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Abstract. Using intensity autocorrelation of multiply scattered light, we show that the increase
ininterparticle interaction in dense, binary colloidal fluid mixtures of particle diameters 0-115 um
and 0-089 ym results in freezing into a crystalline phase at volume fraction ¢ of 0-1 and into
a glassy state at ¢ = 0-2. The functional form of the field autocorrelation function g'*)(t) for the
binary fluid phase is fitted to exp[ — y(6k3D,..t)"/*] where k,, is the magnitude of the incident
light wavevector and 7 is a parameter mverscly proportional to the photon transport mean free
path I*. The D, is the [* weighted average of the individual diffusion coefficients of the pure
species. The [* used in calculating D, was computed using the Mie theory. In the solid (crystal or
glass) phase, the g™")(z) is fitted (only with a moderate success) to exp[ — y(6k2 W(t))/*] where the
mean-squared displacement W(t) is evaluated for a harmonically bound ovcrdamped Brownian
oscillator. It is found that the fitted parameter y for both the binary and monodisperse
suspensions decreases significantly with the increase of interparticle interactions. This has been
justified by showing that the calculated values of [* in a monodisperse suspension using Mie
theory increase very significantly with the interactions incorporated in I* via the static structure
factor.
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1. Introduction

Charged stabilized aqueous colloidal suspensions of polystyrene particles (polyballs)
and sterically stabilized nearly hard sphere colloids of polymethyl methacrylate
particles have proved to be model condensed matter systems to study a rich variety of
cooperative behaviour in equilibrium and non-equilibrium conditions [1]. These
systems show liquid, crystal and even glassy states under suitable experimental
conditions. Monodisperse polyball suspensions show either a body-centered cubic
(BCC) phase at low volume fraction ¢ or a face-centered cubic (FCC) phase at high ¢.
Small-angle neutron scattering measurements [2] of the structure factors reveal
a glassy phase in these systems for ¢ > 0-2. Monodisperse suspensions of polymethyl
methacrylate particles have been studied extensively from the point of view of freezing
of a liquid to an equilibrium crystalline phase or a metastable glassy state as a function
of volume fraction ¢ [3-5].

In comparison with monodisperse suspensions, much less attention has been paid
to the case of freezing of binary mixtures. The phase diagram becomes much richer
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and complex with the introduction of two more parameters, namely, the diameter ratio
o[ =0,/05,6 <1] and the relative number density of the small particles x[=n,/
(ns + ng)], to characterize binary mixtures. Several compound crystalline structures
have been identified [6, 7] in the optical microscopy of concentrated (¢ ~ 0-3) aqueous
suspensions of binary charged polystyrene spheres with diameters between 0-2 and
0-8 um. The observed structures were similar to those found in the intermetallic
compounds MgCu,, AIB,, CaCus, NaZn,; and also of the type AB, with P6,/mmc
symmetry, which has no counterpart in the conventional atomic systems. Bartlett et al
[8] have studied the phase diagram of binary mixtures of nearly hard-sphere polyballs
for some values of ¢. These studies confirm the existence of AB, and AB, ; superlattices
in the (¢, ¢) phase-diagram. In addition to the crystalline phase, glassy state has also
been observed in polyball binary mixtures in measurements of shear modulus [9],
static structure factor [10], diffusing wave spectroscopy [11] and Brownian dynamics
simulations [12,13]. The ease in the formation of glassy state in binary colloidal
mixtures or charge-polydisperse colloids [ 12, 14] is similar to the fact that multicompo-
nent solid solutions in conventional atomic systems are good glass formers [15].

Dynamics of the colloidal systems have been extensively studied by dynamic light
scattering (DLS) experiments where the temporal fluctuations of the scattered light are
analyzed in real time in terms of the intensity autocorrelation functions [16,17]. In
using the DLS technique, a stringent requirement is that the incident radiation should
by scattered only once in the medium. Multiple scattering is avoided either by matching
the refractive indices of the particles and the solvent [5] or by taking a low concentra-
tion of particles or thin sample cells. DLS measurements of the intermediate scattering
functions have yielded valuable information on the non-ergodicity parameters across
the kinetic glass transitions [4] allowing a direct comparison with the mode-coupling
theory predictions [18].

The recently developed technique of the diffusing-wave spectroscopy (DWS) [19-
22] has made it possible to study the particle dynamics from the intensity correlation
functions in concentrated interacting suspensions. Subsequently, useful information
-about the polarization dependence in the freezing of monodisperse polyball suspen-
sions [23] and also about the particle diffusion in the binary polyball mixtures are

. obtained by using DWS [24]. During the course of our studies, using DWS experi-
ments on binary mixtures of strongly interacting polyballs, Meller and Stavans [11]
have reported comprehensive phase diagrams (¢ versus x) consisting of liquid, crystal-
line and glassy states for three values of g, namely, 0-54 £ 0-02, 0-78 + 0-04 and
0-87 4+ 0-03. The different states of the system were confirmed from the presence or
absence of Bragg-iridescence from the samples and the long-time temporal decay or
saturation of the intensity autocorrelation functions. Our Brownian dynamics (BD)
simulations [13] on binary mixtures, with o =0495 and x = 0-5, reveal a liquid to
crystal transition at ¢ ~0-2 and a liquid to glass transition at ¢ ~ 0-3. This is quite
different from the results read from Meller and Stavans’s [11] phase diagram with the
parameters closest to our simulation, namely, ¢ =0-54 + 002 and x=0-3. In their
experiments [11], the mother samples of 10% volume fraction were treated with
ion-exchange resins to reduce the impurity ion concentration », till these showed strong
crystalline iridescence. The samples with different ¢ and x, on which the measurements
were performed, were then made out of these mother samples. In the simulations, on the
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contrary, the n; of the binary liquid phase at each ¢ is successively reduced to increase
the interparticle interaction in the system. To confirm that the difference between the
DWS and the BD simulation results are indeed due to the difference in the sample
preparations in the two cases, one must carry out DWS experiments and look for the
liquid to crystal and the liquid to glass transitions on concentrated binary polyball
mixtures, prepared similarly as in the simulation. This is the motivation of the present
work. We indeed find, in accordance with our simulation [13], that a binary liquid
mixture freezes into a crystalline phase at a lower volume fraction (¢ = 0-1), while it
forms a glassy state at ¢ = 0-2. Along the way, the DWS intensity autocorrelation
functions of the binary liquid phase were analyzed in terms of effective diffusion
constants [22], wherein the transport means free path, [* [25], has been incorporated
using the Mie scattering theory [26]. The slope parameter y, to be explained in the
following subsection [eq.(9)], shows a systematic dependence on the interaction
between the particle. This has been understood by realizing that y is inversely
proportional to [*, which increases with the interaction strength.

2. Theoretical background

DWS extends DLS to the optically turbid media and relates the temporal fluctuations
of the multiply scattered light to the motion of the scatterers. The transport of photon is
assumed to be diffusive with a diffusion constant D, = cl*/3, where c is the velocity of light
in the medium. The transport mean free path I* is related to the scattering mean free path
I (the mean distance between successive scattering events) by I*/l = 2k2/(q*>, where k,, is
the photon wave vector in the medium and {g?) is the mean squared scattering wave
vector. The normalized temporal field autocorrelation function is defined by

_GMq,1) _ <E(a.0)E¥g,1)>

(g, 1) = = 1
ST ER .
Within DWS, for the noninteracting monodisperse Brownian particles, it is given by [22]
gM(g,t) = f P(s)et~21=onll s, @)

0
where P(s) is the distribution of path-lengths s for the random walk of photons and
1 ,

To = D" 3)

Here D is the free particle diffusion coefficient.
For the “backscattering” geometry and the source at a fixed distance, z, ~ I*, inside
from the illuminated face at z = 0 of a slab of thickness L, one obtains [22]
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For a sample of infinite thickness (L— o), (4) simplifies to

e (20/I')(61/10)'2

G(t) = ——. (5)
142 [
3V 1,

A distribution in the position z, of the source results in the replacement of z,/I* by
2o »/I*.1t has been found experimentally that the g**)(f) can be simply described using
[19,20]

g™(t) = exp[ - y(6t/x)"'2], (6)

wherey = (zo)/I* + 2/3,ie.,y cc 1/1* [22]. When I*/] = 10, then 7 = 2 for both polarized
and depolarized scattering [27].

For the case of interacting particles, Mackintosh and John [27] have shown that
gV (t)is related to the dynamic structure factor S (¢.t) such that 2t/z, in (2) is replaced by
(I*/D[1 — S(q,1)/S(g,0)] where S(q,1) is defined by

S(a,1)= <—}V— > explig-(r,(0) - r,,<0))]> )

For short times, S(g, t) can be expanded to linear power in ¢t and hence it amounts to
replacing t/t, by t/t, where 1}/, = {gS(q) >/<q*> [22]. Thus the time scale of the
decay of g")(t) is modified and its functional form (i.e. square root singularity) for short
times is not affected by interactions.

The form of g™(¢) for all times has been obtained [27] only under the simplifying
assumption that the interparticle spacing is larger than the wavelength and the particle
size, so that the particle vibrations in a colloidal crystal or a glass, around their mean
positions may be considered independent of each other. In addition, due to the viscosity
of the fluid, phonon-like motions are strongly overdamped. They have also assumed
large wavevector transfers g which correspond to distances smaller than the mean
interparticle spacing. With these simplifying assumptions, for the long paths, for which
the scattered light is still diffusive, the dynamic structure factor is replaced by its
self-part S,(g, t) given by

5,00 = <% 3 expLiq:(r,() - ra(O))]> | ®

~exp(— W(t)q?)
where- W(r) is the mean square displacement (MSD) of a particle in time . Then
g(t) = exp[ —y(6k3 W(1)*/*], 9)

Since W(t) shows a non-decaying part at long-times in a solid, eq. (9) will predict a
non-zero g'(z) at large times for both polarized and depolarized scattered light.

The MSD can be evaluated by considering a model for the interacting Brownian
particles. For a one-dimensional harmonically bound Brownian particle of mass M and
diameter o, = 2a,, suspended in a solvent of viscosity #, the velocity auto-correlation
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function in the strongly overdamped case (8/w > 1) is given by [16]

w

2 2
o()= (VO V) =2T [exp(-—ﬁt)— (-——)exp( 2 t)] (10

p B
where o is the angular velocity associated with the harmonic potential, B=r,! with
T, = M/6mna, as the Brownian velocity fluctuation time. This model applies strictly to
the motion of a single particle in a colloidal crystal if the combined interparticle forces
are treated in a harmonic approximation. It has been suggested [16] that the model can
also be applied to the liquid-like ordering, if the similar form for the velocity
autocorrelation function is retained, i.e.,

<I>(t)=k37Texp<—-T£)—Aexp(~—£>, (11)

v Ty

where one expects that 4 « kyT/M and the fluctuation time associated with the
interaction forces 7,> 7,. Within this model for times ¢ > 7,, the MSD is given by

W(t) = Dt — At(t + tiexp{— t/1;} — 1), (12)

where the parameter A satisfies At; < D.

Let us now discuss DWS from a binary colloidal systems with species of different
sizes. It has been shown that for noninteracting particles, the g(t) is given by (2), where
7o [€q. (3)] is replaced by ., [22], -

gN (1) = exp(— p(6t/.4) '), (13)
where :
1/t = Deffk(z)’

Dy = (Z Di/zr) / (Z 1/1:-*)- (14)

The effective diffusion constant D, is the weighted average of the individual diffusion
coefficients of the pure species, the values of which are calculated via Stokes’ law [28],
i.e., D; = ky T (67na;) where 7 is the viscosity of water (= 0-01089 P) and g, are the radii
of the particles. The weighting factors in (14), i.e., the inverse transport mean free paths
1/I¥ for the individual pure species are summed to yield the optical analogue of the
resistivity of the binary liquid alloy [29]

it =Y 1/1F. (15)

As stated above, the key quantity within the diffusion approximation of the photon
transport is the photon random-walk step length /*, which depends on the number of
scattering events needed to randomize the direction of photon. The number of
scattering events, in turn, depends on the scattering properties of the individual
particles as well as the interparticle spatial correlations [21,22]. A general expression
for I* for the monosized particles calculated [21, 30, 317 within the Mie theory [26] is
summarized in the Appendix.
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In the laboratory, one measures the normalized temporal intensity autocorrelation
function g, (r) which is related to g'(¢) by the Siegert’s relation, i.e.,

9. =g?O) - 1= flgM ()] | (16)

The parameter f is fixed by the system optics and can be taken as a free parameter in
fitting (6) and (16) to the relevgnt data.

3. Experiments

We use aqueous suspensions of charged polystyrene spheres (M/s Seradyn Inc., USA)
of diameters oy = 0-115 um and o, = 0-089 um. The quoted standard deviation of the
diameters is less than 1%. Two sets of samples are prepared from these mother
solutions. In one set, the samples of the small and the large spheres are obtained
independently from their respective mother solutions by adding required amounts of
triple-distilled, deionized water, so that the final volume-fraction of each of them
becomes ¢, = ¢y = 0+-05. Equal volumes of these samples are then mixed to get total
¢ =01 in a cylinderical quartz scattering cell of 8 mm inner-diameter containing
a mixed-bed of ion-exchange resins [AG501-X8(D), M/s Bio-Rad Inc., USA] at the
bottom of the cell to reduce the coion concentration ;. The cell is then closed air-tight
with properly cleaned teflon cap and parafilm. In the other set, the mother samples of
the small and the large spheres with ¢, = ¢ = 0-1 are mixed in 1:1 volume-ratio (total
¢ =0-2) in a similar quartz sample cell with ion-exchange resins. The volume-fractions
of the constituent solutions were confirmed to be within an experimental accuracy of
5% by drying a known volume of the suspension and weighing the solids. After an
initial vigorous mixing of the samples with the resins, the cells are transferred into their
respective quartz glycerin baths and left undisturbed for about an hour before the data
accumulation begin. This is necessary to assure a proper gravitational settling down of
the resins in the cell as well as uniformity of the glycerin without any air-bubbles
surrounding the cell. A linearly polarized beam from Kr* laser (1 = 647-1 nm) falls on
one side of the sample and the scattered light of desired polarization is collected from
the same side (scattering angle 6 = 165°). The normalized intensity autocorrelation
g>(?) [eq. (16)] is measured using the Malvern correlator (model 7032CE). The laser
light is vertically (V) polarized. The emergent multiply scattered light has, in general,
a polarized (vertical) component with intensity I,(¢) and a depolarized (horizontal)
component with intensity Iy(t). By setting the orientation of the analyzer, g,(t) was
measured in either polarized, i.e., Cyy(£) = {Iy(t)1y(0) >/<I v»?—1 or depolarized, i.c.,
Cyu(t) = {Iy(0)Iy(0)>/{Iy>* — 1 component. We note that although in normal iso-
tropic systems the measured correlation functions Cyy(f) and Cyy(t) behave in
qualifatively the same way, they give us access to different physical properties. While
both respond to translational motion [23,27, 32], only Cyn 1s sensitive to changes in
thelocal dielectric anisotropy and hence contains information about the correlations of
orientational fluctuations as well. The field autocorrelation g*)(¢) in the backscattering
geometry is extracted using Siegart’s relation eq. (16).

We note that since the system is in a frozen but disordered (i.e. non-ergodic) state, we
are obliged to average over space as well as time to sample a representative fraction of
all the configurations. To this end, we have averaged the correlation functions obtained
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from ten spatially separated regions in the suspension. Each of these regions is achieved
simply by rotating the sample cell in its position. The curves so obtained are labelled
ensemble-averaged, while those from a single region are called time-averaged.

4. Results and discussions

Our fluid-phase data for the total ¢ = 0-1 mixtures of the small and the large polyballs,
before putting in the ion-exchange resins, are shown by open symbols in figure 1. The
measured g,(t) were non-linear least-square fitted by a simulated annealing Monte
Carlo fitting method [33] using (16) and (13) with f and y as fitting parameters. The
values of D, I¥ (as calculated [34] from the Mie theory) for the two constituent particle
suspensions and also the values of D, are presented in table 1. The T.¢e Was calculated
using (14). The values of the fitting parameters are given in the table 2. Given the fitted value
of f, the data have been presented in the form of normalized g")(t) (experimental g™ (1)/f)
in figure 1. The values of the parameter y for the polarized and depolarized scattering
are comparable with those in the monodisperse colloids [22,23,32]. The polarization
dependence of y can be simply understood as follows [22]. The autocorrelation

IR T T T T T 717717 L L L
NS ]
- ° -
¢ O
— [} [s) —
o [s)
<& ] \
02 | SRR -
S O\ YV (r=2.04)
= 01 3
e [T © -
g F = -
& [ N n
- VH (y=315) ) > -
- ¢ OV d’o OOOO -
0% °°° o © % o0 ©0
_— © e
0.02 "o . % °§°
°0
&
0.01 — °°o o o]
L A ° -
Crvo o o e N L0
0 0.01 0.02 0.03
C 12 12
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Figure 1. The fluid-phase time-averaged data for the polarized (VV) and the
depolarized (VH) field autocorrelation functions g*)(t) versus !/ in the backscat-
tering geometry from a binary mixture with ¢, = 0-089 um and og=0115u diam-
eter polyballs ‘at total ¢ = 0-1. The solid line through the data is the fit with egs
(11)—(13). The fitting parameters as given in tables 1 and 2.
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Table 1. The parameters relevant to the Mie tl}e-
ory fits in figure 1 and the inset of figure 3, w1§h
ko =1297724cm ™. The parameters o, %nd I¥arein
pum, while the D, or D are in 10~ cm?/s.

o, D, If D
-089 317 232:77

0 3-58

0115 410 295-82

Table 2. The fitting parameters corresponding to _ﬁgures 1 to 5, with
ko =129 x 10°cm™*. Samples I and II are 1:1 binary mixtures of 0-115 um and
0-089 um diameter particles with total ¢ = 0-1 and 0-2, respectively, jl‘hf: moqodls-
perse sample III has ¢ =003 and diameter 0'115‘/111’!. The D . is in units of
10~ 8cm?/s, A in units of 10~3, 7y in units of 10~ 3s. Liquid: L, Crystal: C, F reezing:
F and Glass: G, Pol: polarization.

Sample State Pol D, A LT ‘ f %
I L \'AY 3-578 - = 0-9 2:0367
I L VH 3-578 — — 09 3-1537
I F \'A% 3578 1116 3-204 0-118 00932
I F VH 3578 04456 8029 0317 01072
I C \'A" 3578 06348 5526 0-145  0-0203
I C \'A% 3578 5217 6-822 0-196 00762
I L \'A% 3217 — — 0-8 2:332
I L VH 3217 — — 0-8 3-763
II G \'A% 3217 01046  30-723 0-226 00018
II G VH 3217 12492 2349 0-237 00049
I L \'AY% 3473 — — 0-99 1-89
11 L VH 3473 — — 1-06 2-87
I F \AY 3473 1816 1912 07 0-988
III C \'A% 3473 1732 1-990 06 0-723
m C VH 3473 5926 05817 06 0-463

their incident polarization. On the other hand, the autocorrelation function for the
parallel polarization decays more slowly, due to the additional contributions of the low
order scattering paths which have a longer decay time. In other words, for very
short-times (shorter than that shown in figure), g'V(¢) is dominated by long paths for
which the observed photons have lost their memory of their incident polarization and
hence Cyy and C,, will initially decay at the same absolute rate. This means
(Cyy — Cyy) will be independent of time to first order in \/E Since the short paths tend

not to alter the polarization of the incident light, Iy is in general higher than I vy [in
our experiments I,,, Hyy~3].
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After these initial measurements, the samples cells are left undisturbed. Typically about
2 days later, the ¢ =01 mixture started showing Bragg-iridescence in the immediate
vicinity of the ion-exchange resins-bed. The crystalline region started growing slowly
till the whole of the sample in the cell showed the iridescence. Under this condition, the
correlation functions measured for different polarization channels are presented in figure 2,
for two cases namely, (a) in the region of 1-5 mm above the top of the resins-bed at around
174 h after the addition of resins (sample I, state C in table 2) and (b) at the height of 4 mm
from the top of the resins-bed and time 194 h (sample [, state F in table 2). The temporal
correlation functions for different polarization channels follow the similar trends in the
crystallizing samples. The form of the correlation function g™*)(¢) is same as predicted by (9).
We note that the mean interparticle spacing is almost one third of wavelength of light and
hence the assumption of retaining only the self part of the structure factor in deriving 9)is
not fully satisfied. However, since (9) is the only closed form expression available for the
¢'V(t) for the interacting colloids, we have chosen to use it to fit our experimental data to get
some estimates of the parameters y, f, A and 7;. The solid lines show the fit to (9) and (12) by
varying f,7;,7 and A. The values of the fitting parameters are provided in the respective
figures as well as in table 2. Given the value of f; here too the data are presented in the
normalized form g'")(z). We note that the fits, though excellent at long times, are not

gllllllllllllllIIIIIIIIII

o]
4
;‘:;

0.8

g(t)

0.6

b (VH, y=0.107)

tr e e a g bv v g Lo g g bira
0 0.1 0.2 0.3 0.4

t1/2 (secl/Z)

Figure2. Thenormalized g'*)(t) versus ¢*/* for the different stages of crystallization
in sample I (¢ = 0-1) table 2. The data are shown in (a) the frozen state (state C,
table 2) and (b) while freezing (state F, table 2). The solid lines are the fits to eqs (7)
and (10). The fitted parameters are given in table 2.
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S0 good at short times and hence the normalized data for g*(¢) are sli ghtly higher
than 1 at short times.

The situation is quite different with the total ¢ = 0-2 mixture. The sample does not show
Bragg-iridescence even a few weeks after the addition of resins. The autocorrelation
functions measured after a week from the addition of resins (figure 3) show significant non-
zero values at long time, similar to that shown in figure 2. The absence of Bragg-iridescence
and non-decaying intensity autocorrelation functions show that the particles are trapped in
a disordered state, as in a conventional glass. For comparison, the inset shows the liquid
state data for the sample (total ¢ = 0-2) but at a high impurity concentration. Here again,
the solid lines are the best fits to the data using (13) with f and y as fitting parameters for the
liquid state data in the inset and using (9) and (12) (by varying f, 7, y and A) for the glass
data. The relevant fitting parameters are listed in table 2. The quality of fit is poor at short
time and hence the extracted normalized 9™(¢) is again slightly higher than unity for the
glass data. Hence our experiments clearly show that the binary mixture with a total ¢ =01
freezes into a crystalline state whereas for ¢ =02, the interacting state of the mixture does
not show a crystalline phase even after a few months and is best described as a glass. This
observation is similar to the predictions of our simulation work [13]. As mentioned earlier,
the difference between our results and those of Meller and Stavans [1 1] lies in the way
the interaction is allowed to build up in the samples.

l'ozllll]lllllllllllll[

g O] o

0.98

g

VH (y=2.332)

P
oy
Sa
oo

0.94 —

092 —
- t"‘. (se‘cm.) B
T S N B R RN BT [0
0 0.1 0.2 0.3 0.4
tl/Z (SeCI/Z)

Figure3. Sameasin figure 2, but for the glass state with total ¢ =02 at the height
of 4mm from the top of the resins-bed and 171 h after the addition of resins, The
Inset shows the data and the fits for the corresponding noninteracting limit.
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It is interesting to compare the values of the parameter y in table 2 obtained in the
interacting colloids with the corresponding values in the noninteracting limit (figure 1
and the inset of figure 3). We note that y (for a given scattering geometry) decreases as
the interaction between the particles increases towards forming a crystal or a glass. To
ascertain that this is a property of the freezing suspensions, we show the ensemble-
averaged g'*)(t) for a monodisperse suspension (diameter ¢, =0-115 um and volume
fraction ¢ = 0-03) in figure 4. The panel (a) shows the data for the parallel polarization
channel (i.e. VV) of the system while freezing and the panel (b) shows both the parallel
(VV) and the perpendicular (VH) channels in the state when the suspension has
completely frozen into a crystalline order. In the state of freezing, as shown in
figure 4(a), the sample shows the polarization dependence [23] of the correlation
functions i.e., Cyy shows a liquid-like curve and hence the corresponding g*(¢) is not
plotted. The value of the parameter y indeed decreases with the interaction as can be
seen clearly by comparing figure 4 with the fluid-phase data shown by open circles and
diamondsin figure 5 (see also table 2). In figure 5, we have also compared these with the
initial part of the VV data in the crystallizing state (shofvn by + ). We see clearly that as
the interparticle interaction becomes important, the decay of g*)(¢) is different from

gV(t) —

I T T T T T T T T T T T T T T T T H
: Rdiseiviv o v v e ovvsrrenaes. —
- . VV (y=0.723) .
¢ o
02— ° OOOOOOOOOAAM P ]
01 VH (y = 0.463) =
= (b) -
0.02 [— 1
O WO W Y W NN WO S B 1 S| £ 11 l
0.015— 0.05 % S ¥ B R T
1/2 1/2
—t “(sec’ ) —»

Figure 4. The semilog plots of the ensemble-averaged g*)(¢) versus t'/* (in sec*/?)
of 0-115 um polyball suspension with ¢ =003 (a) while freezing and (b) in the
crystalline state alongwith the fits (solid lines) to a harmonic model as explained in
the text, with parameters in table 2. ’
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Figure5. Thefluid phase VV and VH time-averaged g™")(z) versus t*/2 (in sec'’?) for
¢ =003 is compared with the initial times data in the crystallizing state.

that without interaction, even at very early times. This is demonstrated by fitting (6) to
the first 10 data points of the crystallizing suspension, shown by the dashed line and the
corresponding parameters are given in table 2.

As we have mentioned before, the parameter y is inversely proportional to the
transport mean free path [*, i, y oc 1/1* [22]. Therefore, the result that the magnitude
of y reduces with the growth of interaction in the system can be justified if we can show
that [* increases with the interaction. We do this only for the monodisperse suspensions
(see Appendix for details). We calculate the [* [eq. (17) of Appendix] by using the form
factor F(q) from the Mie scattering theory [eq. (18)] and incorporate the interparticle
interaction through the structure factor S (9) which can be calculated using either
rescaled mean spherical approximation or Percus-Yevick approximation. For the
present purpose, it suffices to note that the interacting charged colloids can be
approximated to effective hard spheres by rescaling the volume fraction and therefore
the Percus—Yevick approximation for the hard sphere system for which analytical
results are known has been used as an input S(g)in (17). The PY approximation, though
not as good as mean spherical approximation for the S (Q) of colloids, has been used
because of the simple closed form expression [see (21) of the Appendix]. Our purpose is
only to show qualitatively that I* increases with the strength of interactions. In figure 6
we have shown the Percus—Yevick S (9)for nine such different rescaled volume fractions
¢*. The height of the first peak of the structure factor, S, ., can be taken as a scale to
measure the interparticle interaction. F igure 7 represents the calculated values of I* for
these S(g) as a function of the interparticle interaction measured by Sax- We clearly see
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Figure 6. The static structure factor S(g) in the Percus—Yevick approximation as
a function for ten different values of the effective hard sphere volume-fraction ¢ *.
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Figure 7. The calculated values of [* (in um) from the Mie thepry (refer text) for
different S(g)’s of figure 6 as a function of S__, the first peak height of the S(g).
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that I* increases almost linearly with the interaction. This qualitatively explains our
results of the reduction of y with the increase of the interaction strength.

5. Conclusions

In this paper, we have reported our observation of the formation of a crystalline phase
when the interparticle interactions are increased in an equimolar binary mixture of
polyball suspensions with a volume-fraction ¢ = 0-1. In comparison, the interactions in
the same binary system with ¢ = 0-2 results in a metastable glassy state, This is in
accord with our results in the BD simulations [13] of binary colloidal mixtures, We
have also shown that the g)(¢) of the binary mixture in the non-interacting fluid phases
can be well-reproduced by replacing the 7o in the functional form of the correlation
functions of the monodisperse suspensions by a properly weighted average T, [eq.
(13)7, where I* are calculated using Mie scattering theory. A model of the harmonically
bound Brownian particle is used to calculate the root mean square displacements and
the functional form of g*)(¢) suggested by MacKintosh and John [27] [eq.(9)]is shown
to fit with a moderate success the results from the binary as well as monodisperse
polyball suspensions while freezing into the crystalline or glassy states. These fits, though
qualitative in nature due to the approximate form of (9), indicate that the parameter
v decreases as the particles in the suspensions start interacting with each other. This
result is justified in the case of monodisperse suspensions by showing that the transport
mean free path [* which is inversely proportional to y increases with the interaction
between the particles. In conclusion, DWS has provided very interesting information
on the dynamics of dense interacting colloids which can either form a crystalline state
(at a low volume fraction) or a glassy state (at a high volume fraction). It could be
worthwhile to carry out similar DWS experiments on binary colloids with different
diameter ratios and relative volume fractions to map out the entire phase diagram.
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Appendix

Within the Mie scattering theory [26], a general expression of [* for monodisperse
particles, is given by [21, 30, 31]

_ koas (kg o'p)s'crp

mn, [5°" 1(Q)@%dQ ~ 964<F(Q)S(Q)>
Here n, is the number density of particles and Q = (k, —k 7)a, is the dimensionless
momentum transfer for a single-scattering event. For monodisperse particles, we have

replaced I(Q) simply by the product of the form factor F (Q) and the structure factor
S(Q). The angular brackets indicate an average over all the scattering paths. The form

[*

(17)
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factor F(Q) for monodisperse systems is given by the Mie scattering theory as [26]
F(Qa,) = Qa,[A4,(6)AT(0) + A,(6)4%(6)]. (18)

where the dimensionless, single-scattering amplitudes 4, (§) and A, (f) are related to the
scattered far-fields E; and E, as

ieikr .
E¢ = — FAJ_(B)SIH 45,

i eikr

Ey= p A, (B)cos ¢,
4,0)= Y nz(Zi 1)[a 7, (c0s 6) + bz, (cos 0)],
n=1
i o 1) a,t,(cos ) + b,m,(cos )], (19)
with )
7, (cos 0)=%";9) and 1,(cos6) =%[P,,(cos 0. (20)

The Mie scattering amplitudes are given by

VU —mi, (B3 (@)
" L@V B — mi, (B

_mib @ () — v, (B (@)

" ml (X (B) — L (B) K’
where o =Kkoa,, B=komay, Y,(x) = (nx/2)'*J, . ,(x) and {,(x) = (mx/2)"*HY | 5(x)
[J.(x) and H (x) bemg the nth order Bessel function and Hermite polynomial
respectively] and m? = ¢, = ¢/e,, is the relative dielectric constant of the sphere.
The static structure factor S(Q) for the dense hard-spheres in the Percus—Yevick (PY)
approximation is given in terms of the direct correlation function ¢(Q) as [29, 35]

t]

1
S(Q) =:1p—c—(—Q—5’
(@) =4 f " vz 2@y,
0 or
r\3
(r)—“o+°‘1<o_p)+°‘2(ap)a a1
o (1+2¢)*
? (1—¢)*’
L _68(1+ /2y
=g
oy =5¢OCO.
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