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Abstract. We study the rheology of semi-dilute solutions of the sodium salt of calf-thymus DNA
in the linear and nonlinear regimes. The frequency response data can be fitted very well to the
hybrid model with two dominant relaxation timesτ0 andτ1. The ratio(τ0=τ1)� 5 is seen to be fairly
constant on changing the temperature from 20 to 30ÆC. The shear rate dependence of viscosity can
be fitted to the Carreau model.
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1. Introduction

Deoxyribonucleic acid (DNA) is a key constituent of the nucleus of living cells and is com-
posed of building blocks called nucleotides consisting of deoxyribose sugar, a phosphate
group and four nitrogenous bases – adenine, thymine, guanine and cytosine [1]. X-ray
crystallography shows that a DNA molecule is shaped like a double helix, very much like
a twisted ladder [2]. The ability of DNA to contain and transmit genetic information makes
it a very important biopolymer that has been the subject of intense physical studies in re-
cent years. DNA macromolecules are charged and depending on their molecular weight,
the conformation could vary between a rigid rod and a flexible coil. The ability of flexi-
ble DNA molecules to twist, bend and change their conformation under tension or shear
flow have been extensively studied both theoretically and experimentally [3,4]. The linear
viscoelastic moduli of calf-thymus DNA solutions have been measured by Mason, Dho-
ple and Wirtz at room temperature in the concentration range 1–10 mg/ml [5]. They have
noted that the measured viscoelastic spectra do not fit the standard reptation model for flex-
ible polymers [6]. Measurements of the nonlinear rheology of entangled T4 Bacteriophage
DNA molecules [7] show a plateau region in the stressσ after an initial Newtonian regime
at very low shear rateṡγ , similar to the flow curves seen in surfactant gels [8,9].

The highly charged DNA macromolecule is a typical polyelectrolyte and the effects of
the long-range and intra-chain Coulomb interactions on its structure and dynamics are sig-
nificant. The structure of short DNA fragments in aqueous salt solutions have been studied
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using small-angle neutron scattering [10]. Direct mechanical measurements of the elas-
ticity of singleλ -DNA molecules show deviations from the force curves predicted by the
freely-jointed chain model [11], leading to the conclusion that DNA in solution has sig-
nificant local curvature [12]. Measurements of relaxation times of a single DNA molecule
manipulated using laser tweezers and observed by optical microscopy [13] show a quali-
tative agreement with the dynamic scaling predictions of the Zimm model [14]. In recent
years, experiments have been carried out on the electrohydrodynamic instability observed
in DNA solutions under the action of a strong electric field [15]. Electric fields of the
proper frequency and amplitude lead to the formation of islands of circulating molecules,
with the islands arranging into a herring-bone formation. Recent simulation studies on
short, supercoiled DNA chains show that DNA is a glassy system with numerous local
energy minima under suitable conditions [16].

In this paper, we discuss our recent results on the linear and nonlinear rheology of semi-
dilute solutions of the sodium salt of calf-thymus DNA. We fit our frequency response data
to the hybrid model [17] and the shear viscosity vs. shear rate data to the Carreau model
[18]. These models are essentially for dilute polymer solutions and the value of the radius
of gyrationRg of the DNA macromolecules calculated from the fits to the hybrid model
[17] are highly overestimated. We believe that the polydispersity of the DNA chains, the
overlap of the macromolecules in the semi-dilute concentration regime and the electrostatic
interaction between the ionized groups also need to be considered for a more accurate
theoretical description of our experimental results.

2. The hybrid model theory

The hybrid model theory incorporating Zimm dynamics has been used in the dilute poly-
electrolyte and polymer literature to explain the behavior of the reduced elastic modulus
G0

R(ω) =limc!0 G0(ω) and the reduced viscous modulusG00

R(ω) =limc!0[G
00(ω)�ωηs]

observed in aqueous solutions of sodium poly(styrene sulphonate) [19] and dilute aqueous
samples of polymers such as separan AP-30, xanthan gum, carboxymethyl cellulose and
Polyox WSR301 [20]. Here,ηs is the solvent viscosity andc is the polymer concentra-
tion. The hybrid model is characterized by a series of relaxation times spaced according to
the Zimm theory [14], together with one additional longer relaxation timeτ 0. The Zimm
model treats a single polymer chain in the framework of a bead-spring model, withN beads
connected byN�1 springs, in the presence of hydrodynamic interactions. In the limit of
infinite dilution, the intrinsic moduli for this model may be written as [17]
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whereτp = τ1=p3ν , p= 1;3;5 ... and 3ν = 1:66 according to the Zimm model. We recall
that in the Zimm model, only the time scalesτ p, which correspond to internal motions
such as flexure of the chain, contribute to the stress relaxation process.G0 andG1 may
be identified as the mechanical moduli that characterize the end-to-end rotational motion
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and the flexural modes of the DNA chain respectively.m2 is a modulus characterizing the
high-frequency viscous dissipation.N is the number of relaxation modes spaced accord-
ing to the Zimm theory [14]. Interestingly, for the experimental data and their fits to the
hybrid model,N = 1 is sufficient to ensure a good fit. The experimental data for the elastic
and viscous moduli of poly(2-vinyl pyridene) [21] have been fitted to the predictions of
the Zimm model. The peaks in the viscoelastic moduli observed as a function of poly-
electrolyte concentration have been explained in terms of electrostatically driven polymer
coil expansion and contraction. Computer simulations have shown that on increasing the
charge on the macromolecule, the longest relaxation timeτ 1 in the Zimm spectrum [22] is
enhanced.

The hybrid model was proposed by Warren, Schrag and Ferry [17] to explain the infinite-
dilution viscoelastic properties of the helical molecule PBLG (poly-γ-benzyl-L-glutamate).
The value ofτ0 for infinitely dilute solutions of PBLG, obtained from the fits ofG0

R and
G00

R to eqs (1) and (2) respectively, has been associated with the rotational diffusion of the
macromolecule. The fitted value ofτ1 has been explained in terms of the flexural modes of
vibration of the helix damped by solvent viscosity. Okamotoet al [23,24] have explained
the viscoelastic properties of dilute solutions of the polyelectrolytes poly(acrylic acid) and
poly(methacrylic acid) using this model, but without extrapolation to infinite dilution. The
authors conclude that the relaxation of these polyelectrolytes involves the rotation of the
whole macromolecule, together with internal configurational changes.

3. Experiment

We have carried out rheometric measurements on semi-dilute solutions of the sodium salt
of calf-thymus DNA, dissolved in tris-EDTA buffer (pH adjusted to physiological condi-
tions of 7.9) at a concentration of 1 mg/ml (overlap concentration of calf-thymus DNA is
c? = 0:35 mg/ml for a good solvent [5]). The DNA was purchased from Sigma Chemicals,
India in lyophilized form. Calf-thymus DNA is a linear, double-stranded macromolecule,
and consists of�13,000 base pairs. Since 1 nucleotide� 324.5 Da, the estimated molecu-
lar weight of calf-thymus DNA is�8.4�107 Da. We have dispersed the lyophilized DNA
powder in an aqueous buffer consisting of 10 mM tris, 100 mM NaCl, 50 mM each of
NaCl and KCl and 5 mM MgCl2. The samples prepared in this way were allowed to equi-
librate for a day at 4ÆC to inhibit degradation. The rheological measurements have been
conducted at 20, 25 and 30ÆC in an AR-1000N Rheolyst stress-controlled rheometer (T. A.
Instruments, UK) equipped with temperature control and software for shear rate control.
We have used a stainless steel cone-and-plate assembly with a diameter of 4 cm and an
angle of 1Æ590 as the shearing geometry. All the experiments reported below have been
carried out on a sample of concentration 1 mg/ml. Because all experiments have been per-
formed on the same sample, we have allowed sufficient time between runs to ensure that the
sample relaxes fully to its equilibrium state before the start of the subsequent experiment.
For the oscillatory experiments, the rheometer has the provision for showing the wave form
of the response on the application of an oscillatory stress. Care has been taken to ensure a
distortion-free response to the applied oscillatory stresses for all the experiments.
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4. Results

In this section, we discuss our experimental results on the linear and nonlinear rheology of
calf-thymus DNA (concentrationc= 1 mg/ml) at 20, 25 and 30ÆC.

4.1Linear rheology

Figures 1–3 show the frequency response data (i.e. the measuredG 0(ω) and [G00(ω)�
ωηs] vs. the angular frequencyω , where the solvent viscosityη s = 1� 10�3 Pa) at 20,
25 and 30ÆC and the corresponding fits (shown by solid lines) to the hybrid model with
p = 1 (eqs (1) and (2)) [17] over almost three decades of angular frequency. Insets of
figures 1–3 show the calculation of the oscillatory stressσosc lying in the linear regime.
BecauseG0(ω) andG00(ω) do not change appreciably over the range 8 mPa to 30 mPa at
an oscillatory frequencyω of 0.628 rads�1, we have controlled the oscillatory stress for
subsequent frequency response experiments atσosc= 25 mPa.

The values of the fitting parametersG0, τ0, G1, τ1 andm2 are shown in table 1. The
measuredG0(ω) and [G00(ω)�ωηs] could not be fitted to the Tanaka model [25] for rigid
rods given byG0

R(ω) = G0ω2τ2
0(1+ω2τ2

0)
�1 andG00

R(ω) = ωτ0[G0(1+ω2τ2
0)
�1 +m2]

over the entire frequency range for the frequency response data corresponding toT = 20,
25 and 30ÆC [26]. This can be expected because the DNA samples we have used have
persistence lengths that are much shorter than the lengths of the DNA chains. It has been
pointed out earlier by Mason, Dhople and Wirtz [5] that the frequency response data for
calf-thymus DNA could not be fitted to the standard models of reptation dynamics. We
also find that the data forG0(ω) and G00(ω) [26] cannot be fitted to the Doi–Edwards
model [6,27] for flexible polymers. For concentrationsc higher than the overlap concen-
trationc?, we would expect the charges on the DNA chains and hydrodynamic interactions
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Figure 1. Elastic modulusG0(ω) (open circles) and the viscous modulus[G00(ω)�

ωηs] (open triangles) vs. angular frequencyω at T = 20ÆC andσosc= 0:025 Pa. The
solid lines show the fits to the hybrid model [17]. The inset shows the plot ofG0(ω) and
G00(ω) vs. the oscillatory stressσoscat ω = 0:628 rads�1.

688 Pramana – J. Phys.,Vol. 58, No. 4, April 2002



Rheology of semi-dilute solutions

0.01 0.1

0.01

 

 

 G'
 G''

G
', 

G
'' 

(P
a)

σosc
 (Pa)

0.1 1 10
1E-4

1E-3

0.01

0.1

 

 

G
', 

[G
''-

ω
η s]

 (
P

a)

ω (rads -1)

Figure 2. Elastic modulusG0(ω) (open circles) and the viscous modulus [G00(ω)�

ωηs] (open triangles) vs. angular frequencyω at T = 25ÆC andσosc= 0:025 Pa. The
solid lines show the fits to the hybrid model [17]. The inset shows the plot ofG0(ω) and
G00(ω) vs. the oscillatory stressσoscat ω = 0:628 rads�1.
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Figure 3. Elastic modulusG0(ω) (open circles) and viscous modulus [G00(ω)�ωηs]
(open triangles) vs. angular frequencyω at T = 30ÆC andσosc= 0:025 Pa. The solid
lines show the fits to the hybrid model [17]. The inset shows the plot ofG0(ω) and
G00(ω) vs. the oscillatory stressσoscat ω = 0:628 rads�1.

to be screened. The observation of the failure of the reptation model may be explained in
terms of the broad distribution in the lengths of the DNA chains that the model does not
account for.

In figure 4, we have plotted the dynamic viscosityη ?(ω) vs. ω , where η?(ω) =
(G02+G002)0:5=ω at 20ÆC (up-triangles), 25ÆC (circles) and 30ÆC (down-triangles).
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Table 1. Values of the fitting parametersG0, τ0, G1, τ1 andm2 obtained by fitting the
hybrid model toG0(ω) and [G00(ω)�ωηs] respectively atT = 20, 25 and 30ÆC.

TÆC τ0 (s) G0 (Pa) τ1 (s) G1 (Pa) m2 (Pa)

20 G0 2.33 0.021 0.430 0.080
20 G00 1.75 0.027 0.330 0.096 0.326

25 G0 1.15 0.0344 0.246 0.097
25 G00 1.140 0.0386 0.234 0.1028 0.383

30 G0 1.31 0.021 0.230 0.062
30 G00 1.14 0.020 0.22 0.069 0.335
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Figure 4. Dynamic viscosityη?(ω) vs. angular frequencyω at T = 20ÆC (down-
triangles), 25ÆC (circles) and 30ÆC (up-triangles).

4.2Nonlinear rheology

Figure 5 shows the plot of stressσ vs. shear ratėγ at 20ÆC (up triangles), 25ÆC (circles)
and 30ÆC (down triangles) respectively. Initially, up tȯγ � 2s�1, the slope of the flow
curve is very close to the Newtonian value of 1. Atγ̇ � 2s�1, shear thinning occurs and
the fits toσ � γ̇α give α = 0:55. In figure 6, we have plotted the shear viscosityη( γ̇)
versus shear ratėγ at (a) 20ÆC, (b) 25ÆC and (c) 30ÆC. The plots of viscosity are found to
fit well to the Carreau model [18] written asη( γ̇) = η0=(1+ γ̇2τ2

R)
m. This expression for

the steady shear viscosity was derived from a standard molecular network theory, where
polymer molecules are considered to form a network of segments of varying lengths, linked
together by temporary linkages. The values of the parameters obtained by fitting the shear
viscosity data to the Carreau model have been listed in table 2. Note that the values ofη 0
obtained from these fits are found to decrease with increasing temperature. However, the
temperature window is not wide enough to ascertain a possible Arrhenius dependence of
the viscosities.
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Figure 5. Plot of the stressσ vs. shear ratėγ at T = 20ÆC (denoted by up-triangles),
25ÆC (circles) and 30ÆC (down triangles). The solid lines show the linear fits to the
plots in the two regimes given bẏγ < 2 andγ̇ �2. Note that aṫγ < 2, the slope of the
fit is very close to 1.

Figure 6. Plot of the shear viscosityη(γ̇) vs. shear ratėγ at (a) T = 20ÆC, (b) 25ÆC
and (c) 30ÆC. The solid lines are the fits to the Carreau model.
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Table 2. Values of the fitting parametersη0, τR andm obtained by fitting the Carreau
model [18] toη(γ̇) vs. γ̇ atT = 20, 25 and 30ÆC, respectively.

TÆC η0 (Pa-s) τR (s) m

20 0.060� 0.002 0.499� 0.145 0.2425
25 0.053� 0.002 0.34� 0.11 0.2422
30 0.041� 0.08 0.36� 0.08 0.2430

5. Discussions of the results

Figure 7 shows the plots of the fitting parametersG0, G1, τ0, τ1 andm2 obtained by fitting
the frequency response data atT = 20, 25 and 30ÆC to the hybrid model [eqs (1) and (2)]
vs. the temperature. It is seen that the relaxation timesτ0 andτ1 decrease monotonically
on increasing temperature, while the percentage changes inG0 andG1 are less significant
than the changes inτ0 andτ1 (table 1).τ0 may be associated with the rotational diffusion
of each DNA macromolecule as a whole, whereas the time scaleτ1, which corresponds to
the internal degrees of freedom of DNA, might signify the time scale of the longest flexural
mode of the macromolecule. The ratio of the two relaxation times(τ 0=τ1)� 5 is found to
be fairly independent of the temperature. In an experimental study on the helical macro-
molecule PBLG [17], it has been shown that the relaxation spectrum, which may be fitted
to the hybrid model, consists of a dominant relaxation timeτ 0 describing the end-over-end
rotation of the macromolecule, and a timeτ1 associated with its flexural bending mode.
Assuming calf-thymus DNA to be a flexible coil undergoing predominantly rotational dif-
fusion, its radius of gyration estimated from the relationτ0 = 0:325�63=2(ηsRg=kBT) [27]
is found to be 1.6µm at 25ÆC. This value overestimates the predicted value ofRg� 0:4 µm
for calf-thymus DNA [5]. For a rigid polymer, the rotational relaxation timeτ 0 may be
written asτ0 = (πηsL3=18kBT)[ln(2L=d)] [28], whereL is the length of the polymer and
d is its diameter. Taking(2L=d) = 100, a rotational relaxation time of 1 s at 25ÆC gives
an estimate of lengthL � 2 µm. Owing to the large configurational entropy of DNA and
the fact that the DNA is in the semi-dilute concentration regime, the possibility of DNA
macromolecules existing as rigid rods is extremely remote. This is further confirmed by
the poor fit of the frequency response data to the Tanaka model for rigid rods [25]. The
reason behind the discrepancy of the calculatedRg with other estimates [5] can be due
to the application of the hybrid model to a finite concentration of DNA, this model being
ideally applicable only in cases of infinite dilution. Clearly, the effects of the overlap of
the DNA macromolecules need to be incorporated in the theory. The Rouse model [27]
rather than the Zimm model is obviously a more suitable model to describe the results.
We have usedp = 1 to fit the data. Use of larger integer values ofp may establish the
dynamics of the DNA chains more clearly. However, due to the limited extent of our data,
we have not fit the elastic and viscous moduli data to the hybrid model forp= 1. We recall
that in the Rouse model, the time scales in the relaxation spectrum may be expressed as
τp � (τ1=p2), wherep = 1;3;5 etc. The polydispersity of the DNA chains and the elec-
trostatic interaction between the ionized surface groups also need to be considered for an
accurate description of our results. In spite of these shortcomings in our explanation ofτ 0
andτ1, we note that the frequency response data fits remarkably well to the hybrid model
over almost three decades of angular frequency.
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Figure 7. Plot of the fitting parametersG0, G1, τ0, τ1 andm2 obtained from the fits to
the hybrid model [17] of the frequency response data atT = 20, 25 and 30ÆC. The ratio
τ0=τ1, which is also plotted, shows a negligible variation with temperature.

Dilute solutions of rod-like macromolecules are known to show a power-law shear thin-
ning after an initial Newtonian regime at loẇγ [20,29]. The viscosity data can be fitted to
the Carreau model [18], with the fitted values ofη0 increasing with decrease in tempera-
ture. Power-law shear thinning in nonlinear flow experiments and Zimm dynamics in the
linear rheology data has been previously observed in dilute solutions of polymers such as
Separan AP30, xanthan gum etc. by Tam and Tiu [20].

6. Conclusions

We have studied the linear and nonlinear rheology of semi-dilute solutions of calf-thymus
DNA. The frequency response data show excellent fits to the hybrid model proposed by
Warren, Schrag and Ferry [17]. In order to understand clearly the physical significance
of τ0 andτ1, we need to extend the results of the hybrid model to the case of semi-dilute
polylectrolytes. The electrostatic repulsion between ionizable groups and the polydisper-
sity of DNA macromolecules need to be accounted for. The flow curves at all temperatures
may be divided into two regimes: an initial Newtonian regime atγ̇ < 2s�1 followed by a
region of shear thinning aṫγ � 2s�1, as indicated byα = 0:55 in the fits toσ � γ̇0:55 at all
temperatures. The shear viscositiesη(γ̇) measured in these experiments and plotted vs.γ̇
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can be fitted to the Carreau model [18]. It will be interesting to study the rheology of this
system as a function of DNA concentration, in order to understand the changes in the rhe-
ological parameters across the overlap concentrationc?. A study of the rheology of DNA
for various solvent viscosities, achieved by the addition of cosolvents, may be instructive
as it would allow us to explore the behavior of the sample over a larger range of reduced
frequencies.
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