

# CONFORMATION OF GLYCEROL MOIETY OF DIPALMITOYL LECITHIN IN $\text{CDCl}_3$ SOLUTION BY $^1\text{H}$ AND $^{13}\text{C}$ NMR

RAMAKRISHNA V. HOSUR AND GIRJESH GOVIL

Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005

## ABSTRACT

The 360 MHz  $^1\text{H}$  spectrum and 67.8 MHz  $^{13}\text{C}$  spectrum of dipalmitoyl lecithin have been analysed by computer simulation to obtain the various  $^1\text{H}$ - $^1\text{H}$  and  $^1\text{H}$ - $^{13}\text{C}$  coupling constants in the glycerol moiety. The results indicate a dynamic equilibrium between several conformations in the glycerol group. Population analysis using the  $^1\text{H}$ - $^1\text{H}$  coupling constants has been carried out.

LIPIDS which form an important constituent of biological membranes have evaded investigation of three-dimensional structure by their peculiar physico-chemical properties. They are amphipathic and are not easily crystallizable. Till today there have been only three crystal structure reports; two on triglycerides:  $\beta$ -trilaurin<sup>1</sup> and  $\beta$ -tricaprin<sup>2</sup> and one on the phospholipid 1, 2-DL-dilauroyl phosphatidyl ethanolamine<sup>3</sup>. Nuclear magnetic resonance (NMR), which in conjunction with theoretical studies gives very valuable results, is thus the main source of information for the structure of lipids. There have been several attempts, using this approach, to study the conformation of phospholipids and triglycerides<sup>4-9</sup>. Birdsall *et al.*<sup>4</sup> have assigned the various resonances in the 220 MHz  $^1\text{H}$  and 25.2 MHz  $^{13}\text{C}$  spectra of dipalmitoyl lecithin in  $\text{CDCl}_3$  and  $\text{CD}_3\text{OD}$  solutions. From the analysis of these spectra they have come to the conclusion that the two protons in the  $\text{CH}_2\text{OP}$  portion of the glycerol part are accidentally equivalent. Very recently Hauser *et al.*<sup>10</sup> have studied the conformation of lysophosphatidyl choline in  $\text{D}_2\text{O}$  at 360 MHz and they conclude that the two protons in the glycerol  $\text{CH}_2\text{OP}$  fragment are nonequivalent. In this paper we report 360 MHz  $^1\text{H}$  and 67.89 MHz  $^{13}\text{C}$  NMR studies on dipalmitoyl lecithin (DPL) in  $\text{CDCl}_3$  solutions. Our results are significantly different from those of Birdsall *et al.*, in the sense that we find the two protons in glycerol  $\text{CH}_2\text{OP}$  fragment to be nonequivalent, the chemical shift difference being 0.044 ppm. Further, the  $^{13}\text{C}$  NMR has given us information about the conformational preferences in the glycerol ester (C-O-COR) groups.

Fig. 1 shows the expanded portion of the 360 MHz  $^1\text{H}$  spectrum corresponding to the glycerol ester portion of DPL. The spectrum has been analysed using LACOON and the simulated spectrum with the best fit values of chemical shifts and coupling constants is shown in Fig. 2. Fig. 3 shows the  $^1\text{H}$  coupled  $^{13}\text{C}$  spectrum of the carbonyl group of the glycerol ester fragment.<sup>11</sup> The previously reported<sup>9</sup>  $^1\text{H}$  coupled  $^{13}\text{C}$  O group spectrum of glycerol trivalerate has helped considerably in the analysis of this spectrum.

The theoretically simulated spectrum is also shown. All the NMR parameters obtained from this analysis are listed in Table I.

TABLE I  
*Chemical shifts\* and coupling constants† in the glycerol moiety*

Chemical shifts (in ppm):

$$\begin{aligned} (\text{H}_2) &= 5.15, (\text{H}'_3) = 4.35, (\text{H}_3) = 4.073 \\ (\text{H}_1) &= 3.913 \text{ or } 3.869, (\text{H}'_1) = 3.869 \text{ or } 3.913. \end{aligned}$$

Coupling Constants:

$$\begin{aligned} {}^2\text{J}(\text{H}_3-\text{H}_3') &= -12.01; {}^3\text{J}(\text{H}_3'-\text{H}_2) = 2.78 \\ {}^3\text{J}(\text{H}_3-\text{H}_2) &= 7.21; {}^3\text{J}(\text{H}_2-\text{H}_1) = 5.2 \text{ or } 6.6 \\ {}^3\text{J}(\text{H}_2-\text{H}_1') &= 6.6 \text{ or } 5.2; {}^3\text{J}(\text{H}_1-\text{H}_1') = -11.5 \\ {}^3\text{J}(\text{H}_1-{}^{31}\text{P}) &= 7.3 \text{ or } 6.8; {}^3\text{J}(\text{H}_1-{}^{31}\text{P}) = 6.8 \text{ or } 7.3 \\ {}^3\text{J}(\text{H}_2-{}^{13}\text{C}) &= 3.4 \\ {}^2\text{J}({}^{13}\text{C}-\text{H}) &= -6.9 \\ {}^3\text{J}({}^{13}\text{C}-\text{H}) &= 3.5 \} \text{ in the } \beta \text{ chain} \\ {}^3\text{J}(\text{H}_3-{}^{13}\text{C}) &= {}^3\text{J}(\text{H}_3-{}^{13}\text{C}) = 2.79 \\ {}^2\text{J}({}^{13}\text{C}-\text{H}) &= -7.18 \text{ and } -7.16 \\ {}^3\text{J}({}^{13}\text{C}-\text{H}) &= 4.31 \text{ and } 4.32 \} \text{ in the } \gamma \text{ chain.} \end{aligned}$$

\* With respect to tetramethyl silane (TMS).

† The coupling constants are accurate within  $\pm 0.1-0.2$  Hz.

## Conformation of glycerol moiety :

The conformation of the glycerol moiety is determined by two dihedral angles  $\theta_1$  and  $\theta_3$  (See reference 5 and Fig. 1 for rotations). The Newman projection diagrams of the three staggered conformations with respect to  $\theta_1$  and  $\theta_3$  are shown in Fig. 4. The vicinal  $^1\text{H}$ - $^1\text{H}$  coupling constants for such configurations, calculated from electronegativity rules<sup>12</sup> are also given in the figure. It is clear that the observed coupling constants in the glycerol moiety do not correspond to any of these values. This implies that the glycerol moiety has a dynamic structure involving more than one conformers, and the observed coupling constants

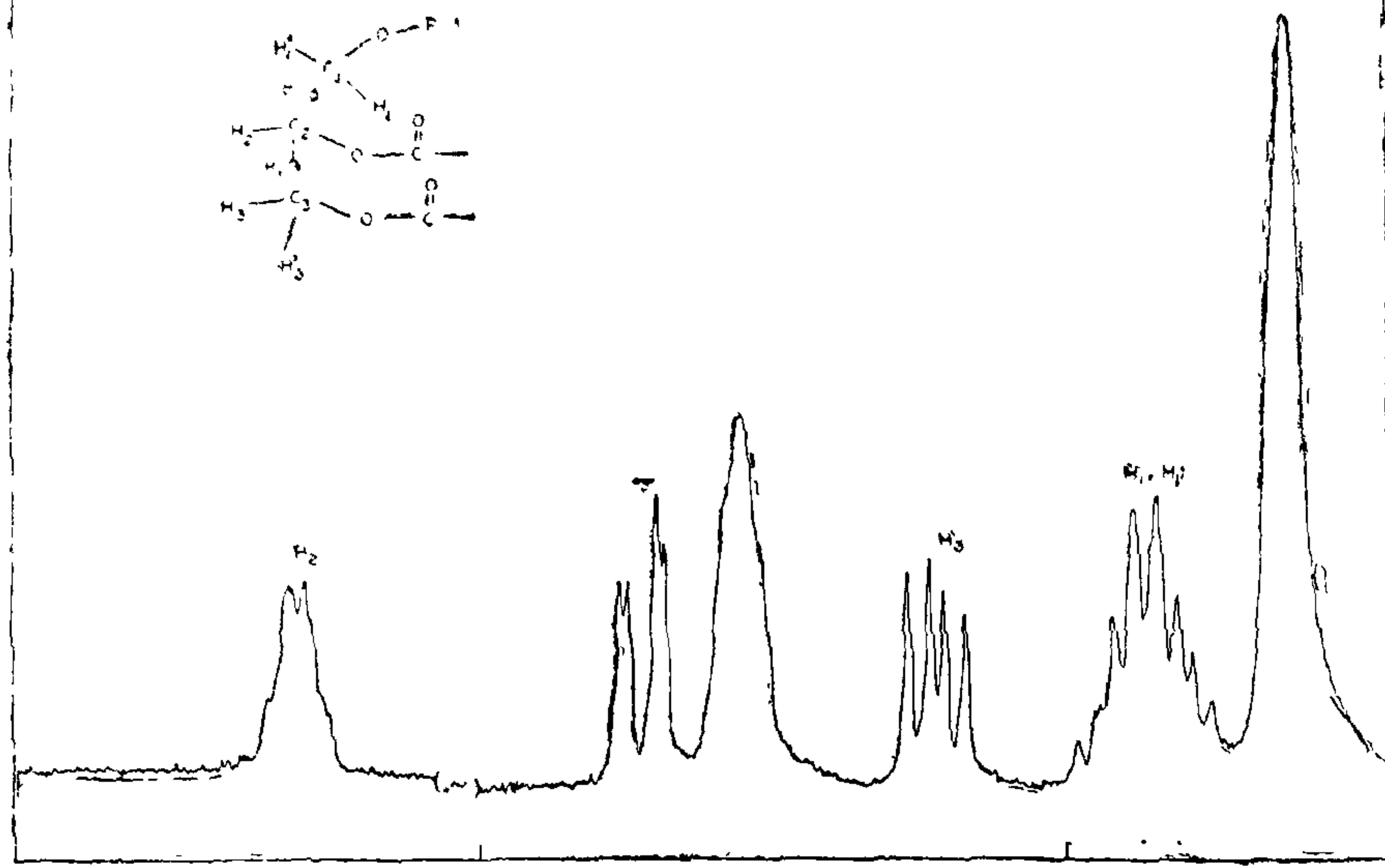



FIG. 1. 360 MHz  $^1H$  FT-NMR spectra of dipalmitoyl lecithin (DPL). DPL was obtained from Sigma Co. Inset is the numbering of the protons on the glycerol fragment (Temperature 20°C).

are time averaged values. One can calculate the populations of the three staggered configurations by solving the equations

$$\begin{aligned} J_{obs} &= J_{g-} P_{g-} + J_t P_t + J_{g+} P_{g+} \\ J'_{obs} &= J'_{g-} P_{g-} + J'_t P_t + J'_{g+} P_{g+} \\ 1 &= P_{g-} + P_t + P_{g+} \end{aligned}$$

where  $P_{g-}$ ,  $P_t$ ,  $P_{g+}$  are the populations of the three configurations and  $(J_{g-}, J'_{g-})$ ,  $(J_t, J'_t)$  and  $(J_{g+}, J'_{g+})$  are the corresponding component coupling constants. It may be mentioned that the results one obtains depends upon the assignment of the protons  $H_1$ ,  $H'_1$  or  $H_3$ ,  $H'_3$  as the case may be. For  $\theta_1$ , if  $J_{obs} = 6.6$  and  $J'_{obs} = 5.2$ , one obtains  $P_{g-}:P_t:P_{g+} :: 31:41:28$ . On the other hand if  $J = 5.2$  and  $J'_{obs} = 6.6$ , one gets  $P_{g-}:P_t:P_{g+} :: 37:20:43$ . However, it is clear that in either case, all the three staggered configurations are substantially populated. In case of  $\theta_3$ , if  $J_{obs} = 2.8$  and  $J'_{obs} = 7.2$  one obtains  $P_t \sim 0$  and  $P_{g-}:P_{g+} :: 50:50$ . The alternative assignment, i.e.,  $J_{obs} = 7.2$  and  $J'_{obs} = 2.8$  gives  $P_t \sim 0$ , and  $P_{g-}:P_{g+} :: 60:40$ . Thus, only two conformations with respect of  $\theta_3$  coexist in  $CDCl_3$  solutions. Similar conclusions have been obtained in our previous study on glycerol trivalerate<sup>6</sup>.

#### Conformations in the Glycerol-Ester Fragment

The relative orientations and the conformations in the  $\alpha$ ,  $\beta$  and  $\gamma$  chains are determined by the dihedral angles  $\alpha_1$  to  $\alpha_6$ ,  $\beta_1$ , to  $\beta_n$  and  $\gamma_1$  to  $\gamma_m$ . Information has been obtained about the dihedral angles  $\alpha_1$ ,  $\beta_1$ ,  $\gamma_1$  (Fig. 4) from the present coupling constant data. Population analysis using  $^1H$ - $^{31}P$  coupling constants gives two results corresponding to two assignments of the protons  $H_1$  and  $H'_1$ . In this case the component coupling constants for the three staggered conformations are obtained using the relation<sup>12</sup>.

$$J = 16.3 \cos^2 \phi - 4.6 \cos \phi.$$

This gives  $J = J' = 1.8$  if  $\alpha_1$  has 't' conformation,  $J = 1.8$ ,  $J' = 21.0$ , if  $\alpha_1$  has 'g-' conformation and  $J = 21.0$ ,  $J' = 1.8$  if  $\alpha_1$  has 'g+' conformation. With these component coupling constants, if one assigns  $J_{obs} = 6.8$  and  $J'_{obs} = 7.3$ , then one obtains the conformer populations as  $t:g^-:g^+ :: 45:29:26$ . With the alternative assignment one obtains the conformer populations as  $t:g^-:g^+ :: 45:26:29$ . Thus it is clear that all the three staggered conformations with respect to  $\alpha_1$  are substantially populated. We differ from Hauser *et al.* in this conclusion. These authors conclude that the polar group has an exclusively 't'

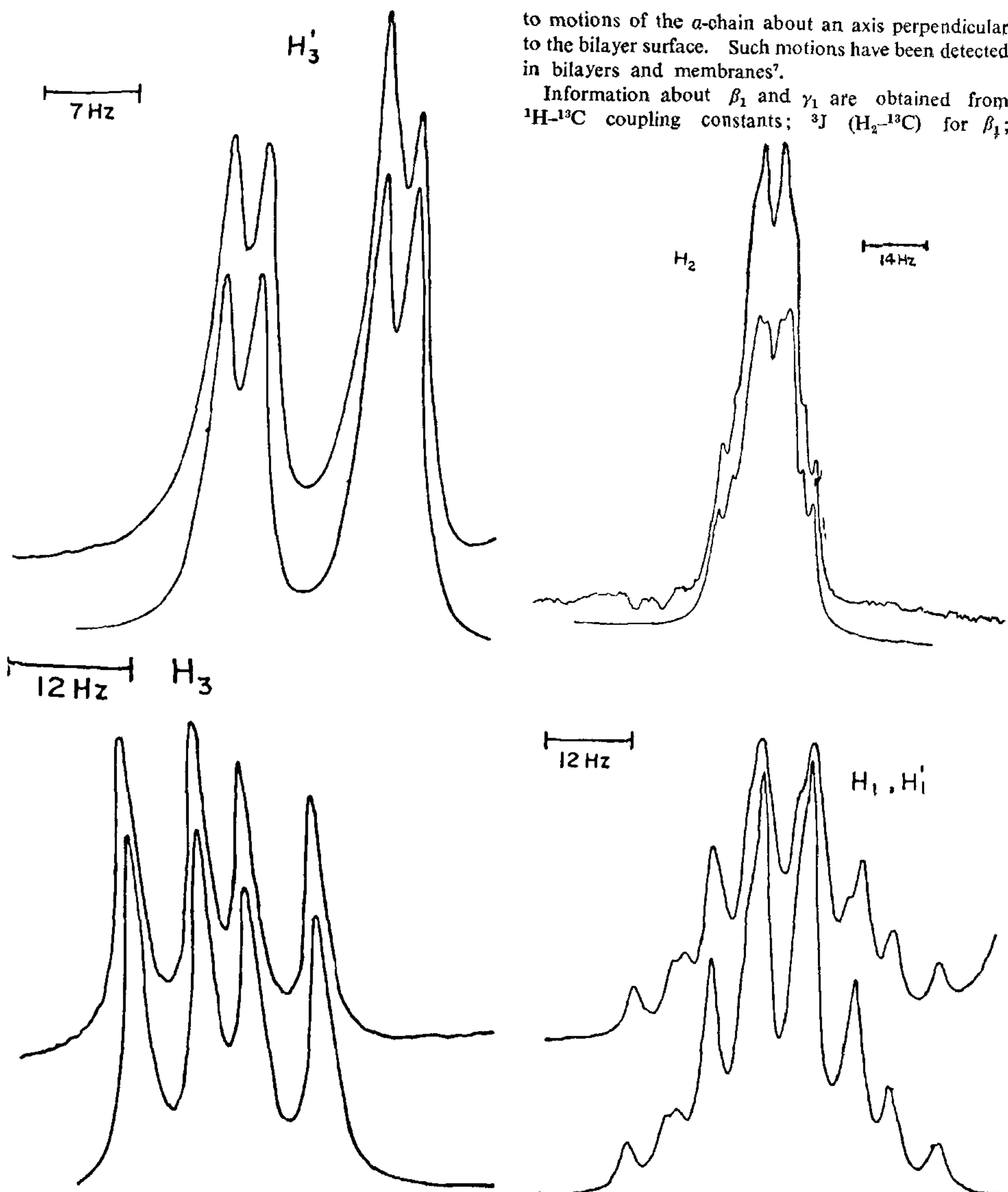



FIG. 2. Experimental and simulated spectra of the different protons. The five protons and the phosphorus nuclei form an ABCDEX system, X being the phosphorous nucleus. The spectra are calculated by the standard LA COON Program.

conformation with respect to  $\alpha_1$ , although their coupling constants are close to the coupling constants reported here. The conformational flexibilities with respect to  $\theta_1$  and  $\alpha_1$ , if present in bilayers as well, lead

( $H_3-^{13}C$ ) and  $^3J(H_2-^{13}C)$  for  $\gamma_1$ . These coupling constants are identical to the corresponding 3-bond coupling constants observed in glyceryl trivalerate<sup>6</sup>. This implies that DPL has close conformational

to motions of the  $\alpha$ -chain about an axis perpendicular to the bilayer surface. Such motions have been detected in bilayers and membranes<sup>7</sup>.

Information about  $\beta_1$  and  $\gamma_1$  are obtained from  $^1H-^{13}C$  coupling constants;  $^3J(H_2-^{13}C)$  for  $\beta_1$ ;

similarities with glyceryl trivaleate with respect to dihedral angle  $\beta_1$  and  $\gamma_1$ . A value of 3.44 for  $^3J(H_2-^{13}C)$

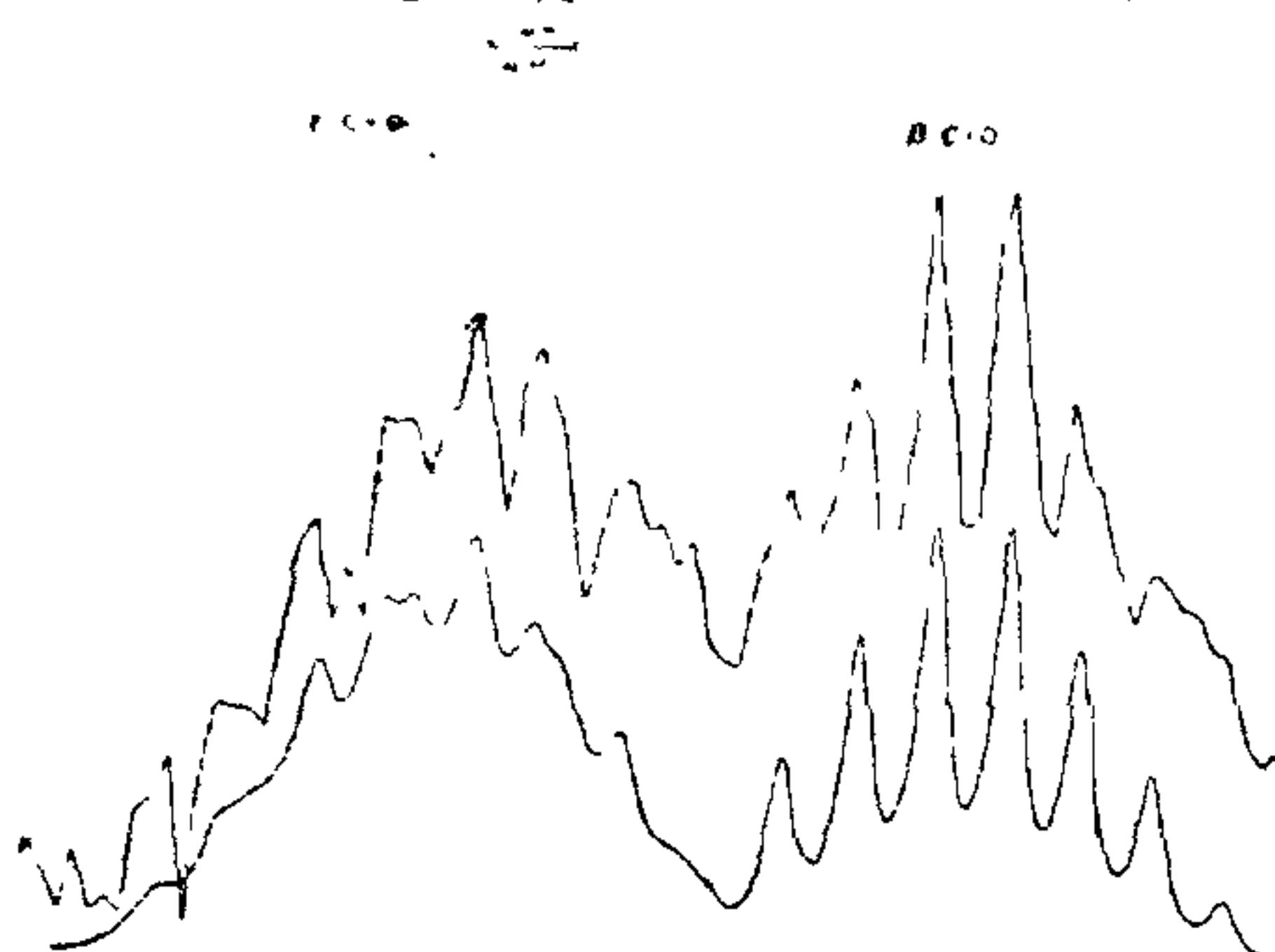



FIG. 3.  $^1H$  coupled  $^{13}C$  spectra of the glycerol-ester region  $CH-O-^{13}C-CH_2-CH_2$ —system constitutes an XABB'CC' 6 spin system while the  $CH_2O-^{13}C-CH_2-CH_2$  constitutes an XABCC'DD' 7 spin system. The two systems have been treated separately and the calculated spectra are then joined together. These two regions are not seen separately in the 25.2 MHz spectrum obtained by Birdsall *et al.*<sup>4</sup>.

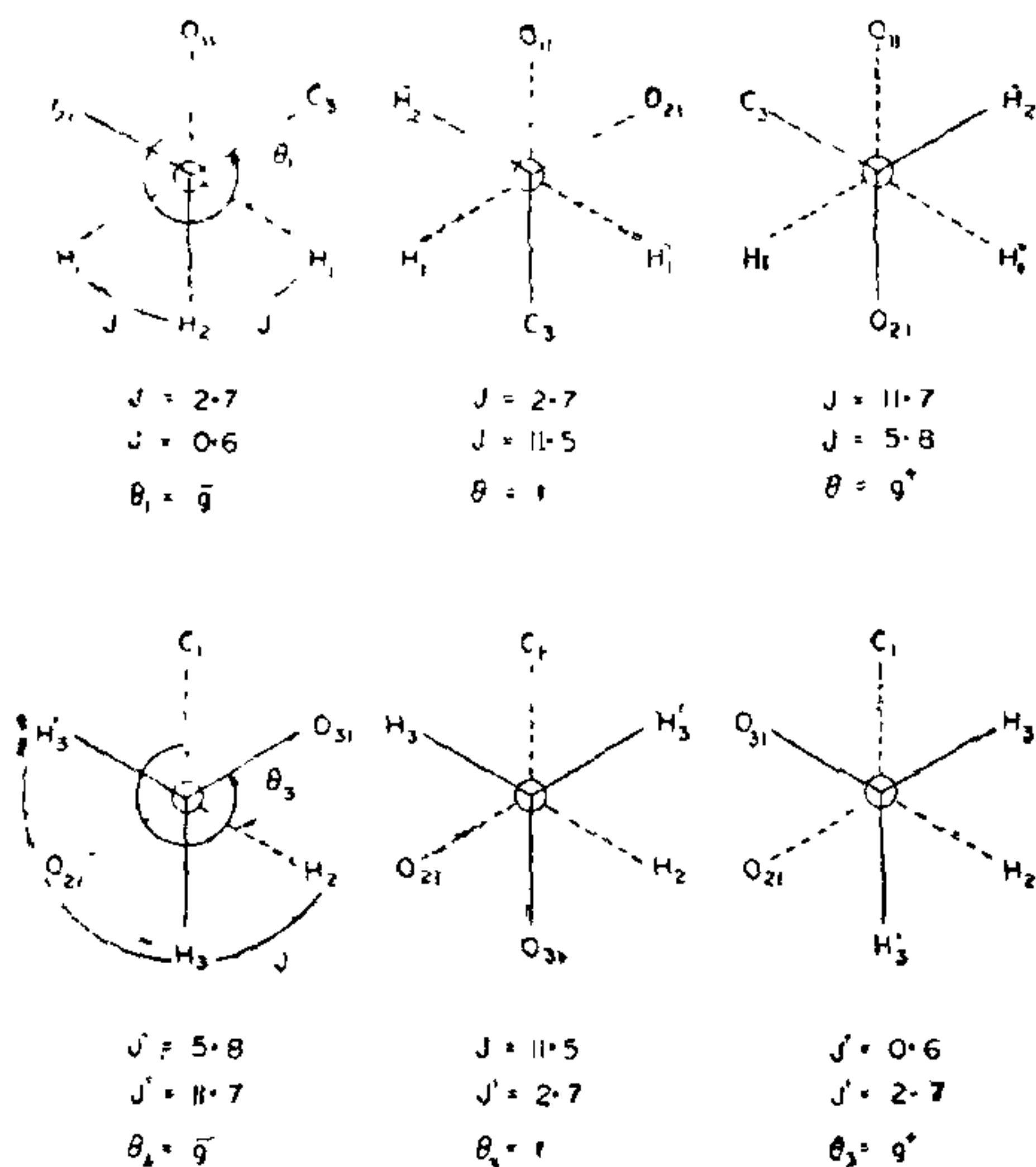



FIG. 4. Newman projection diagrams corresponding to three staggered configurations with respect to  $\theta_1$ ,  $\theta_3$ ,  $\alpha_1$ ,  $\beta_1$  and  $\gamma_1$ . The dihedral angles  $\theta_1$  and  $\theta_3$  are defined by the sequence  $O_{11}-C_1+C_2-C_3$  and  $C_1-C_2+C_3-O_{31}$  respectively. The expected  $^1H$  coupling constants for these structures are also indicated.

suggests values of  $30^\circ$  and  $140^\circ$  for the dihedral angles in the sequence of atoms  $H_2-C-O-^{13}C$ . From Lemieux curves<sup>13</sup>, this corresponds to four different values of  $\beta_1$ :  $90^\circ$ ,  $150^\circ$ ,  $260^\circ$  and  $340^\circ$ . The values of  $260^\circ$  and  $340^\circ$  lead to sterically hindered positions of atoms and hence are unlikely to be present. As regards  $\gamma_1$ , the low and equal values for the two coupling constants  $^3J(H_2-^{13}C)$  and  $^3J(H_3-^{13}C)$ , indicates that  $\gamma_1$  is close to 'trans' conformation<sup>5</sup>.

While the exact populations as estimated by NMR may not be very accurate, the present study establishes considerable flexibilities around the various single bonds in the glycerol moiety of DPL in  $CDCl_3$  solutions. This data supports our earlier predictions that the polar head group has considerable flexibility and it may be unwise to use the crystal structure<sup>3</sup> as the only conformation existing in lipid bilayers<sup>5</sup>.

#### ACKNOWLEDGEMENTS

The authors acknowledge the help of Dr. R. K. Nanda at Stanford Magnetic Resonance Laboratory (supported by NSF grant No. GR. 23633 and NIH grant No. RR 00711) for the 360 MHz  $^1H$  spectrum. Part of the work was done during the stay of one of the authors (GG) at National Institute of Health, USA, and their support and facilities to do NMR is gratefully acknowledged,

1. Larson, K., *Ark. Kemi.*, 1964, **23**, 1.
2. Jensen, L. H. and Mabis, A. J., *Acta Cryst.*, 1966, **21**, 770.
3. Hitchcock, P. B., Mason, R., Thomas, K. M. and Shipley, G. G., *Proc. Nat. Acad. Sci. USA*, 1974, **71**, 3036.
4. Birdsall, N. J. M., Feeney, J., Lee, A. G., Levine, Y. K. and Metcalfe, J. C., *J. Chem. Soc. Perkins II*, 1972, p. 1441.
5. Gupta, S. P., Govil, G. and Mishra, R. K., *J. Theoret. Biol.*, 1975, **51**, 13.
6. Govil, G., Hosur, R. V. and Saran, A., *Chem. Phys. Lipids*, 1978, **21**, 77.
7. Seelig, J., Gally, H. U. and Woglemuth, R., *Biochim. Biophys. Acta*, 1977, **467**, 109.
8. Levine, Y. K., *Prog. Biophys. Molec. Biol.*, 1972, **24**, 1.
9. —, Birdsall, N. J. M., Lee A. G. and Metcalfe, J. C., *Biochemistry*, 1972, **11**, 1416.
10. Hauser, H., Guger, W., Levine, R., Scrabal, P. and Williams, R. J. P., *Biochim. Biophys. Acta*, 1978, **508**, 450.
11. Abraham, R. J. and Gatti, G., *J. Chem. Soc. (B)*, 1969, p. 961.
12. Tewari, R., Nanda, R. K. and Govil, G., *Bio-polymers*, 1977, **13**, 2015.
13. Lemieux, R. U., Nagbhushan, Y. L. and Paul, B., *Can. J. Chem.*, 1970, **50**, 773.

## FISSION TRACK AGES AND URANIUM CONTENTS OF SOME INDIAN MUSCOVITES

M. M. AHMAD AND D. S. SRIVASTAVA

Physics Section, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh 202 001

## ABSTRACT

Fission track ages of muscovite samples from Bihar (984 m.y., 1062 m.y.), Rajasthan (631 m.y., 825 m.y.), Andhra Pradesh (564 m.y.), Nilgiri (810 m.y.) and Delhi (915 m.y.), have been measured and their uranium concentrations have been determined. Samples from Bihar have the lowest uranium content ( $0.5 \times 10^{-11}$  atom/atom) and those from Andhra Pradesh have the highest uranium content ( $16.9 \times 10^{-11}$  atom/atom). Average measured ages are found to be in good agreement with ages determined by other workers using similar and other radiometric methods and are related to the metamorphic orogenic cycles of the regions.

## INTRODUCTION

AGE of muscovite micas has been determined by many workers using the fission track dating technique<sup>1-4</sup>. In many cases the reported fission, track ages are lower than those determined by other radiometric methods. This is known to be due to the loss of "fossil" tracks resulting from the high temperatures encountered during the geological history of the specimen. The fission track age, in fact, gives an idea about the time of crystallisation of the mineral or the time of occurrence of the last overheating event in the history of the specimen since when the tracks have been preserved in it, whichever is later.

In their earlier experiments Fleischer *et al.*<sup>2</sup> had expressed a doubt that precambrian muscovites older than a few hundred million years, could not be dated by this technique, because of very large fading effects on the "fossil" tracks over the geological times. However by carefully counting the over-etched "fossil" tracks Mehta and Nagpaul<sup>5</sup> reported the fission track ages of several precambrian muscovites of India and have obtained meaningful age data by applying the fission track density correction as suggested by Mehta and Rama<sup>6</sup>.

Using a similar method, we have also determined the fission track ages and uranium concentrations of several muscovite samples from the three important mica belts of India, viz., Bihar, Rajasthan and Andhra Pradesh and other precambrian muscovites namely from Nilgiri and Delhi (Masoodpur area). The samples at Sl. No. 1, 2, 5 and 6 (Table I), are from the muscovite books already dated by Mehta and Nagpaul<sup>5</sup> while the other samples are from undated muscovite books obtained from other sources. An inter-laboratory comparison of the results for the common samples dated by the Kurukshetra group has been made and the results have been compared with the known radiometric ages of other pegmatites from the same region. The measured ages are found to correspond to the metamorphic orogenic cycles of the regions.

## EXPERIMENTAL DETAILS

The method of sample preparation and other experimental procedures were basically the same as used by Mehta and Nagpaul<sup>5</sup> and have been described in detail elsewhere<sup>7</sup>.

The fossil track length distribution measurements were carried out after 30 minute etching of the samples in 48% HF at 25°C. These were compared with the track length distribution for the induced fission tracks in the samples after reactor irradiation and similar etching for the purpose of finding the track fading correction. Our separate laboratory track annealing experiments<sup>7</sup> using the reactor irradiated muscovites have also revealed that practically there is a negligible reduction ( $\leq 5\%$ ) in the track density corresponding to a track length reduction of about 25%. A larger track length reduction requires a track density fading correction to be applied. A normalised track length versus normalised track density curve was plotted to assess the track fading correction. However, in none of our samples, was there a track length reduction of more than 20%. The mean track length of neutron induced fission tracks in muscovite was found to be 10.5 microns and has been used for calculating the uranium contents.

The fossil and induced fission track densities  $\rho_f$  and  $\rho_i$  respectively, in the muscovite samples were determined after over etching them for three hours in 48% HF at 25°C. The standard glass dosimeters of Fleischer *et al.*<sup>8</sup>, were used to measure the thermal neutron dose. For these dosimeters under standard conditions of etching (5 sec, 48% HF, 22°C), the integrated neutron dose,  $\phi$ , is related to the track density  $\rho_i$ , by the formula  $\phi = 2.26 \times 10^{11} \rho_i$ . The following equations were used for age, A, and uranium content, C(U), calculations :

$$A = 6.57 \times 10^6 \ln \left\{ 1 + 2.1 \times 10^{-4} \frac{\rho_f \rho_0}{\rho_i} \right\} \text{ years}$$

$$C(U) = 3.18 \times 10^4 (\rho_i \phi) \text{ gm}'\text{gm}^{-2} = 2.534 \times 10^4 (\rho_i \phi) \text{ atom}'\text{atom}^{-1}$$