T7 cells was similar regardless of whatever lipoplexes were used (Table 2). Therefore, the relative variation of the transfection efficiency for each lipoplex did not come from their uptake efficacy. Indeed, pH-sensitive cationic lipid mediated endosomal release
Cationic Lipids and Gene Delivery

on the amount of lipoplexes routed via such acidic vesicles and on their acidification extent, an endosomal escape through an acid-dependent membrane destabilization induced by the histidylated lipid 1 can occur. Conversely, lipoplex 2 exhibiting large size (aggregates) could be taken up mainly via clathrin-independent endocytosis, i.e., macroinocytosis or phagocytosis in neutral or weakly acidic vesicles. In this case, cytosolic gene delivery mediated through acidic-vesicle-dependent membrane destabilization is likely to be less sensitive. Moreover, upon internalization, lipoplexes are usually dissociated by the anionic lipids of the endosomal membrane [11, 28]. One can imagine that liposomes and DNA segregate in different vesicles with a rate depending on the strength of DNA-lipid interactions in the lipoplexes. As shown by gel electrophoresis, the interactions of DNA with lipid 3 was higher than with liposome 1, and the lipidoDNA interactions in lipoplex 1 were stronger than those in lipoplex 2 (Figure 2). As a consequence, a rapid segregation can lead mainly to DNA-containing vesicles with no anionic lipids to help them pass into the cytosol, and the transfection efficacy gets seriously compromised.

Significance

In an effort to probe the importance of endosomal protonation in pH-sensitive, cationic, lipid-mediated, nonviral gene delivery, we have designed and synthesized a novel cholesterol-based, endosomal pH-sensitive, histidylated, cationic amphiphile (lipid 1), its less pH-sensitive counterpart having an electron-deficient, tosylated histidine head group (lipid 2), as well as a third new cholesterol-based, cationic lipid containing no histidine head group (lipid 3). For all of the novel liposomes and lipoplexes, we evaluated physicochemical characteristics, including lipid:DNA interactions, global surface charge, and sizes. Using the cytoplasmic gene expression system, we have shown that the cytosolic delivery of DNA with liposome 3 was higher than with liposome 1, and the lipidoDNA interactions in lipoplex 1 were stronger than those in lipoplex 2 (Figure 2). As a consequence, a rapid segregation can lead mainly to DNA-containing vesicles with no anionic lipids to help them pass into the cytosol, and the transfection efficacy gets seriously compromised.

Table 2. Uptake of DNA by 293T7 Cells

<table>
<thead>
<tr>
<th>Lipoplex</th>
<th>2 hr</th>
<th>4 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipoplex 1</td>
<td>18</td>
<td>32</td>
</tr>
<tr>
<td>Lipoplex 2</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>Lipoplex 3</td>
<td>28</td>
<td>41</td>
</tr>
</tbody>
</table>

Lipoplexes were formed at a lipid:DNA mole ratio of 3:6:1.

Figure 5. Cell Viability after Transfection

Colorimetric MTT assay-based percent cell viabilities of lipids 1–3 at lipid:DNA mole ratios 3.6 (black bar) and 1.8 (open bar) in HeLa (A) and HepG2 (B) cells.

Figure 5. Cell Viability after Transfection

Colorimetric MTT assay-based percent cell viabilities of lipids 1–3 at lipid:DNA mole ratios 3.6 (black bar) and 1.8 (open bar) in HeLa (A) and HepG2 (B) cells.
Experimental Procedures

General Procedures and Materials

1H NMR spectra were recorded on a Varian FT 200 MHz, AV 300 MHz or Varian Unity 400 MHz. Carbon tetrabromide, L-histidine, and Amberlyst A-26 were purchased from Lancaster (Morecambe, England). Carbonyldiimidazole was procured from Fluka, Switzerland. N,N-di-trityl-L-histidine was synthesized according to previously published procedures [29]. Unless otherwise stated, all other reagents purchased from local suppliers were of analytical grades and were used without further purification. Column chromatography was performed with silica gel (Acme Synthetic Chemicals, India, 60–120 mesh). Reversed-phase analytical HPLC analysis demonstrated the purity levels of the novel catonic lipids 1–3 to be more than 95% (Figure S2, Supplemental Data). All three final lipids (1–3) were found to be stable in methanol solution and showed no extra-peaks in HPLC after the methanol solution was maintained at room temperature.

Synthesis of Lipid 1, Shown in Figure 1A

Step a. Synthesis of cholesteryl N\textsubscript{3}N\textsubscript{4}, N\textsubscript{4}′-di-trityl-L-histidine-ethylamide, intermediate I

A solution of N\textsubscript{3}N\textsubscript{4}, N\textsubscript{4}′-di-trityl-L-histidine (600 mg, 0.94 mmol) in dry dimethylformamide (3 ml) was taken in a 25 ml two-necked, round-bottomed flask under nitrogen atmosphere and cooled to 0°C. To the cooled solution, carbonyldiimidazole (152 mg, 0.94 mmol) dissolved in dry dimethylformamide (1 ml) was added dropwise, and the reaction was allowed to come to room temperature within a period of 30 min. After the reaction mixture was stirred at room temperature for 2 hr, 2-aminooxyethyl cholesteryl ether, ACE (401 mg, 0.94 mmol) dissolved in dry dichloromethane (2 ml) was added, and the stirring was continued at room temperature for 14 hr. Brine solution (20 ml) was added to the reaction mixture; the reaction mixture was extracted with chloroform (4 x 20 ml); the chloroform extract was washed with water (3 x 30 ml), dried over anhydrous sodium sulfate, and filtered; and the filtrate was concentrated with a rotary evaporator. Column-chromatographic purification (for which 60–120 mesh silica gel was used along with 40–60% (v/v) ethyl acetate in hexane) of the residue afforded the title compound as a white solid (248 mg, 25% yield, R\textsubscript{f} = 0.5 in 60% ethyl acetate in hexane).

1H NMR of I (200 MHz, CDCl\textsubscript{3}) \textit{δ} = 0.70–2.40 [m, 43H, cholesteryl skeleton], 2.60–2.90 [m, 2H, H\textsubscript{2}(His)], 3.00–3.30 [m, 1H, H\textsubscript{1}(Chol)], 3.30–3.55 [m, 4H, -(CONH\textsubscript{2}-CH\textsubscript{2}-)], 3.90–4.00 [m, 1H, H\textsubscript{6}(Chol)], 5.10–5.20 [m, 1H, -(NH-trityl)], 5.25–5.35 [m, 1H, H\textsubscript{5}(Chol)], 6.40 [s, 1H, H\textsubscript{1}(Imi)], 7.00–7.50 [m, 30H, H\textsubscript{(trityl)}], and 7.80 [brs, 1H, H\textsubscript{3}(Imi)].

Step b. Acid deprotection and chloride ion exchange of I

Cholesteryl N\textsubscript{3}N\textsubscript{4}, N\textsubscript{4}′-di-trityl-L-histidine-ethylamide, I (170.8 mg, 0.16 mmol, prepared above in step a) was taken in a 10 ml round-bottomed flask and dissolved in 1.0 ml of TFA:water (2:1, v/v). After the mixture was stirred at room temperature for 2 hr, the solvent was evaporated completely by nitrogen flow. Column-chromatographic purification (for which 60–120 mesh silica gel size were used along with 8%–10% methanol in chloroform, v/v, as the eluent) of the residue afforded the title compound as a white solid (97.7 mg, 99.8% yield, R\textsubscript{f} = 0.5 in 20:80 methanol:chloroform).

1H NMR of lipid I (200 MHz, CDCl\textsubscript{3} + CD\textsubscript{3}OD) \textit{δ} = 0.65–2.40 [m, 43H, cholesteryl skeleton], 3.05–3.15 [m, 1H, H\textsubscript{1}(Chol)], 3.15–3.25 [m, 2H, H\textsubscript{2}(His)], 3.40 [m, 2H, -(CONH\textsubscript{2}-CH\textsubscript{2}-)], 3.55 [m, 2H, -(CONH\textsubscript{2}-CH\textsubscript{2}-)], 4.00–4.10 [m, 1H, H\textsubscript{6}(Chol)], 5.30 [d, 1H, H\textsubscript{5}(Chol)], 7.15 [s, 1H, H\textsubscript{3}(Imi)], and 8.00 [s, 1H, H\textsubscript{1}(Imi)].

FABMS (LSIMS): m/z: 567 [M+] for C\textsubscript{35}H\textsubscript{59}N\textsubscript{4}O\textsubscript{2}.

Synthesis of Lipid 2, Shown in Figure 1B

Step a. Coupling of ACE with N\textsubscript{3}N\textsubscript{4}, N\textsubscript{4}′-di-BOC-histidine

N\textsubscript{3}N\textsubscript{4}, N\textsubscript{4}′-di-BOC-histidine (1.32 g, 3.72 mmol) and N,N-di-ethylamido-4-aminopyridine (456 mg, 3.72 mmol) were taken in a 50 ml two-necked, round-bottomed flask and dissolved in 4 ml of dry dichloromethane under nitrogen atmosphere. Dicyclohexyl carbodimide (769.6 mg, 3.72 mmol) dissolved in 2 ml of dry dichloromethane was added to the solution, and after 10 min of stirring at room temperature, ACE (1.6 g, 3.72 mmol) dissolved in 3 ml of dry dichloromethane was added to the reaction mixture; stirring continued at room temperature for 28 hr. The precipitate obtained was filtered, and the filtrate was concentrated on a rotary evaporator. Column-chromatographic purification (with 60–120 mesh size silica and 50%–60%, v/v, ethyl acetate in hexane as the eluent) of the residue afforded the product N\textsubscript{3}N\textsubscript{4}, N\textsubscript{4}′-di-BOC-histidine-cholesteryl-ethylamide as a white solid (1.04 g, 35% yield, R\textsubscript{f} = 0.5 in 70% ethyl acetate in hexane).

1H NMR of lipid II (200 MHz, CDCl\textsubscript{3}) \textit{δ} = 0.60–2.35 [m, 43H, cholesteryl skeleton], 1.40 [s, 9H, (CH\textsubscript{2})\textsubscript{3}CONCON-H\textsubscript{3}], 2.40 [s, 3H, CH\textsubscript{3}–CH\textsubscript{2}–SO\textsubscript{2}–], 2.85–3.05 [m, 3H, H\textsubscript{3}(His) + H\textsubscript{1}(Chol)], 3.05–3.35 [m, 4H, -(CONH\textsubscript{2}–CH\textsubscript{2}–)], 4.30 [brs, 1H, H\textsubscript{6}(Chol)], 5.22 [brs, 1H, H\textsubscript{5}(Chol)], 5.90 [m, 1H, -NH-BOC], 6.82 [brs, 1H, -(CONH–CH\textsubscript{2}–)], 7.00 [s, 1H, H\textsubscript{1}(Imi)], 7.25 [d, 2H, H\textsubscript{2}(meta, Tos)], 7.70 [d, 2H, H\textsubscript{4}(ortho, Tos)], and 7.80 [s, 1H, H\textsubscript{3}(Imi)].

Step d. Acid deprotection and chloride ion exchange of intermediate II, shown in Figure 2B

N3BOC, N3N4, N4′-Ts-histidine-cholesteryl-ethylamide (120 mg, 0.15 mmol, II, prepared in step c above) was taken in a 10 ml round-bottomed flask and dissolved in 1.25 ml of TFA:dichloromethane (1:4, v/v). After the mixture was stirred at room temperature for 40 min., the solvent was evaporated completely under nitrogen flow. Column-chromatographic purification (with 60–120 mesh size silica and 6%–7%, v/v, methanol in chloroform as the eluent) of the residue and subsequent chloride ion exchange in Amberlyst A-26 with methanol as the eluent afforded lipid II as a white solid (88.3 mg, 80% yield, R\textsubscript{f} = 0.2 in 5% methanol in chloroform).

1H NMR of lipid II (200 MHz, CDCl\textsubscript{3}) \textit{δ} = 0.60–2.30 [m, 43H, cholesteryl skeleton], 2.40 [s, 3H, CH\textsubscript{3}–CH\textsubscript{2}–SO\textsubscript{2}–], 3.00–3.50 [m, 7H,
H₂(Has) + H₂(Chol) + CONH-CH₂-CH₂-CONH = 4.40 [brs, 1H, H₂(Has)], 5.25 [brs, 1H, H₂(Chol)], 7.20–7.40 [m, 3H, H₂(lImi)] + [H-meta, ToaS], 7.80 [d, 2H, H(ortho, ToaS)], 8.00 [s, 1H, H₂(lImi)], and 8.40 [brs, 1H, CONH-CH₂-Chol].

ESMS: m/z: 722 [M]+ for C₃₇H₅₅N₄O₂S.

Synthesis of Lipid 3, Shown in Figure 1C

Step a. Coupling of ACE with N°°°°

N--dico-**L-alanine**

N-Boc-alanine (123.8 mg, 0.70 mmol) and N,N-dimethylaminopyridine (85.4 mg, 0.70 mmol) were taken in a 25 ml two-necked, round-bottomed flask and dissolved in 2 ml of dry dichloromethane under an additional 15 min at room temperature. The lipoplex solution was added to 60 μl of 10 mM HEPES buffer (pH 7.4). After 15 min at room temperature, the liposome solution was mixed with the plasmid (2 μl of 10 mM HEPES buffer [pH 7.4]), and the mixture was incubated for an additional 15 min at room temperature. The lipoplex solution was diluted to 1 ml with serum-free medium, and the NaCl concentration was adjusted to 0.15 M with a 5 M NaCl solution. Cells were washed two times with serum-free culture medium before incubation with 2.5 μg plasmid. When BafloMycin A1 (Sigma) was used, cells were pretreated for 30 min at 37°C with BafloMycin A1, and the transfection was conducted in presence of the drug. When indicated, cells were transfected in the presence of 100 μM chloroquine (Sigma).

After 4 hr at 37°C, the medium was removed, and cells were cultured for 24 hr or 48 hr at 37°C in complete culture medium without any additives.

Luciferase Assay

For measuring luciferase gene expression, the luminescence activity was monitored according to De Wet et al. [31]. The medium was discarded, and cells were washed three times with PBS. The homogenization buffer (200 μl of 8 mM MgCl₂, 1 mM DTT, 1 mM EDTA, 1% Triton X-100, 15% glycerol, and 25 mM Tris-phosphate buffer [pH 7.8]) was poured into each well, and tissue culture plates were kept for 15 min at 20°C. The solution was recovered and spun down (5 min at 800 g). Ninety-five microliters of a 2 mM ATP solution in water. Measurements were done in duplicate. The number of RLU of 1 pg/ml of luciferase was 2000 under these conditions as those used for transfected cells.

Plasmid Uptake

293T7 cells were transfected for 2–4 hr as described above, with lipoplexes made with YOYO-labeled DNA. After being washed, the cells were harvested with trypsin, and the cell-associated fluorescence intensity was measured by flow cytometry (FACS sort, Becton Dickinson).

Toxicity Assay

The cell viability was evaluated with the colorimetric MTT assay [34]. MTT (5 mg/ml PBS) was added to cell culture and incubated for 4 hr at 37°C. MTT converted to an insoluble dye in living cells was then solubilized with acidic isopropanol. The absorbance was measured at 570 nm and expressed as a percentage of the absorbance measured for untransfected cells cultured under the same conditions as those used for transfected cells.

Determination of Apparent pKₐ

For determining the apparent pKₐ, 14–17 μmol (10 mg) of the lipids were dried in chloroform solution in centrifuge tubes under vacuum for 6 hr. The dried lipids were dissolved in 10 ml of water containing 0.5% Triton X-100 (pH 2.5). The aqueous Triton X-100 solution of the lipids was titrated manually by gradual addition of an aqueous 20 mM NaOH solution via a digital pH meter. The pKₐ of the lipids was determined from differential titration curves.

Measurements of Size and Zeta Potentials

Liposomes at 81 μM were prepared by a rapid injection of 15 μl of a 5.4 mM lipid mixture in ethanol (lipid 1/DOPE, lipid 2/DOPE, or lipid 3/DOPE; a lipid:DOPE molar ratio of 2:1) was used) into 200 μl of 10 mM HEPES buffer (pH 7.4). After 15 min at room temperature,
the liposomes were diluted to 1 ml in 10 mM HEPES buffer at various pH levels. Lipoplexes were prepared as described above. The ζ potential of liposomes and lipoplexes was measured by electrophoretic mobility with Zeta Sizer 3000 (Malvern Instruments, Orsay, France). The following parameters were set up: viscosity, 0.891 cP; dielectric constant, 79; temperature, 25°C; F(Ka), 1.50 (Smoluchowski); maximum voltage of the current, 15 V. The system was calibrated with ATS 5050 standard from Malvern. Measurements were done ten times with the zero-field correction. The ζ potentials were calculated with the Smoluchowski approximation. The size of liposomes and lipoplexes was measured by quasi-elastic laser light scattering (QELS) with Zeta Sizer 3000 in 10 mM HEPES buffer (pH 7.4) in the absence and the presence of 0.15 M NaCl ten times with a sample refractive index of 1.59 and a viscosity of 0.89. The system was calibrated with the 200 ± 5 nm polystyrene polymer (Duke Scientific Corps Palo Alto, CA). The diameter of liposomes and lipoplexes was calculated in the automatic mode.

Supplemental Data
Experimental details for the preparation of the common intermediate ACE, reversed HPLC chromatograms for the final lipids 1–3, 1H NMR spectra of lipid 2, and 1H NMR spectra for all intermediates involved in the synthesis of lipid 2 (total 9 pages) are included as supplemental data with this article online at http://www.chembiol.com/cgi/content/full/11/5/713/DC1.

Acknowledgments
Financial support received from the Department of Biotechnology, Government of India (to A.C.) and the Agence Nationale de Recherche sur le Sida (to P.M.) are gratefully acknowledged. R.S.S. thanks the Council of Scientific and Industrial Research (CSIR), Government of India for his doctoral fellowship. This paper is Indian Institute of Chemical Technology Communication No. 033013.

Received: July 9, 2003
Revised: March 8, 2004
Accepted: March 8, 2004
Published: May 21, 2004

References

