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Abstract. Motivated by recent experimental results for the step sizes of dynein

motor proteins, we develope a cellular automata model for intra-cellular traffic of

dynein motors incorporating special features of the hindrance-dependent step size of

the individual motors. We begin by investigating the properties of the aggressive

driving model (ADM), a simple cellular automata-based model of vehicular traffic, a

unique feature of which is that it allows a natural extension to capture the essential

features of dynein motor traffic. We first calculate several collective properties of

the ADM, under both periodic and open boundary conditions, analytically using two

different mean-field approaches as well as by carrying out computer simulations. Then

we extend the ADM by incorporating the possibilities of attachment and detachment

of motors on the track which is a common feature of a large class of motor proteins

that are collectively referred to as cytoskeletal motors. The interplay of the boundary

and bulk dynamics of attachment and detachment of the motors to the track gives rise

a phase where high and low density phases separated by a stable domain wall coexist.

We also compare and contrast our results with the model of Parmeggiani et. al. (Phys.

Rev. Lett. 90, 086601 (2003)) which can be regarded as a minimal model for traffic

of a closely related family of motor proteins called kinesin. Finally, we compare the

transportation efficiencies of dynein and kinesin motors over a range of values of the

model parameters.

http://arXiv.org/abs/cond-mat/0607322v2
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1. Introduction

Molecular motors are protein molecules that drive a wide range of intra-cellular activities

including transport of molecular cargo [1, 2]. There are many similarities between

collective molecular motor transport and vehicular traffic [3, 4]. In recent years non-

equilibrium statistical mechanics has found unusual application in research on traffic

flow of various different types of objects starting from objects as small as molecular

motors to macroscopic objects like vehicles [5, 6, 3, 4]. Analytical as well as numerical

techniques of the statistical physics are being used to understand rich variety of

physical phenomena exhibited by traffic systems. Some of these phenomena, observed

under different circumstances, include phase transitions, criticality and self-organized

criticality, metastability and hysteresis, phase-segregation,etc.

A common modeling strategy is to represent the motile objects (e.g., a vehicle or

a molecular motor) by a self-propelled particle, ignoring its structural details, and then

treating the traffic as a system of interacting particles driven far from equilibrium. These

models belong to a class of non-equilibrium systems called driven-diffusive lattice gases

[7, 8, 9, 10]. In most of these traffic models the dynamics of the particles is formulated

using the language of cellular automata (CA) [11].

To our knowledge, the first model for molecular motor traffic was formulated in

1968 in the context of collective movement of ribosomes on messenger RNA track

[12, 13]. In recent years several groups have independently developed a class of minimal

generic models for traffic of molecular motors which move on tracks that are filamentary

proteins. All these models are essentially extensions of the totally asymmetric simple

exclusion process (TASEP) [14, 7] which is one of the simplest models of driven diffusive

lattice gas systems. In these models [15, 16, 17, 18, 19, 20] the molecular motors are

represented by particles whereas the sites for the binding of the motors with the tracks

are represented by a one-dimensional discrete lattice. Just as in TASEP, the motors

are allowed to hop forward, with probability q, provided the site in front is empty.

However, unlike TASEP, the particles can also get “attached” to an empty lattice site,

with probability ωA, and “detached” from an occupied site, with probability ωD from

any site except the end points. Parmeggiani et al. [15] demonstrated a novel phase where

low and high density regimes, separated from each other by domain walls, coexist. They

interpreted this spatial organization as traffic jam of molecular motors.

None of the models of molecular motor traffic mentioned above distinguish between

kinesins and dyneins which form the two superfamilies of motor proteins that move on

the same type of tracks, namely, microtubules. On the other hand, detailed experiments

over the last two years have established that, in contrast to kinesins, dyneins can take

steps of four different sizes depending on the opposing force or hindrance. One of the

aims of this paper is to introduce a minimal model that distinguishes between these two

features of kinesin and dynein motors.

In this paper we begin by investigating the aggressive driving model (ADM), a
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stochastic CA model for traffic flow ‡ that is closely related to the Nagel-Schreckenberg

(NaSch) model [22, 23]. One of the reasons for studying this model is that it allows

natural extensions so as to capture the essential features of dynein motor traffic including

the unique features of dynein stepping (which we shall explain in section 5.1). Besides,

the ADM model is an interesting model of vehicular traffic in its own right and is also

related to the Fukui-Ishibashi (FI) model [24]. However, in contrast to the FI model,

it still shows spontaneous jam formation. We investigate the properties of the ADM

by approximate analytical calculations as well as by computer simulations. Then, we

use an extended version, which we refer to as the dynein traffic model (DTM), for a

quantitative desciption of intra-cellular traffic of dynein motors.

The paper is organized as follows. In the next section we describe the ADM and

the method of simulation. In section 3 we investigate the properties of the ADM with

periodic boundary conditions and we describe the analytical theories for calculating its

flow properties. We present a comparison of the ADM with NaSch model at the end of

section 3. In section 4 we investigate the density profiles and phase diagram of the ADM

with open boundary conditions. In section 5 we describe the experimentally observed

hindrance-dependence of the step sizes of dynein motors and introduce the dynein traffic

model (DTM). We present the results for the DTM with periodic boundary conditions in

section 6 and those under open boundary conditions in section 7. Finally we summarize

the main results and the conclusions in section 8.

2. The CA Model of Aggressive Driving

In the cellular automata model of aggressive driving a lane is represented by a one-

dimensional lattice. The boundary conditions may be periodic or open. Each of the

lattice sites represents a cell that can be either empty or occupied by at most one

vehicle at a time. The speed V of each vehicle can take one of the allowed integer

values V = 0, 1, 2, ....Vmax. Let xn and Vn be the position and speed, respectively, of

the nth vehicle. Then we define the (distance) headway of the nth vehicle at time t by

dn = xn+1 − xn − 1, i.e. as the number of empty cells in front of this car. At each time

step t → t+1 the state of all vehicles on this 1-D lattice is updated in parallel according

to the following rules:

I: Acceleration: If dn ≥ Vmax then Vn → Vmax and if dn < Vmax then Vn → dn, that is,

Vn = min(Vmax, dn)

II:Randomization: If Vn > 0, the speed of the nth vehicle is decreased randomly by one

with probability p; that is, Vn = max(Vn − 1, 0) with probability p

III:Vehicle movement: Each vehicle is moved forward so that xn → xn + Vn.

Step I reflects the tendency of drivers to drive the vehicle as fast possible, without

exceeding the maximum speed of the vehicle, and avoiding accidents between vehicles

at the same time. Thus, if there is enough gap in front, vehicles in this model can

accelerate to the maximum allowed velocity within one single timestep.This captures

‡ Originally the model was introduced in [21].
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at least one type of aggressive driving and hence the name. The randomization in the

step II takes into account the different behavioral patterns of the individual drivers,

especially non-deterministic acceleration and over-reaction while slowing down.

As usual, the flux is defined to be the number of vehicles crossing a detector site per

unit time. In the context of vehicular traffic, the most important quantity of interest is

the so-called fundamental diagram which depicts the dependence of flux on the density

of vehicles. The number of empty sites in between a pair of vehicles is usually taken

as a measure of the corresponding distance-headway. The time-headway is defined as

the time interval between the passage of two successive vehicles recorded by a detector

placed at a fixed position on the highway. We have calculated all these characteristic

quantities for the ADM and will present these results in the following sections.

Before presenting the results for the ADM, we would like to compare and contrast

it with a few other well known models of vehicular traffic. In the NaSch model, the

calculation of the speed of a vehicle at the next time step (t+1) during the acceleration

stage requires the knowledge of its speed at previous time step t and its speed after

the deceleration stage depends on the available headway in front of it, whereas, in the

aggressive driving model the calculation of the speed of a vehicle at next time step does

not require any knowledge of its velocity at previous time step and depends only on the

available headway in front of the vehicle. In contrast to the NaSch model it therefore

has no velocity memory. From now onwards, we shall refer to this model as aggressive

driving model (ADM).

This ADM differs from the Fukui-Ishibashi (FI) model [24] at Step II of the

updating procedure. In the FI model the randomization is applied only to those vehicles

whose final velocities become Vmax after the acceleration stage and, therefore, the FI

model is unrealistic for normal traffic. Consequently, the FI model fails to capture

overreactions at braking which are responsible for spontaneous jam formation (see e.g.

[25]).

3. Results for ADM with periodic boundary conditions

3.1. Numerical results of computer simulations

In the special case Vmax = 1, the ADM reduces to NaSch model [22] with Vmax = 1. In

this limit the fundamental diagram is given by exact expression [23]

J =
1

2

[

1 −
√

1 − 4(1 − p)c(1 − c)
]

. (1)

The symmetry about c∗ = 1/2 in this fundamental diagram breaks down for all Vmax > 1.

Fig. 1 shows the fundamental diagram of the ADM for different values of Vmax for fixed

p = 0.25 and p = 0.75. Fig. 2(a) and Fig. 2(b), show variation of flux and average speed,

respectively, with c for different values of the braking probability p for fixed Vmax = 3.

For Vmax = 1, the fundamental diagram of ADM has a perfect particle-hole

symmetry with a flow maximum at c = 0.5. However, as in the NaSch model, this
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Figure 1. Fundamental digram of the ADM for Vmax > 1 corresponding to (a)

p = 0.25 and (b) p = 0.75 respectively, obtained through computer simulations for

Vmax = 2 (+), Vmax = 3 (×), Vmax = 4 (∗), and Vmax = 5 (2), respectively.
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Figure 2. (a) Fundamental diagram and (b) density-dependence of the average speed

of vehicles of the ADM with Vmax = 3 for p = 0.0 (+), p = 0.25 (×), p = 0.50 (∗),

p = 0.75 (�) and p = 1.0 (�), respectively.

particle-hole symmetry breaks down for all Vmax > 1 and the maximum shifts to lower

densities with increasing Vmax. The system remains in the free-flow regime for densities

on the left side of this maximum where the flux increases with increasing density. The

densities on the right hand side of this maximum correspond to congested flow regime

where flux starts decreasing with increasing density and finally vanishes at c = 1. For

a given Vmax, the maximum value of the flux starts decreasing with increasing braking

probability p. The fundamental diagram of the ADM shows unusual behavior in the

deterministic limit p = 1 where the flux vanishes at c = 0.5 for all Vmax > 1. The reason

for this unusual behavior will be explained in the following sections.

The distance headway is usually defined as the distance from a selected point on

a vehicle to the same point on the corresponding lead vehicle (i.e., the next vehicle

downstream). Since in our model all vehicles have the same length we can use the
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number dn of empty cells in front of vehicle n as a measure of the headway. In Fig. 3(a)

we have shown the distribution Pn of the distance headway in ADM obtained from

simulations.

At low densities the distance headway distribution shows a broad peak near

n = Vmax. This corresponds to the free-flow regime where the cars are distributed

almost homogeneously. In contrast, at higher densities the peak in the distribution

occurs at a smaller distance headway. In fact, the most probable distance headway

decreases with increasing density. Finally, at sufficiently high densities, the maximum

of the probability distribution occurs only at n = 0. Thus, with increase of vehicle

density, the compact cluster of jammed vehicles becomes larger while large headways

are strongly surpressed.
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Figure 3. Steady-state distributions of (a) distance headways and (b) time headways

for p = 0.5 and Vmax = 5 for densities c = 0.1(+), c = 0.3(×), c = 0.7(∗), c = 0.9(�).

The time headway distribution is determined by (a) the time interval between the

departure from one site and arrival at the next site and (b) the waiting time at a given

site; the latter depends not only on the hindrance from the vehicle in front but also on

the randomization parameter p. Equivalently, the time-headway depends not only on

the spatial distance-headway but also on the velocity of the vehicles.

A few typical time headway distributions P (τ) in ADM are shown in Fig. 3(b) for

a few different densities of the vehicles. At sufficiently low densities it shows a peak

at τ = 2 as, because of the parallel updating scheme, minimum two time steps must

elapse between the arrival of a vehicle at two successive sites even when it moves totally

unhindred by any other vehicle. Since mean time headway is the inverse of the flux,

it is expected to exhibit a minimum when plotted against the density. The trend of

variation of the most probable time headway with increasing density is also similar, as

can be seen also in Fig. 3. At low densities the peak is rather sharp and it becomes

much broader at higher densities. Compared to the corresponding results for the NaSch

model [26], large headways are surpressed in the ADM; this is caused by the possibility of

large acceleration whereas in the NaSch only allowed acceleration is unity. The broader
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distribution at higher densities arises from the longer waiting times at each site which

is caused by the hindrance from the vehicle immediately in front.

3.2. Numerical and Exact Analytical Results for ADM in Limiting Cases

3.2.1. Deterministic limit p=0 This stochastic model becomes deterministic in the

limit p = 0. In this special case, the deterministic update rules of the model can be

written as

Vn(t + 1) = min(Vmax, dn) (2)

xn(t + 1) = xn(t) + Vn(t + 1) (3)

which leads to two types of steady states depending on density of vehicles [27] . At

low densities, the system can self-organize so that dn ≥ Vmax for all n and, therefore

every vehicle can move with Vmax, giving rise to the corresponding flux cVmax. This

steady state is, however, possible only if enough empty cells are available in front of

every vehicle, i.e., for c ≤ cdet
∗ = 1/(Vmax + 1) and the corresponding maximum flux is

Jdet
∗ = Vmax/(Vmax + 1). On the other hand, for c > cdet

∗ , dn < Vmax and, therefore, the

relevant steady states are characterized by Vn = dn, i.e. flow is limited by density of

holes. Since the average distance headway is 1/c − 1, the fundamental diagram of the

model in the deterministic limit p = 0 is given by exact expression

J = min[cVmax, 1 − c]. (4)

This is identical to the fundamental diagram of the NaSch model in the deterministic

limit, despite the slightly different dynamics.

3.2.2. Deterministic limit p = 1 As we discussed earlier in this paper that in the spe-

cial case Vmax = 1 the ADM reduces to NaSch model with Vmax = 1 and hence in the

deterministic limit p = 1, J = 0 for all densities c as expected. However, for Vmax > 1,

the properties of the ADM with maximum allowed speed Vmax in the deterministic limit

p = 1 are not exactly identical to those of the same model with maximum allowed

speed Vmax − 1 and p = 0. If Vmax > 1, then, for c ≥ 1/2, all initial states lead to

J = 0 because in the steady state system self-organizes itself in such a way that there

is a maximum headway of one lattice site in front of each vehicle and hence speed of

all vehicles becomes zero immediately after the randomization step (step II in update

rules). However, for Vmax > 1 and p = 1, J 6= 0 for all c < 1/2. The maximal attainable

velocity for every vehicle in this limit becomes Vmax − 1. The fundamental diagram of

ADM for Vmax > 1 in the deterministic limit p = 1 is given by exact expression

J =

{

min[c(Vmax − 1), 1 − 2c] for c ≤ 1/2

0 for c ≥ 1/2.
(5)

This unusual behavior of the ADM is different from the corresponding behaviour in the

NaSch model. In the deterministic limit p = 1 of the NaSch model, irrespective of Vmax
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Figure 4. Fundamental diagram of the model with Vmax = L for three typical values

of p. The data only for L = 10000 have been plotted. The data for L = 1000 and

L = 10000 are practically indistinguishable from each other.

and c, all random initial states lead to J = 0 [6], because a car which has velocity V = 0

will never move again.

3.2.3. Limit Vmax = ∞ There are several possible ways of extrapolating to this limit

since only finite systems can be treated in computer simulations. We here investigate the

case Vmax = L. The fundamental diagram of the model is plotted in Fig. 4 for different

values of p in this limit. This fundamental diagram has a form quite different from that

in the case of finite Vmax. The flow does not vanish in the limit c → 0 since already

one single vehicle produces a finite value of flow, J(c → 0) = 1. J(c) is a monotonically

decreasing function of c. Another characteristic feature of this fundamental diagram is

the absence of the characteristic plateau which is exhibited by the NaSch model with

Vmax = ∞ [28, 29].

3.3. Approximate analytical theories of ADM

In this section we will present the site-oriented mean-field (SOMF) and car-oriented

mean-field (COMF) approaches for calculating the fundamental diagram of the ADM

with periodic boundary conditions following the methods of [23] after a brief review of

the earlier works done in this regard.

A SOMF theory was developed earlier for the FI model [30]. Starting with a

microscopic relation for the updating rule, which describes the occupancy of each site

on the lattice, a macroscopic time-evolution relation is obtained for the average speed

of the vehicles by carrying out statistical averages. Mean field equations are obtained

as the asymptotic limit of the evolution relation. This gives average vehicle speed in the

long time limit as a function of the vehicle density.

A COMF theory for the FI model was developed in [31] starting with the basic

equations which describe the time evolution of the headway in front of each car. By

introducing the concept of inter-car spacing longer and shorter than the maximum
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attainable velocity Vmax, the average speed of the vehicles has been obtained analytically

as a function of car density in the asymptotic limit which corresponds to the steady state.

3.3.1. Site-oriented Mean-field Theory of ADM In the SOMF [23] approach, cV (i, t)

denotes the probability that there is a vehicle with speed V = 0, 1, 2, ...Vmax at site i at

time step t. Then, obviously, c(i, t) =
∑Vmax

j=0
cj(i, t) is the probability that the site i is

occupied by a vehicle at the time step t (irrespective of its speed) and d(i, t) = 1−c(i, t)

is the corresponding probability that the site i is empty. Using the definition

J(c, p) =

Vmax
∑

V =1

V cV (6)

for the flux J(c, p) one can determine the mean-field fundamental diagram for the given

p, provided one can determine cV in the mean-field approximation.

According to the update rules of the ADM, the time evolutions of the probabilities

cV (i, t) are given by the following equations:

Step I: Acceleration(t → t1)

c0(i, t1) = c(i, t)c(i + 1, t) (7)

cV (i, t1) = c(i + V + 1, t)
V

∏

j=1

d(i + j, t)c(i, t) (0 < V < Vmax) (8)

cVmax
(i, t1) =

Vmax
∏

j=1

d(i + j, t)c(i, t) (9)

Step II: Randomization (t1 → t2)

c0(i, t2) = c0(i, t1) + pc1(i, t1) (10)

cV (i, t2) = qcV (i, t1) + pcV +1(i, t1) (0 < V < Vmax) (11)

cVmax
(i, t2) = qcVmax

(i, t1) (12)

Step III: Movement of vehicles (t2 → t + 1)

cV (i, t + 1) = cV (i − V, t2) (0 ≤ V ≤ Vmax) (13)

Recall that ADM with Vmax = 1 is identical to the NaSch model with Vmax = 1.

Therefore, for nontrivial results of the ADM one must consider Vmax ≥ 2. For Vmax = 2,

the full SOMF equations read (with q = 1 − p)

c0(i, t + 1) = c(i, t)c(i + 1, t) + pc(i + 2, t)d(i + 1, t)c(i, t) (14)

c1(i, t + 1) = qc(i + 1, t)d(i, t)c(i− 1, t) + pd(i + 1, t)d(i, t)c(i− 1, t) (15)

c2(i, t + 1) = qd(i, t)d(i − 1, t)c(i − 2, t) (16)

In the steady state, i.e. for t → ∞, the cV (i, t) are independent of t. For periodic

boundary conditions the system becomes homogeneous in the steady state and hence
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Figure 5. Comparison of site-oriented (left) and car-oriented (right) mean-field theory

with results from computer simulation for Vmax = 2.

the i-dependence of cV (i) also drops out. (14)-(16) then give cV explicitly as a function

of the density c. The steady state flux for Vmax = 2 is then given by

J = c1 + 2c2 = c(1 − c)(2 − c − p) (17)

The results obtained from the SOMF theory are plotted in Fig. 5(left) for a few values

of p along with the corresponding numerical data from computer simulation. The

agreement between the fundamental diagrams obtained from this simple SOMF theory

and those obtained from computer simulations is quite poor because the important

correlations between neighboring sites are neglected in this approach.

Interestingly, in contrast to the NaSch model [23], the fundamental diagram shows

an inflection point at intermediate densities. This non-convexity of the flow-density

relation becomes more pronounced for large values of the randomization p.

Asymptotically, for large densities c ≈ 1, the flow in the ADM will be identical

to that in the corresponding NaSch model, i.e. J ≈ (1 − p)(1 − c). However, in the

NaSch model, and in many other traffic models, the flow at any density c can never

exceed (1 − p)(1 − c), the flow on the jammed branch. But, in contrast, because of the

possibility of large accelaration of the vehicles in the ADM, the flow can far excced the

value (1− p)(1− c) at intermediate densities. Then, for obvious mathematical reasons,

any smooth function with the asymptotic behaviour (1 − p)(1 − c) has to exhibit an

inflection point.

In the NaSch model SOMF always systematically underestimates the true flux

because of the effective particle-hole attraction [23]. Surprisingly, the same is not always

true in the ADM (see e.g. p = 0.75 in Fig. 5(left)). This indicates that the correlations

in the ADM at intermediate densities are somewhat different from those in the NaSch

case. Since now SOMF overestimates the flow over a range of density, this indicates the

presence of effective particle-particle attraction, instead of particle-hole attraction in

that regime. This is a consequence of the large accelerations of the vehicles which lead

to a tendency towards particle-particle aggregation. This tendency becomes stronger at
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large values of the randomization p, where fluctuations that reduce the velocity of a car

temporarily become more likely.

In the next section we describe an improved mean field theory, namely car-oriented

mean field theory, which takes into account certain correlations between the sites.

3.3.2. Car-oriented Mean-field Theory of ADM Here, we present the car-oriented

mean-field (COMF) theory [32] of ADM with Vmax = 2. The central quantity in COMF

theory is the probability Pn(t) to find at time t (exactly) n empty sites in front of a

vehicle, i.e. the spatial headway distribution. This approach is also known as empty

interval method or interparticle distribution function method. For a nice introduction

and list of related references we refer to [33].

The time evolution of the probabilities Pn(t) can conveniently be expressed through

the probability gj(t) (j = 0, 1, 2) that a car moves j sites in the next time step. In order

to find the time evolution of the Pn(t) we first determine from which configurations at

time t a given state a time t + 1 could have evolved. Take for instance a car — called

second car in the following — which has n ≥ 4 free sites in front, i.e. its distance to the

next car ahead (called first car in the following) is n+1 sites. Since the velocity difference

of the two cars is at most 2, a headway of n sites at time t + 1 must have evolved from

a headway of length n − 1, n, n + 1 or n + 2 in the previous time step. A headway of

n− 1 sites evolves into a headway of n sites only if the first car moves (with probability

g2(t)) and the second car brakes in the randomization step (with probability p), i.e. the

total probability for this process is pg2(t)Pn−1(t). The headway will remain constant

if the first car moves with probability g1(t) and second car brakes with probability p

(total probability for this process is pg1(t)Pn(t)) or the first car moves with probability

g2(t) and second car moves with probability q (total probability for this process is

qg2(t)Pn(t)). Similarly, a headway of n + 1 sites evolves into a headway of n sites if

the first car does not move (probability g0(t))and second car brakes with probability p

(total probability being pg0(t)Pn+1(t)) or the first car moves with probability g1(t) and

second car moves with probability q (total probability for this process is qg1(t)Pn+1(t)).

Finally, a headway of n + 2 evolves into a headway of n only if the second car moves

with probability q (total probability for this qg0(t)Pn+2(t)).

The special cases n = 0, 1, 2 and 3 can be treated in an analogous fashion. In this

way one obtains the time evolution of the probabilities as

P0(t + 1) = g0(t)P0(t) + qg0(t)[P1(t) + P2(t)], (18)

P1(t + 1) = g1(t)P0(t) + (pg0(t) + qg1(t))[P1(t) + P2(t)] + qg0(t)P3(t), (19)

P2(t + 1) = g2(t)P0(t) + (pg1(t) + qg2(t))[P1(t) + P2(t)]

+ (pg0(t) + qg1(t))P3(t) + qg0P4(t), (20)

P3(t + 1) = pg2(t)[P1(t) + P2(t)] + (pg1(t) + qg2(t))P3(t)

+ (pg0(t) + qg1(t))P4(t) + qg0(t)P5(t), (21)

Pn(t + 1) = pg2(t)Pn−1(t) + (pg1(t) + qg2(t))Pn(t)
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+ (pg0(t) + qg1(t))Pn+1(t) + qg0(t)Pn+2(t) (n ≥ 4) (22)

A car will not move in next time step if there is no empty site in front of it (probability

P0(t)) or if there is exactly one empty site in front of it and it decelerates in the

randomization step 2 (probability pP1(t)). It will move one site if either there is exactly

one empty site ahead and it does not decelerate (probability qP1(t)) or there are at least

two empty sites in front, but the car decelerates in step 2 (probability p
∑

n≥2
Pn(t)). In

all other cases it will move two sites. Therefore the probability gj(t) that a car moves j

sites in the next time step is given by

g0(t) = P0(t) + pP1(t)

g1(t) = qP1(t) + p
∑

n≥2

Pn(t) = p − pP0(t) + (q − p)P1(t) (23)

g2(t) = q
∑

n≥2

Pn(t) = q[1 − P0(t) − P1(t)]

where we have used the normalization condition
∑

n≥0

Pn(t) = 1 (24)

to rewrite the probabilities gj(t) in terms of P0(t), P1(t), P2(t) and P3(t) only.

The probabilities can also be related to the density c = N/L of cars. Since each

car which has the headway n to the next car one in front of it ’occupies’ n + 1 sites we

have following relation:
∑

n≥0

(n + 1)Pn(t) =
1

c
. (25)

Here we are mainly interested in the stationary state (t → ∞) with limt→∞ Pn(t) = Pn.

In order to determine the probabilities in the stationary state we introduce the gener-

ating function

P (z) =
∞

∑

n=0

Pnz
n+1 (26)

After multiplying corresponding equation in [18-22] by zn+1 and summing over all

equations one finds an explicit expression for the generating function,

P (z) =
a5z

5 + a4z
4 + a3z

3 + a2z
2 + a1z

−pg2(z2 − 2b1z + b2)
(27)

with

a1 = qg0P0, a2 = (g0 + qg1)P0 + qg0P1,

a3 = (g1 + qg2)P0 + (pg0 + qg1)P1, a4 = g2P0 + (pg1 + qg2)P1, a5 = pg2P1,

b1 =
qg1 + g0

2pg2

, b2 = −
qg0

pg2

. (28)

Note that
∑

j aj = (1 + q)P0 + P1. The denominator of P (z) has two zeros located at

s± = b1 ±
√

b2
1 − b2 with |s+| ≥ 1 and |s−| ≤ 1.
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The normalization condition (24) is equivalent to P (1) = 1 and is already

satisfied by (27). The density relation implies P ′(1) = 1

c
, where P ′(z) denotes the

derivative of P (z). In order to have 0 ≤ Pn ≤ 1 and limn→∞ Pn = 0 the generating

function must be analytic in the unit disc |z| ≤ 1. Therefore the zero s− of the

denominator has to be cancelled by a corresponding zero of the numerator. The equation

a5s
5
− + a4s

4
− + a3s

3
− + a2s

2
− + a1s− = 0 yields a relation between the variable P0 and P1

so that P (z) only depends on one free parameter, e.g. P0. This parameter, in turn, is

a function of the only physically relevant parameter, the density c, via P ′(1) = 1

c
.

To obtain the fundamental diagram we have to calculate the flux. It is given by

J(c, p) = c[g1 + 2g2]. (29)

In order to calculate the flux J(c, p) for a given set of c and p one has to solve the

following two equations numerically.

a5s
5
− + a4s

4
− + a3s

3
− + a2s

2
− + a1s− = 0 (30)

and

P ′(1) =
1

c
(31)

where P ′(z) denotes the derivative of P (z). Eq. (31) can be written as

pg2(2 − 2b1) + (5a5 + 4a4 + 3a3 + 2a2 + a1)

pg2(1 − 2b1 + b2)
+

1

c
= 0 (32)

Eqs. (30) and (32) were solved numerically. Values of P0 and P1 thus obtained for a

given set of c and p are used to calculate the values of g0, g1 and g2. Finally flux J is

calculated using equation (29).

The results obtained from COMF are plotted in Fig. 5(right) for a few values of p

along with the corresponding numerical data from computer simulation. Fundamental

diagrams obtained from COMF show an excellent agreement with the numerical data

in the limit p → 0. Thus COMF can capture the important correlations much better

than SOMF. Especially it is able to reproduce the occurance of an inflection point at

larger values of p. The small deviations are due to the fact that COMF neglects the

correlations between the headways in front of successive vehicles.

3.4. Comparison of ADM with Nagel-Schreckenberg Model

In Fig. 6 we have plotted the fundamental diagram of the ADM with Vmax = 3 and

the average speed of vehicles against their density along with that of the NaSch model

with Vmax = 3 for a few values of p. In the absence of randomization, i.e. for p = 0,

this model and the NaSch model give identical fundamental diagram and variation of

average speed with density. In the presence of randomization, i.e. p 6= 0, the flow

in the ADM is always larger than that of the corresponding NaSch model due to the

faster acceleration. This difference is most pronounced at densities slighty beyond the

maximum flow.
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Figure 6. (a) The fundamental diagram of the model plotted along with the

fundamental diagram of NaSch model for Vmax = 3 for a few values of p. (b) Average

speed of vehicles plotted against their densities for the model of aggressive driving

along with the NaSch model for Vmax = 3 for a few values of p.

4. ADM with Open Boundary Conditions

In this section we consider the ADM with open boundary conditions where vehicles

move deterministically, i.e. with randomization probability p = 0.

A schematic representation of the analyzed system is shown in Fig. 7. Our main

system consist of L cells. This main system is connected to two mini systems of length

Vmax on each side [34]. This is done to provide a proper insertion and extraction strategy

allowing us to investigate the whole spectrum of the possible states. The state of the

mini system of the left boundary has to be updated every time step before the vehicles

of whole system. The update procedure consists of two steps. If any cell of the left mini

system is occupied it has to be emptied first. Then a vehicle is inserted in the system

with probability α. The position of the inserted vehicle has to satisfy the following

conditions: (i) The headway between the inserted vehicles in the mini system and the

first vehicle in the main system is equal to Vmax, and (ii) the distance to the main system

has to be minimum i.e. if there is no vehicle present in the main system within first
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Figure 7. Schematic representation of the analyzed system with open boundary

conditions. The main system consists of L cells. Vehicles move from left to right, and

are represented by dark circles. The left boundary consists of mini system of Vmax cells.

This left mini system is occupied by at most one vehicle with probability α. Similarly

the right boundary consists of a mini system of Vmax cells and particles are extracted

from it with probability β. We shall represent each cell by a site on the lattice formed

by these cells.

Vmax cell then the rightmost cell of the left boundary is occupied. The right boundary

consists of Vmax cells and vehicle are removed from these cells with probability β. These

boundary conditions are capable of generating all flows observed in the case of periodic

boundary conditions, including the maximal flow. From now onwards, we shall represent

the cells by the sites of a lattice formed by the cells.

The above insertion and extraction scheme generates the maximum flow of the

corresponding aggressive driving model with periodic boundary conditions for α = β =

1, i.e.

J =
Vmax

Vmax + 1
(for α = β = 1). (33)

4.1. Density Profiles in the ADM

For small α and large β, the system is found in the free flow regime. In Fig. 8 we have

shown density profiles over a spatial region located in the middle of the bulk of the

system for Vmax = 4 and L = 1000 in the free flow regime. The density profile shows a

periodic structure with a period of oscillation ∆i = 4. For any arbitrary Vmax, we find

that the period of this oscillating pattern is ∆i = Vmax.

In order to understand this periodicity we first consider the density profile for very

low injection rates and maximum extraction rate (β = 1) (see Fig. 8). For α = 0.01

the probability of inserting a vehicle at the rightmost site of the left mini-system in two

successive time step is very small and, therefore, the vehicles at the beginning of the

system do not feel influence of each other. This means that a vehicle which is inserted

at the rightmost site of the left mini system moves to i = 4 at the next time step and

can be found at site i = 4t after t times steps (t = 1, 2, 3, ...). The density on these sites

is ρ ≈ α (α ≤ 0.1).

For increasing injection rate α, the probability of inserting a vehicle in two successive
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Figure 8. Density profile in the middle of the bulk of the system; Vmax = 4 and

L = 1000. The different curves correspond to different sets of values of α and β,

namely, α=0.01 and β=1.0 (�), α=0.1 and β=1.0 (�), α=0.3 and β=1.0 (◦), α=0.9

β=1.0 (•).
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Figure 9. (a) Density profile at the beginning of the system (b) Density profile at the

end of the system for Vmax = 4 and L = 1000. α=0.95 and β=0.50 (+), α=0.95 and

β=0.60 (×), α=0.95 and β=0.70 (∗), α=0.95 and β=0.80 (�), α=0.95 and β=0.85

(�), α=0.95 and β=0.90 (◦), α=0.95 and β=0.95 (•), α=0.95 and β=1.00 (△).

time steps increases which results in the increase in the hindrance that a vehicle feels

from the front vehicle at the beginning of the system. This can be explained as follows

[35]:

Suppose we insert a vehicle A in the mini-system at time step T and a vehicle at time

step T + 1. Considering the system at time step T + 1, we see that vehicle A is on site

i = 4 and will move with velocity 4 where as vehicle B will occupy position i = 3 in

the next time step T + 2 because the vehicles are inserted in left mini-system in such a

way that the headway between the inserted vehicle and the next vehicle downstream is

is 4. At time T + t, vehicle A is on i = 4t and vehicle B is on i = 4(t− 1)− 1. In other

words, we can say that the hindrance due to left boundary condition leads to a shift of
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the position of the vehicles within the system. This shift is reflected in the oscillation

in the density profile of 8. The probability of finding a vehicle at i = 4t + 3 is smaller

than at i = 4t and it is much smaller for i = 4t+2 and even much smaller for i = 4t+1.

As we move from the free flowing regime to congested flow regime (keeping α fixed

and decreasing β) something interesting happens: the oscillations start vanishing and

envelope of density profile rises (see Fig. 9). For low values of β, the density profile

is just a constant whose value increases with decreasing β. This phenomenon is due

to the hindrance that vehicles feel at the right boundary with decreasing probability

β. Consequently a jam develops at the right boundary which expands to the left with

decreasing β.

4.2. Phase Diagram in the ADM

In order to identify the regions of free-flow and congested flow in the phase diagram of

the ADM we measure the bulk density and the flux in the middle of the open system

by varying the boundary rates. Density-flux pairs falling on the free flow branch of the

periodic system are identified as belonging to the free flow phase, those falling on the

jammed branch as congested flow. Since density profile shows a periodic structure in

the free flow regime, in order to compute the bulk density in the middle of the system,

we average over the densities of Vmax lattice sites (i.e. one period of oscillation) for a

given Vmax.

The phase diagram of the ADM with open boundary conditions for Vmax = 4 and

Vmax = 9 is shown in Fig. 10. The system will be found either in free-flow or congested-

flow regime depending on the values of α and β. Here, the α = β line does not separate

the free flowing and congested flow regime. Instead, the free flow regime is larger than

the congested flow regime. The span of the free-flow regime increases with increasing

Vmax. In the special case Vmax = 1 the above insertion and extraction scheme leads us to

the phase diagram of TASEP with open boundary and where the line α = β separates

free flow and congested flow regime.

5. Cytoplasmic dynein: from experiment to model

In this section we first mention the main experimentally observed features of the

steppings of dynein motors. Then, by extending the ADM, we develope a simple

theoretical model that captures the essential features of dynein stepping.

5.1. Stepping of dynein: experimental results

In order to understand the mechanism of a single dynein motor, Mallik et al. [36]

extracted the step size of single dynein motor from their experimental data. In their

experiment, hindrance against forward movemnent of dyneins was caused by an opposing

force. In principle, this hindrance could also be created by other motors. The smallest

possible step size would be 8 nm as the equispaced binding sites on the microtubule form



From aggressive driving to molecular motor traffic 18

0.0 0.2 0.4 0.6 0.8 1.0
α

0.0

0.2

0.4

0.6

0.8

1.0

β

V
max

 = 4
V

max
 = 9

Free flow

Congested flow

Figure 10. Phase diagram of aggressive driving model with open boundary conditions

for Vmax = 4 and Vmax = 9.

a lattice with lattice constant of 8 nm. Mallik et al. [36] observed that in the absence

of hindrance the step sizes of dyneins were mostly ∼ 32 nm, i.e., four times the lattice

constant. Moreover, the step size decreased with increasing hindrance: under weak

hindrance the step size was approximately ∼ 24 nm, under intermediate hindrance

step size was about ∼ 16 nm, whereas under strong hindrance dynein takes steps of

∼ 8 nm. On the basis of these observations, Mallik et al. [36] suggested a molecular

gear mechanism for dynein motors.

In their generic model of molecular motor traffic, Parmeggiani et al. [15] implicitly

assumed a hindrance-independent step size of the motors. Therefore, in the light of

the experimental observations on dynein steppings [36], one may interpret the model

developed in [15] to be a minimal model for the traffic of kinesin motors which are known

to take steps of 8 nm irrespective of the hindrance. Therefore, to model the traffic of

dynein motors, which can take steps of upto 32 nm (i.e., four times the lattice spacing

in between the successive binding sites) at one go in the absence of hindrance, we need

a more sophisticated model. In the next subsection we describe the model which we

propose for the traffic of dynein motors.

5.2. Dynein traffic model (DTM)

Our dynein traffic model (DTM) has been obtained by extending the ADM which we

have discussed extensively in the preceeding sections. The lattice sites in this case

represent the dynein binding site on the microtubule track and the lattice constant is

8 nm. In order to capture the fact that in the absence of hindrance a single dynein motor

can take a single step of 32 nm, we set Vmax = 4 in the ADM. Moreover, to capture the

attachment and detachment of the motors from the microtubule track, we also allow
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the detachment of a motor from an occupied site with rate ωD and attachment of a

motor to an empty site with rate ωA. The state of the system is updated in a random

sequential manner. In this DTM, a single dynein motor can move forward by four

lattice sites (i.e., 32 nm) in one single step if the available gap is greater than or equal

to 32 nm; otherwise, the step size will be equal to the available gap as the mutual

exclusion between the motors hinders the motion of the following dynein.

6. Results for DTM with periodic boundary conditions
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Figure 11. Flux f in the DTM with Vmax = 4 for different values of the binding

constant K and with (a) random-sequential updating, (b) parallel updating.

In the case of periodic boundary condition we allow attachment and detachment of

motors from all lattice sites with probability ωA and ωD respectively. This prescription

is very similar to that followed by Parmeggiani et al.[15] in their generic model of

molcular motor traffic. In order to compare and contrast our DTM with the model

of Parmeggiani et al.[15], all our computer simulations of the DTM have been carried

out by random sequential updating which was adopted in ref.[15]. We have carried

out limited investigation of the DTM also by implementing parallel updating. But,

unless explicitly stated otherwise, by computer simulation of the DTM we shall mean

simulation using random sequential updating.

Fig. 11 shows the values of flux f as a function of the binding constant K = ωA/ωD

for different values of ωD obtained from the computer simulations implementing random-

sequential updating (Fig. 11(a)) and parallel updating (Fig. 11(b)). In both the cases

the flux initially increase with increasing K. However, beyond a threshold value of K the

flux starts decreasing with the further increase of K. Comparing the figures 11(a) and

11(b) we find that, for the same set of values of the parameters, higher flux is obtained

with parallel updating; this effect becomes more pronounced at higher ωD. This is
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consistent with the well known result that flux obtained with parallel updating is higher

than that obtained with random-sequential updating even in the simpler situation of

TASEP.

We have carried out a Site-Oriented Mean Field (SOMF) calculation for the DTM

following the same procedure as we followed earlier for the ADM. For Vmax = 4, we get

c0(i, t + 1) = c(i + 1, t)[c1(i, t) + c2(i, t) + c3(i, t) + c4(i, t)] (34)

c1(i, t + 1) = qc(i + 1, t)d(i, t)c(i− 1, t) (35)

c2(i, t + 1) = qc(i + 1, t)d(i− 1, t)d(i, t)c(i − 2, t) (36)

c3(i, t + 1) = qc(i + 1, t)d(i− 2, t)d(i − 1, t)d(i, t)c(i − 3, t) (37)

c4(i, t + 1) = qd(i − 3, t)d(i − 2, t)d(i − 1, t)d(i, t)c(i− 4, t) (38)

In the steady state, i.e. t → ∞, cV (i, t) are independent of t. For periodic boundary

conditions the system becomes homogeneous in the steady state and hence the i-

dependence of cV (i) also drops out. Therefore the steady state flux for Vmax = 4 is

given by

f = c1 + 2c2 + 3c3 + 4c4 = qcd[c + 2cd + 3cd2 + 4d3] (39)

where q is the probability that the motor does, indeed, hop, instead of getting detached

from the track. Finally, substituting q = 1−ωD, the steady flux in the DTM, under the

SOMF approximation, is given by

f = cd((1 − ωD)c + 2(1 − ωD)cd + 3(1 − ωD)cd2 + 4(1 − ωD)d3) (40)

where c is given by the well-know ratio K/(1+K) of Langmuir equilibrium density and

d = 1 − c. In Figs. 11(a) and (b) we have shown the curves obtained from Eq. (40)

to compare the predictions of the SOMF theory with the corresponding simulation

data. Although the agreement is not very good, we find that the SOMF provides better

estimates of flux at higher values of the detachment probability ωD.

One interesting feature of the SOMF result is that it is an overestimate of the flux

for random-sequential updating whereas it is an underestimate of that corresponding

to parallel updating. Moreover, the SOMF estimates are closer to the simulation data

from random-sequential updating than those from parallel updating. This behaviour

indicates that the underlying correlations are rather subtle.

The agreement between SOMF theory and computer simulations is much better

in the DTM than in the ADM. Is it an artefact of the different values of Vmax used

in Fig.5(a) and Fig. 11(b)? In order to investigate this possibility, we have studied

a hypothetical DTM with Vmax = 2 by SOMF as well as by computer simulation

implementing parallel updating. The SOMF estimate for the flux in this hypothetical

DTM with Vmax = 2 is given by

f = cd(2 − c)(1 − ωd) (41)

where c = K/(1 + K). This SOMF estimate is compared in Fig.12 with the numerical

data obtained from the simulation of the same model with parallel updating. The
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Figure 12. The fundamental diagram in a hypothetical DTM with Vmax = 2 and

parallel updating under periodic boundary conditions.
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Figure 13. Schematic representation of the DTM with open boundary conditions.

agreement is as good as that in Fig. 11 for the actual DTM with Vmax = 4. Thus, the

reason for better success of SOMF in DTM than in ADM remains a challenging open

problem for future investigation.

7. DTM with open boundary condition

A schematic representation of the analysed system with open boundary conditions is

given in Fig. 13. To capture the attachment and detachment of the motors from the

microtubule we allow the detachment of a motor from an occupied site with rate ωD

and attachment of a motor to an empty site with rate ωA in the bulk i.e. from all site

other except those who belong to the reservoirs at the left and right boundary. Our

proposed model with open boundary conditions reduced to the model of Parmeggiani

et al. [15], which is a minimal model for the intra-cellular traffic of kinesin motors, if

one sets Vmax = 1.

A competition between bulk dynamics (Langmuir kinetics) and boundary induced non-

equilibrium effects (TASEP-like dynamics) is expected only if the particles injected

either at boundary or somewhere in bulk visits a finite fraction of the total system size.
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Figure 14. Average density profiles 〈ni〉 in the DTM obtained from Monte Carlo

simulations and plotted against the rescaled space variable x = i/L for different values

of ΩD. The common parameter values are L = 10000, α = 0.2, β = 0.6, K = 3.

In that case particles will spend enough time on lattice to feel mutual influence and

eventually would produce collective effects.

Study of competition between bulk and boundary dynamics for large systems

(L ≫ 1) requires that the kinetic rates ωA and ωD decrease simultaneously with

increasing system size L. This can be illustrated by considering the following heuristic

argument given in ref. [15]. The average time τ spent by a particle before detachment

is roughly of the order of ∼ 1/ωD. During this time τ the number of sites n visited by

a given particle is of the order of n ∼ τ . Therefore the fraction n/L (= 1/ωDL) of the

lattice site visited by a given particle during this time would tend to zero for fixed ωD

as L → ∞. In order that a given particles explores a finite fraction of the total sites

before detaching for system size L ≫ 1, one has to define the “total” detachment rate

ΩD = ωDL such that ΩD remain constant as L → ∞. A similar argument shows that a

vacancy visits a finite fraction lattice sites until it is filled by the attachment of a particle

if ωA scales to zero as ΩA/L with fixed “total” detachment rate ΩA [15]. Therefore we

define total detachment rate ΩD = ωDL and total attachment rate ΩA = ωAL such that

ΩD and ΩA remain constant as L → ∞. Note that the binding constant K = ωA/ωD

remains unchanged as L → ∞.

7.1. Density profiles in the DTM

7.1.1. Density profiles In Fig. 14 (a) we have plotted the typical average density profiles

〈ni〉 obtained from Monte Carlo simulations for this model in rescaled space variable

x = i/L (where ni denotes occupation of nth lattice site in the bulk i.e. i = 1, 2, ...L)

by choosing a path in the parameter space along the curves with fixed α, β and K while

increasing ΩD = ΩA/K. For low values of kinetic rates ΩD, ΩA ≪ α, β the system

remain in low-density phase where average density in the bulk remains constant. For

High values of kinetic rates ΩD and ΩA the system goes to high density phase where

average density in the bulk again constant. The bulk density in this case is determined
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Figure 15. Average density profiles in the DTM obtained from Monte Carlo

simulations and plotted against rescaled space variable for different system sizes. The

common parameter values are α = 0.2, β = 0.6, K = 3 and ΩD = 0.2.

by the well know ratio K/(1 + K) of Langmuir equilibrium density. For intermediate

values of the rates, for example ΩD = 0.2, the density profile in the bulk exhibits unusual

feature where regions of high density and low density are connected by a steep rise. In

Fig. 14 (b) we have shown the density profiles obtained by Parmeggiani et al. [15] for

their model where Vmax = 1. Comparison of Figs. 14 (a) and 14 (b) shows that the

average bulk density in the low density phase in Fig. 14 (a) is smaller than in Fig. 14

(b). This observed decrease in the bulk density in the low density phase for identical

values of the parameters α, β, K and ΩD is due to the fact that particles in low density

phase move with higher velocity which leads to higher current and lower density. Fig. 14

(a) also shows oscillations in the density profile at the beginning of the system in the

low density phase. These oscillations result from the hindrance that particles have at

the beginning of the system from each other [37]. These oscillations die out for higher

systems sites. Comparison of Fig. 14 (a) and Fig. 14 (b) also shows that in the case of

dynein motors the domain wall is found inside the the system for slightly higher value

of ΩD.

Figure 15 shows the average density profile 〈ni〉 computed from Monte Carlo

simulation in rescaled space variable x for different system sizes. The width of the
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Figure 16. Domain wall positions in the DTM for different values of ΩD. The common

parameter values are L = 10000, α = 0.2, β = 0.6 and K = 3.

transition region decreases with increasing system size. The data obtained from our

simulations suggest a sharp discontinuity of the density profile in terms of the rescaled

space variable x = i/L in the limit L → ∞. Therefore the low and high density phases

separated by a sharp domain wall coexist in our model over an intermediate range of

parameter values where boundary and bulk kinetic rates compete against each other.

This discontinuity in the density profile is stable and the position of the domain wall is

determined by the values of the kinetic rates as shown in Fig. 16. This coexistence of

high and low density phase separated by a domain wall can be regarded as a traffic jam

for molecular motors.

7.2. Phase diagrams in the DTM

In order to identify the regions of coexistence, we have obtained the phase diagram of

our model for intra-cellular traffic of dynein motors by varying the boundary rates α and

β for fixed values of K and ΩD. Fig. 17(a) shows the phase diagram for ΩD = 0. In this

case model reduces to the aggressive driving model with random sequential updating.

For ΩD = 0, by varying boundary rates α and β one gets three kind of phases namely

Low density phase (LD), High density phase (HD) and Maximal Current phase (MC).

For very small values of ΩD (ΩD ∼ 0.001) the boundary rates α and β dominate and the

structure of the phase diagram is determined only by the boundary rates α and β. For

ΩD ∼ 0.001 one obtained a phase digram similar to Fig. 17(a). On increasing the value

of ΩD the boundary and bulk rates start competing with each other and in this case

one gets a phase diagram where MC phase disappears and one can identify four distinct

regions in the phase diagram namely, Low density phase (LD), Low density high density

coexistence region (LD-HD), High density phase (HD) and “Meissner” (M) phase. The

Meissner phase [15] has some interesting features that are genuinely distinct from the

High density phase. The density profile in the bulk is independent of the boundary rates

α and β and is determined only by the bulk. On further increase of ΩD the low density
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Figure 17. Phase diagrams of the DTM for (a) Vmax = 4, ΩD = 0.0 (b) Vmax =

4, ΩD = 0.1 (c) Vmax = 4, ΩD = 0.2 and (d) Vmax = 4, ΩD = 10 (e) Vmax = 1, ΩD = 0.0

(f) Vmax = 1, ΩD = 0.1 (g) Vmax = 1, ΩD = 0.2 and (h) Vmax = 1, ΩD = 10. Other

common parameter values are L = 10000, K = 3.

phase also disappears from the phase diagram as shown in Fig. 17(c) and in this case

one gets HD phase, M phase and coexistence region. For large values of ΩD the phase

diagram is spanned only by the M phase as shown in Fig. 17 (d). In Fig. 17(e)-(h) we

have shown phase diagrams of the model of Parmeggiani et al. [15] for the identical set

of parameters. Comparison of the phase diagrams shown in Figs. 17(a)-(d) and 17(e)-

(h) shows that the regions of coexistence of Low and High density phases are slightly

different in the α − β plane for identical values of the parameters K and ΩD.

7.3. Transportation efficiency

Comparison of 32 nm step of dynein at in the absence of hindrance and 8 nm step of

kinesin implies that as a cargo transporter the dynein is four times more fuel-efficient

than kinesin as both require one molecule of ATP as fuel. To study the transportation

efficiency of dynein motors and kinesin motors as a function of the parameters K and

ΩD we define the transportation efficiency by the relation

%Transportation efficiency =
No. of steps taken

No. of attempts made × 4
× 100 (42)

The above relation has been defined in such a way that if a dynein motor takes

4 steps of 8 nm in each attempt (i.e. for each ATP hydrolysis) then its efficiency will

be 100 % similarly if a kinesin motor takes 1 step of 8 nm in each attempt then its
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Figure 18. Efficiency of dynein and kinesin motors for (a) different values of K and

(b) ΩD. The common parameter values are L = 1000, α = 0.2 and β = 0.6

efficiency will be equal to 25 %. The transportation efficiency of cytoplasmic dynein

motors (Vmax = 4) and kinesin motors (Vmax = 1) are plotted in Fig. 18 (a) and Fig. 18

(b) for different values of ΩD and K. There is practically no difference between the

efficiency of dynein and kinesin motors for very large values of ΩD and K (ΩD ∼ 10 and

K ∼ 10) as for very large values of ΩD and K system is found in high density phase

(HD).

8. Summary and conclusions

In this paper we have first investigated the properties of the aggressive driving model

(ADM) which is a simple cellular automata model for vehicular traffic. One of the

motivations for considering this model is that the rule for aggressive driving can be

naturally extended to capture the special features of step sizes of dynein motors and,

therefore, the ADM is ideally suited for extending so as to study intra-cellular molecular

motor traffic by dynein motors.

The ADM shows different behavior for Vmax = 1 and Vmax > 1. For Vmax = 1

the model is identical to the NaSch model with Vmax = 1 which has perfect particle-

hole symmetry. This symmetry is broken for Vmax > 1. The fundamental diagram

of this model in the special limit Vmax = ∞ has a form which is quite different from

that of the NaSch model in the limit Vmax = ∞. We have also shown few distance

headway and time-headway distributions. We have calculated the fundamental diagram

using two different mean-field approaches, namely, site-oriented mean-field approach

(SOMF) and car-oriented mean-field approach (COMF). A simple SOMF theory shows

a poor agreement with the simulation data. However, an improved mean field theory,

namely COMF, shows good agreement with the numerical data obtained from computer

simulations. We compare our ADM with the Nagel-Schreckenberg model which captures

essential features of normal driving. We have also investigated the density profiles

and phase diagrams of this model replacing the periodic boundary conditions by open

boundary conditions. The density profile of this model with open boundary conditions
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shows periodic structures in the free-flowing regime whose period of oscillation depends

on the maximum attainable velocity Vmax.

We have extended the ADM to develope a dynein traffic model (DTM) which is a

model of intra-cellular molecular motor traffic from cell periphery towards the nucleus

of the cell. We have investigated the properties of this model with periodic and open

boundary conditions. Under open boundary conditions, DTM shows an unusual feature

where low and high density phases separated by a static domain wall coexist over a

range of parameter values which can be interpreted as a traffic jam of molecular motors.

This is in sharp contrast to the phase diagram of the ADM which does not exhibit

such coexistence of congested and free-flowing regions. The occurrence of the phase

is, thus intimately related to the competition between the hopping and the kinetics of

attachment/detachment of the motors on the track. Finally, we have compared the

efficiencies of dynein and kinesin motors for different values of parameters. For very

large values of the parameters ΩD and K system is found in the high density phase and,

in that case, one observes practically no difference between the efficiencies of kinesin

and dynein motors.

To our knoweledge, our DTM is the first model of traffic-like collective transport

of dynein motors on filamentary microtubule tracks. A model that incorporates both

the species of dyneins and kinesin motors, which move in opposite directions along the

same track, may provide deep insight into experimentally observed bidirectional traffic

[38].
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