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Abstract. Motivated by recent experimental results for the step sizes of dynein
motor proteins, we develope a cellular automata model for intra-cellular traffic of
dynein motors incorporating special features of the hindrance-dependent step size of
the individual motors. We begin by investigating the properties of the aggressive
driving model (ADM), a simple cellular automata-based model of vehicular traffic, a
unique feature of which is that it allows a natural extension to capture the essential
features of dynein motor traffic. We first calculate several collective properties of
the ADM, under both periodic and open boundary conditions, analytically using two
different mean-field approaches as well as by carrying out computer simulations. Then
we extend the ADM by incorporating the possibilities of attachment and detachment
of motors on the track which is a common feature of a large class of motor proteins
that are collectively referred to as cytoskeletal motors. The interplay of the boundary
and bulk dynamics of attachment and detachment of the motors to the track gives rise
a phase where high and low density phases separated by a stable domain wall coexist.
We also compare and contrast our results with the model of Parmeggiani et. al. (Phys.
Rev. Lett. 90, 086601 (2003)) which can be regarded as a minimal model for traffic
of a closely related family of motor proteins called kinesin. Finally, we compare the
transportation efficiencies of dynein and kinesin motors over a range of values of the
model parameters.
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1. Introduction

Molecular motors are protein molecules that drive a wide range of intra-cellular activities
including transport of molecular cargo [Il, 2]. There are many similarities between
collective molecular motor transport and vehicular traffic [3, 4]. In recent years non-
equilibrium statistical mechanics has found unusual application in research on traffic
flow of various different types of objects starting from objects as small as molecular
motors to macroscopic objects like vehicles [5, 6, B, B]. Analytical as well as numerical
techniques of the statistical physics are being used to understand rich variety of
physical phenomena exhibited by traffic systems. Some of these phenomena, observed
under different circumstances, include phase transitions, criticality and self-organized
criticality, metastability and hysteresis, phase-segregation,etc.

A common modeling strategy is to represent the motile objects (e.g., a vehicle or
a molecular motor) by a self-propelled particle, ignoring its structural details, and then
treating the traffic as a system of interacting particles driven far from equilibrium. These
models belong to a class of non-equilibrium systems called driven-diffusive lattice gases
[0, 8, @, 10]. In most of these traffic models the dynamics of the particles is formulated
using the language of cellular automata (CA) [II].

To our knowledge, the first model for molecular motor traffic was formulated in
1968 in the context of collective movement of ribosomes on messenger RNA track
[T2, [T3]. In recent years several groups have independently developed a class of minimal
generic models for traffic of molecular motors which move on tracks that are filamentary
proteins. All these models are essentially extensions of the totally asymmetric simple
exclusion process (TASEP) [I4, [7] which is one of the simplest models of driven diffusive
lattice gas systems. In these models [I5), M6, 17, I8, 19, 20] the molecular motors are
represented by particles whereas the sites for the binding of the motors with the tracks
are represented by a one-dimensional discrete lattice. Just as in TASEP, the motors
are allowed to hop forward, with probability ¢, provided the site in front is empty.
However, unlike TASEP, the particles can also get “attached” to an empty lattice site,
with probability wy, and “detached” from an occupied site, with probability wp from
any site except the end points. Parmeggiani et al. [T5] demonstrated a novel phase where
low and high density regimes, separated from each other by domain walls, coexist. They
interpreted this spatial organization as traffic jam of molecular motors.

None of the models of molecular motor traffic mentioned above distinguish between
kinesins and dyneins which form the two superfamilies of motor proteins that move on
the same type of tracks, namely, microtubules. On the other hand, detailed experiments
over the last two years have established that, in contrast to kinesins, dyneins can take
steps of four different sizes depending on the opposing force or hindrance. One of the
aims of this paper is to introduce a minimal model that distinguishes between these two
features of kinesin and dynein motors.

In this paper we begin by investigating the aggressive driving model (ADM), a
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stochastic CA model for traffic flow I that is closely related to the Nagel-Schreckenberg
(NaSch) model [22, 23]. One of the reasons for studying this model is that it allows
natural extensions so as to capture the essential features of dynein motor traffic including
the unique features of dynein stepping (which we shall explain in section [.]). Besides,
the ADM model is an interesting model of vehicular traffic in its own right and is also
related to the Fukui-Ishibashi (FI) model [24]. However, in contrast to the FI model,
it still shows spontaneous jam formation. We investigate the properties of the ADM
by approximate analytical calculations as well as by computer simulations. Then, we
use an extended version, which we refer to as the dynein traffic model (DTM), for a
quantitative desciption of intra-cellular traffic of dynein motors.

The paper is organized as follows. In the next section we describe the ADM and
the method of simulation. In section B we investigate the properties of the ADM with
periodic boundary conditions and we describe the analytical theories for calculating its
flow properties. We present a comparison of the ADM with NaSch model at the end of
section Bl In section @l we investigate the density profiles and phase diagram of the ADM
with open boundary conditions. In section Bl we describe the experimentally observed
hindrance-dependence of the step sizes of dynein motors and introduce the dynein traffic
model (DTM). We present the results for the DTM with periodic boundary conditions in
section [fl and those under open boundary conditions in section [l Finally we summarize
the main results and the conclusions in section

2. The CA Model of Aggressive Driving

In the cellular automata model of aggressive driving a lane is represented by a one-
dimensional lattice. The boundary conditions may be periodic or open. Each of the
lattice sites represents a cell that can be either empty or occupied by at most one
vehicle at a time. The speed V' of each vehicle can take one of the allowed integer
values V = 0,1,2,...Viax. Let x, and V,, be the position and speed, respectively, of
the nth vehicle. Then we define the (distance) headway of the nth vehicle at time ¢ by
dp = Tpy1 — T, — 1, i.e. as the number of empty cells in front of this car. At each time
step t — t+ 1 the state of all vehicles on this 1-D lattice is updated in parallel according
to the following rules:

I: Acceleration: 1f d,, > Vyax then V,, — V. and if d,, < V. then V,, — d,,, that is,
Vo = min(Vipax, dn)

11:Randomization: If V,, > 0, the speed of the nth vehicle is decreased randomly by one
with probability p; that is, V,, = max(V,, — 1, 0) with probability p

I11:Vehicle movement: Each vehicle is moved forward so that z,, — =, + V,,.

Step I reflects the tendency of drivers to drive the vehicle as fast possible, without
exceeding the maximum speed of the vehicle, and avoiding accidents between vehicles
at the same time. Thus, if there is enough gap in front, vehicles in this model can
accelerate to the maximum allowed velocity within one single timestep.This captures

1 Originally the model was introduced in [21].



From aggressive driving to molecular motor traffic 4

at least one type of aggressive driving and hence the name. The randomization in the
step 11 takes into account the different behavioral patterns of the individual drivers,
especially non-deterministic acceleration and over-reaction while slowing down.

As usual, the fluz is defined to be the number of vehicles crossing a detector site per
unit time. In the context of vehicular traffic, the most important quantity of interest is
the so-called fundamental diagram which depicts the dependence of flux on the density
of vehicles. The number of empty sites in between a pair of vehicles is usually taken
as a measure of the corresponding distance-headway. The time-headway is defined as
the time interval between the passage of two successive vehicles recorded by a detector
placed at a fixed position on the highway. We have calculated all these characteristic
quantities for the ADM and will present these results in the following sections.

Before presenting the results for the ADM, we would like to compare and contrast
it with a few other well known models of vehicular traffic. In the NaSch model, the
calculation of the speed of a vehicle at the next time step (¢4 1) during the acceleration
stage requires the knowledge of its speed at previous time step ¢ and its speed after
the deceleration stage depends on the available headway in front of it, whereas, in the
aggressive driving model the calculation of the speed of a vehicle at next time step does
not require any knowledge of its velocity at previous time step and depends only on the
available headway in front of the vehicle. In contrast to the NaSch model it therefore
has no velocity memory. From now onwards, we shall refer to this model as aggressive
driving model (ADM).

This ADM differs from the Fukui-Ishibashi (FI) model [24] at Step Il of the
updating procedure. In the FI model the randomization is applied only to those vehicles
whose final velocities become V., after the acceleration stage and, therefore, the FI
model is unrealistic for normal traffic. Consequently, the FI model fails to capture
overreactions at braking which are responsible for spontaneous jam formation (see e.g.
5.

3. Results for ADM with periodic boundary conditions

3.1. Numerical results of computer simulations

In the special case Vipax = 1, the ADM reduces to NaSch model [22] with Vi = 1. In
this limit the fundamental diagram is given by exact expression [23]

J:%[l—\/l—él(l—p)c(l—c)]. (1)

The symmetry about ¢, = 1/2 in this fundamental diagram breaks down for all V;,,, > 1.
Fig. [ shows the fundamental diagram of the ADM for different values of V., for fixed
p=0.25and p = 0.75. Fig.B(a) and Fig.[Ab), show variation of flux and average speed,
respectively, with ¢ for different values of the braking probability p for fixed V. = 3.

For V,.x = 1, the fundamental diagram of ADM has a perfect particle-hole
symmetry with a flow maximum at ¢ = 0.5. However, as in the NaSch model, this
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Figure 1. Fundamental digram of the ADM for Vi,.x > 1 corresponding to (a)
p = 0.25 and (b) p = 0.75 respectively, obtained through computer simulations for
Vinax = 2 (), Vinax = 3 (X), Vinax = 4 (%), and Viuax = 5 (O), respectively.
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Figure 2. (a) Fundamental diagram and (b) density-dependence of the average speed
of vehicles of the ADM with Viyax = 3 for p = 0.0 (+), p = 0.25 (x), p = 0.50 (),
p=0.75 (O) and p = 1.0 (M), respectively.

particle-hole symmetry breaks down for all Vi ., > 1 and the maximum shifts to lower
densities with increasing V... The system remains in the free-flow regime for densities
on the left side of this maximum where the flux increases with increasing density. The
densities on the right hand side of this maximum correspond to congested flow regime
where flux starts decreasing with increasing density and finally vanishes at ¢ = 1. For
a given Vi.x, the maximum value of the flux starts decreasing with increasing braking
probability p. The fundamental diagram of the ADM shows unusual behavior in the
deterministic limit p = 1 where the flux vanishes at ¢ = 0.5 for all V.« > 1. The reason
for this unusual behavior will be explained in the following sections.

The distance headway is usually defined as the distance from a selected point on
a vehicle to the same point on the corresponding lead vehicle (i.e., the next vehicle
downstream). Since in our model all vehicles have the same length we can use the
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number d,, of empty cells in front of vehicle n as a measure of the headway. In Fig. B(a)
we have shown the distribution P, of the distance headway in ADM obtained from
simulations.

At low densities the distance headway distribution shows a broad peak near
n = Vpax. This corresponds to the free-flow regime where the cars are distributed
almost homogeneously. In contrast, at higher densities the peak in the distribution
occurs at a smaller distance headway. In fact, the most probable distance headway
decreases with increasing density. Finally, at sufficiently high densities, the maximum
of the probability distribution occurs only at n = 0. Thus, with increase of vehicle
density, the compact cluster of jammed vehicles becomes larger while large headways
are strongly surpressed.
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Figure 3. Steady-state distributions of (a) distance headways and (b) time headways
for p = 0.5 and Viyax = 5 for densities ¢ = 0.1(+), ¢ = 0.3(x), ¢ = 0.7(x), ¢ = 0.9(0).

The time headway distribution is determined by (a) the time interval between the
departure from one site and arrival at the next site and (b) the waiting time at a given
site; the latter depends not only on the hindrance from the vehicle in front but also on
the randomization parameter p. Equivalently, the time-headway depends not only on
the spatial distance-headway but also on the velocity of the vehicles.

A few typical time headway distributions P(7) in ADM are shown in Fig. B(b) for
a few different densities of the vehicles. At sufficiently low densities it shows a peak
at 7 = 2 as, because of the parallel updating scheme, minimum two time steps must
elapse between the arrival of a vehicle at two successive sites even when it moves totally
unhindred by any other vehicle. Since mean time headway is the inverse of the flux,
it is expected to exhibit a minimum when plotted against the density. The trend of
variation of the most probable time headway with increasing density is also similar, as
can be seen also in Fig. Bl At low densities the peak is rather sharp and it becomes
much broader at higher densities. Compared to the corresponding results for the NaSch
model [26], large headways are surpressed in the ADM; this is caused by the possibility of
large acceleration whereas in the NaSch only allowed acceleration is unity. The broader
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distribution at higher densities arises from the longer waiting times at each site which
is caused by the hindrance from the vehicle immediately in front.

3.2. Numerical and Ezxact Analytical Results for ADM in Limiting Cases

3.2.1. Deterministic limit p=0 'This stochastic model becomes deterministic in the
limit p = 0. In this special case, the deterministic update rules of the model can be
written as

Vo(t 4+ 1) = min(Vipax, dn) (2)
Tt +1) =a,(t) + Vot + 1) (3)

which leads to two types of steady states depending on density of vehicles [27] . At
low densities, the system can self-organize so that d,, > V. for all n and, therefore
every vehicle can move with V.., giving rise to the corresponding flux ¢Vj,... This
steady state is, however, possible only if enough empty cells are available in front of
every vehicle, i.e., for ¢ < ¢ = 1/(Vyax + 1) and the corresponding maximum flux is
J = Vioi/(Vinax + 1). On the other hand, for ¢ > ¢, d,, < Vjax and, therefore, the
relevant steady states are characterized by V,, = d,,, i.e. flow is limited by density of
holes. Since the average distance headway is 1/c — 1, the fundamental diagram of the
model in the deterministic limit p = 0 is given by ezxact expression

J = min[cViyax, 1 — ¢]. (4)

This is identical to the fundamental diagram of the NaSch model in the deterministic
limit, despite the slightly different dynamics.

3.2.2. Deterministic limit p =1 As we discussed earlier in this paper that in the spe-
cial case Vi.x = 1 the ADM reduces to NaSch model with V.« = 1 and hence in the
deterministic limit p = 1, J = 0 for all densities ¢ as expected. However, for V.. > 1,
the properties of the ADM with maximum allowed speed V., in the deterministic limit
p = 1 are not exactly identical to those of the same model with maximum allowed
speed Viax — 1 and p = 0. If Viae > 1, then, for ¢ > 1/2; all initial states lead to
J = 0 because in the steady state system self-organizes itself in such a way that there
is a maximum headway of one lattice site in front of each vehicle and hence speed of
all vehicles becomes zero immediately after the randomization step (step I in update
rules). However, for V,.x > 1 and p =1, J # 0 for all ¢ < 1/2. The maximal attainable
velocity for every vehicle in this limit becomes V. — 1. The fundamental diagram of
ADM for V.« > 1 in the deterministic limit p = 1 is given by ezact expression
minfc(Vipax — 1), 1 — 2¢] for ¢ <1/2
_{O for ¢ > 1/2. 5)

This unusual behavior of the ADM is different from the corresponding behaviour in the
NaSch model. In the deterministic limit p = 1 of the NaSch model, irrespective of V.«
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Figure 4. Fundamental diagram of the model with Vj,,x = L for three typical values
of p. The data only for L = 10000 have been plotted. The data for L = 1000 and
L = 10000 are practically indistinguishable from each other.

and ¢, all random initial states lead to J = 0 [6], because a car which has velocity V' =0
will never move again.

3.2.8. Limit V. = oo There are several possible ways of extrapolating to this limit
since only finite systems can be treated in computer simulations. We here investigate the
case Viyax = L. The fundamental diagram of the model is plotted in Fig. B for different
values of p in this limit. This fundamental diagram has a form quite different from that
in the case of finite V... The flow does not vanish in the limit ¢ — 0 since already
one single vehicle produces a finite value of flow, J(c — 0) = 1. J(c) is a monotonically
decreasing function of c. Another characteristic feature of this fundamental diagram is
the absence of the characteristic plateau which is exhibited by the NaSch model with
Vinax = 00 [28, 29].

3.3. Approximate analytical theories of ADM

In this section we will present the site-oriented mean-field (SOMF) and car-oriented
mean-field (COMF') approaches for calculating the fundamental diagram of the ADM
with periodic boundary conditions following the methods of [23] after a brief review of
the earlier works done in this regard.

A SOMF theory was developed earlier for the FI model [30]. Starting with a
microscopic relation for the updating rule, which describes the occupancy of each site
on the lattice, a macroscopic time-evolution relation is obtained for the average speed
of the vehicles by carrying out statistical averages. Mean field equations are obtained
as the asymptotic limit of the evolution relation. This gives average vehicle speed in the
long time limit as a function of the vehicle density.

A COMEF theory for the FI model was developed in [B1] starting with the basic
equations which describe the time evolution of the headway in front of each car. By
introducing the concept of inter-car spacing longer and shorter than the maximum
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attainable velocity V.., the average speed of the vehicles has been obtained analytically
as a function of car density in the asymptotic limit which corresponds to the steady state.

3.3.1. Site-oriented Mean-field Theory of ADM In the SOMF [23] approach, cy(i,t)
denotes the probability that there is a vehicle with speed V' = 0,1, 2, ...V,.x at site ¢ at
time step ¢. Then, obviously, c(i,t) = Z;/“‘g" ¢;(i,t) is the probability that the site i is
occupied by a vehicle at the time step ¢ (irrespective of its speed) and d(i,t) = 1 —c(i, t)
is the corresponding probability that the site ¢ is empty. Using the definition

J(e,p) =Y Vey (6)

for the flux J(c, p) one can determine the mean-field fundamental diagram for the given
p, provided one can determine ¢y in the mean-field approximation.

According to the update rules of the ADM, the time evolutions of the probabilities
cy (i, t) are given by the following equations:
Step I: Acceleration(t — t;)

co(i,tr) =i, t)e(i+ 1,¢) (7)
14
ev(ity) =c(i+V+1,0]]di+50c6t) (0<V < Vi) (8)
7j=1
Vmax

Vi (8, 11) = _H d(i + j,t)c(i, t) (9)

Step II: Randomization (t; — to)

co(iyte) = coli,t1) + per(iyty) (10)

cy(iyta) = qey(iyty) + peyii (i, ty) (0 <V < Vipax) (11)

CVinax (1 £2) = Q€0 (1, T1) (12)
Step I11: Movement of vehicles (t; — ¢ + 1)

cv(i,t+1) =cy(i— V. iz (0 <V < Vinax) (13)

Recall that ADM with V.« = 1 is identical to the NaSch model with V.« = 1
Therefore, for nontrivial results of the ADM one must consider V. > 2. For V., = 2,
the full SOMF equations read (with ¢ = 1 — p)

co(i,t +1) =c(i,t)e(i + 1,t) + pc(i + 2,t)d(i + 1,t)c(i, t) (14)
c1(i,t+1) = qc(i + 1,6)d(i, t)c(i — 1,t) + pd(i + 1,t)d(i,t)c(i — 1,t) (15)
co(iyt+ 1) = qd(i, t)d(i — 1,t)c(i — 2,t) (16)

In the steady state, i.e. for t — oo, the ¢y (i,t) are independent of ¢. For periodic
boundary conditions the system becomes homogeneous in the steady state and hence
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Figure 5. Comparison of site-oriented (left) and car-oriented (right) mean-field theory
with results from computer simulation for V., = 2.

the i-dependence of ¢y (i) also drops out. ([d))-(d) then give ¢y explicitly as a function
of the density c¢. The steady state flux for V., = 2 is then given by

J=c1+2c=c(l—c)(2—c—0p) (17)

The results obtained from the SOMF theory are plotted in Fig. E(left) for a few values
of p along with the corresponding numerical data from computer simulation. The
agreement between the fundamental diagrams obtained from this simple SOMF theory
and those obtained from computer simulations is quite poor because the important
correlations between neighboring sites are neglected in this approach.

Interestingly, in contrast to the NaSch model [23], the fundamental diagram shows
an inflection point at intermediate densities. This non-convexity of the flow-density
relation becomes more pronounced for large values of the randomization p.

Asymptotically, for large densities ¢ &~ 1, the flow in the ADM will be identical
to that in the corresponding NaSch model, i.e. J =~ (1 — p)(1 — ¢). However, in the
NaSch model, and in many other traffic models, the flow at any density ¢ can never
exceed (1 —p)(1 — ¢), the flow on the jammed branch. But, in contrast, because of the
possibility of large accelaration of the vehicles in the ADM, the flow can far excced the
value (1 — p)(1 — ¢) at intermediate densities. Then, for obvious mathematical reasons,
any smooth function with the asymptotic behaviour (1 — p)(1 — ¢) has to exhibit an
inflection point.

In the NaSch model SOMF always systematically underestimates the true flux
because of the effective particle-hole attraction [23]. Surprisingly, the same is not always
true in the ADM (see e.g. p = 0.75 in Fig. B(left)). This indicates that the correlations
in the ADM at intermediate densities are somewhat different from those in the NaSch
case. Since now SOMF overestimates the flow over a range of density, this indicates the
presence of effective particle-particle attraction, instead of particle-hole attraction in
that regime. This is a consequence of the large accelerations of the vehicles which lead
to a tendency towards particle-particle aggregation. This tendency becomes stronger at
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large values of the randomization p, where fluctuations that reduce the velocity of a car
temporarily become more likely.

In the next section we describe an improved mean field theory, namely car-oriented
mean field theory, which takes into account certain correlations between the sites.

3.3.2.  Car-oriented Mean-field Theory of ADM Here, we present the car-oriented
mean-field (COMF) theory [32] of ADM with Vjj.x = 2. The central quantity in COMF
theory is the probability P,(t) to find at time ¢ (exactly) n empty sites in front of a
vehicle, i.e. the spatial headway distribution. This approach is also known as empty
interval method or interparticle distribution function method. For a nice introduction
and list of related references we refer to [33].

The time evolution of the probabilities P,(t) can conveniently be expressed through
the probability g;(t) (7 = 0,1,2) that a car moves j sites in the next time step. In order
to find the time evolution of the P,(t) we first determine from which configurations at
time t a given state a time ¢t + 1 could have evolved. Take for instance a car — called
second car in the following — which has n > 4 free sites in front, i.e. its distance to the
next car ahead (called first car in the following) is n+1 sites. Since the velocity difference
of the two cars is at most 2, a headway of n sites at time ¢ 4+ 1 must have evolved from
a headway of length n — 1, n, n + 1 or n + 2 in the previous time step. A headway of
n — 1 sites evolves into a headway of n sites only if the first car moves (with probability
g2(t)) and the second car brakes in the randomization step (with probability p), i.e. the
total probability for this process is pgs(t)P,_1(t). The headway will remain constant
if the first car moves with probability g¢;(¢) and second car brakes with probability p
(total probability for this process is pgi(t)P,(t)) or the first car moves with probability
g2(t) and second car moves with probability ¢ (total probability for this process is
qg2(t)P,(t)). Similarly, a headway of n + 1 sites evolves into a headway of n sites if
the first car does not move (probability go(¢))and second car brakes with probability p
(total probability being pgo(t)P,+1(t)) or the first car moves with probability g;(¢) and
second car moves with probability ¢ (total probability for this process is g1 (t) Py+1(%)).
Finally, a headway of n + 2 evolves into a headway of n only if the second car moves
with probability ¢ (total probability for this qgo(t)P,2(t)).

The special cases n = 0,1,2 and 3 can be treated in an analogous fashion. In this
way one obtains the time evolution of the probabilities as

Fo(t+1) = go(t)Po(t) + qgo(t)[P1(t) + Pa(t)], (18)
Pi(t+1) = g1(t) Po(t) + (pgo(t) + qg1(t))[Pr(t) + Pa(t)] + qgo(t) P3(t), (19)
Py(t 4+ 1) = go(t) Po(t) + (pgr(t) + qga(t))[Pi(t) + Pa(1)]

+ (pgo(t) + q91(t)) P5(t) + qgoPa(t), (20)
P3(t+1) = pga(t)[Pi(t) + Pa(t)] + (pga(t) + qga(t)) P5(t)

+ (pgo(t) + qg1(t)) Pa(t) + qgo(t) P5(1), (21)
Pt +1) = pga(t) Pa-1(t) + (pgi(t) + qg2(1)) Po(t)
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+ (pgo(t) + qg1(t)) Poy1(t) + qgo(t) Pura(t) (n>4) (22)

A car will not move in next time step if there is no empty site in front of it (probability
Py(t)) or if there is exactly one empty site in front of it and it decelerates in the
randomization step 2 (probability pP;(t)). It will move one site if either there is exactly
one empty site ahead and it does not decelerate (probability ¢P;(t)) or there are at least
two empty sites in front, but the car decelerates in step 2 (probability p >, -, P,(t)). In
all other cases it will move two sites. Therefore the probability g;(t) that a car moves Ji
sites in the next time step is given by

9o(t) = Fo(t) + pPi(t)

g1(t) = qPi(t) +p > _ Pult) = p— pPo(t) + (¢ — p) (1) (23)
02(1) = 0 " Pult) = 1 — Polt) — (1)

where we have used the normalization condition
d Pit)=1 (24)
n>0
to rewrite the probabilities g;(t) in terms of Py(t), Pi(t), P»(t) and Ps(t) only.
The probabilities can also be related to the density ¢ = N/L of cars. Since each
car which has the headway n to the next car one in front of it ’occupies’ n + 1 sites we
have following relation:

1
> (n+ )P (t) = - (25)
n>0 ¢
Here we are mainly interested in the stationary state (t — oo) with lim; ., P, (t) = P,.

In order to determine the probabilities in the stationary state we introduce the gener-
ating function

P(z) =Y PB"" (26)

After multiplying corresponding equation in [[82Z by 2" and summing over all
equations one finds an explicit expression for the generating function,

as2° 4+ agzt + a3z + a02® + a2

Ple) = —pga(2? — 2b12 + by) (27)
with
ar = qgo0l, az = (9o + q91)Fo + q90 P,
az = (g1 + q92)Fo + (pgo + qg1) P, as = goaFo + (pg1 + qg2) P, as = pg2Pr,
by = L5 by = — 2% (28)
2pgs Pg2

Note that > a; = (14 ¢)Fy + P1. The denominator of P(z) has two zeros located at
S+ = bl + b% — b2 with |S+| Z 1 and |S_| S 1.
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The normalization condition (Z4) is equivalent to P(1) = 1 and is already
satisfied by (Z7). The density relation implies P'(1) = 1, where P’(z) denotes the
derivative of P(z). In order to have 0 < P, < 1 and lim,,_., P, = 0 the generating
function must be analytic in the unit disc |z|] < 1. Therefore the zero s_ of the
denominator has to be cancelled by a corresponding zero of the numerator. The equation
ass® +agst + ags® 4+ azs® 4+ a1s- = 0 yields a relation between the variable Py and P,
so that P(z) only depends on one free parameter, e.g. Fy. This parameter, in turn, is

1

a function of the only physically relevant parameter, the density c, via P'(1) = <.

To obtain the fundamental diagram we have to calculate the flux. It is given by

J(¢,p) = clgr + 295]. (29)

In order to calculate the flux J(c, p) for a given set of ¢ and p one has to solve the
following two equations numerically.

a5$5_ + a4sAi + ags?i + a232_ +a1s_ =0 (30)
and
1
P'(1) == (31)
c

where P’(z) denotes the derivative of P(z). Eq. (B1) can be written as
2—2b ) 4 3 2 1
Pga( 1) + (5as + 4ay + 3as + a2+a1)+_:0 (32)
pga(l — 2b1 + bo) c
Egs. B0) and (B2) were solved numerically. Values of By and P; thus obtained for a

given set of ¢ and p are used to calculate the values of gg, g1 and go. Finally flux J is

calculated using equation (29).

The results obtained from COMF are plotted in Fig. Bi(right) for a few values of p
along with the corresponding numerical data from computer simulation. Fundamental
diagrams obtained from COMF show an excellent agreement with the numerical data
in the limit p — 0. Thus COMF can capture the important correlations much better
than SOMF. Especially it is able to reproduce the occurance of an inflection point at
larger values of p. The small deviations are due to the fact that COMF neglects the
correlations between the headways in front of successive vehicles.

3.4. Comparison of ADM with Nagel-Schreckenberg Model

In Fig. @ we have plotted the fundamental diagram of the ADM with V., = 3 and
the average speed of vehicles against their density along with that of the NaSch model
with Vi,.x = 3 for a few values of p. In the absence of randomization, i.e. for p = 0,
this model and the NaSch model give identical fundamental diagram and variation of
average speed with density. In the presence of randomization, i.e. p # 0, the flow
in the ADM is always larger than that of the corresponding NaSch model due to the
faster acceleration. This difference is most pronounced at densities slighty beyond the
maximum flow.
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Figure 6. (a) The fundamental diagram of the model plotted along with the
fundamental diagram of NaSch model for Vj,.x = 3 for a few values of p. (b) Average
speed of vehicles plotted against their densities for the model of aggressive driving
along with the NaSch model for V.« = 3 for a few values of p.

4. ADM with Open Boundary Conditions

In this section we consider the ADM with open boundary conditions where vehicles
move deterministically, i.e. with randomization probability p = 0.

A schematic representation of the analyzed system is shown in Fig. [l Our main
system consist of L cells. This main system is connected to two mini systems of length
Vinax on each side [34]. This is done to provide a proper insertion and extraction strategy
allowing us to investigate the whole spectrum of the possible states. The state of the
mini system of the left boundary has to be updated every time step before the vehicles
of whole system. The update procedure consists of two steps. If any cell of the left mini
system is occupied it has to be emptied first. Then a vehicle is inserted in the system
with probability a. The position of the inserted vehicle has to satisfy the following
conditions: (i) The headway between the inserted vehicles in the mini system and the
first vehicle in the main system is equal to Vj,ay, and (ii) the distance to the main system
has to be minimum i.e. if there is no vehicle present in the main system within first
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Figure 7. Schematic representation of the analyzed system with open boundary
conditions. The main system consists of L cells. Vehicles move from left to right, and
are represented by dark circles. The left boundary consists of mini system of Vi, cells.
This left mini system is occupied by at most one vehicle with probability a. Similarly
the right boundary consists of a mini system of Viyax cells and particles are extracted
from it with probability 8. We shall represent each cell by a site on the lattice formed
by these cells.

Vinax cell then the rightmost cell of the left boundary is occupied. The right boundary
consists of V., cells and vehicle are removed from these cells with probability 3. These
boundary conditions are capable of generating all flows observed in the case of periodic
boundary conditions, including the maximal flow. From now onwards, we shall represent
the cells by the sites of a lattice formed by the cells.

The above insertion and extraction scheme generates the maximum flow of the
corresponding aggressive driving model with periodic boundary conditions for o = § =
1, i.e.

Vinax

J:m (for a=p=1). (33)

4.1. Density Profiles in the ADM

For small a and large (3, the system is found in the free flow regime. In Fig. § we have
shown density profiles over a spatial region located in the middle of the bulk of the
system for Vi,.x = 4 and L = 1000 in the free flow regime. The density profile shows a
periodic structure with a period of oscillation Ai = 4. For any arbitrary V.., we find
that the period of this oscillating pattern is Ai = V..

In order to understand this periodicity we first consider the density profile for very
low injection rates and maximum extraction rate (G = 1) (see Fig. B). For a = 0.01
the probability of inserting a vehicle at the rightmost site of the left mini-system in two
successive time step is very small and, therefore, the vehicles at the beginning of the
system do not feel influence of each other. This means that a vehicle which is inserted
at the rightmost site of the left mini system moves to ¢ = 4 at the next time step and
can be found at site i = 4¢ after ¢ times steps (t = 1,2, 3, ...). The density on these sites
ispr~a(a<0.1).

For increasing injection rate «, the probability of inserting a vehicle in two successive
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Figure 8. Density profile in the middle of the bulk of the system; Vi,.x = 4 and
L = 1000. The different curves correspond to different sets of values of « and g,
namely, «=0.01 and 8=1.0 (O), «=0.1 and $=1.0 (W), «=0.3 and §=1.0 (o), @=0.9
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Figure 9. (a) Density profile at the beginning of the system (b) Density profile at the
end of the system for V. = 4 and L = 1000. «=0.95 and 8=0.50 (+), @=0.95 and
B=0.60 (x), a=0.95 and 5=0.70 (%), a=0.95 and $=0.80 (O), a=0.95 and $=0.85
(W), «=0.95 and 8=0.90 (o), @=0.95 and $=0.95 (e), ®=0.95 and 3=1.00 (A).

time steps increases which results in the increase in the hindrance that a vehicle feels

from the front vehicle at the beginning of the system. This can be explained as follows

[35]:

Suppose we insert a vehicle A in the mini-system at time step 7" and a vehicle at time
step T+ 1. Considering the system at time step 7'+ 1, we see that vehicle A is on site

¢ = 4 and will move with velocity 4 where as vehicle B will occupy position ¢ = 3 in

the next time step T+ 2 because the vehicles are inserted in left mini-system in such a
way that the headway between the inserted vehicle and the next vehicle downstream is
is 4. At time T + ¢, vehicle A is on ¢ = 4t and vehicle B is on ¢ = 4(¢ — 1) — 1. In other
words, we can say that the hindrance due to left boundary condition leads to a shift of
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the position of the vehicles within the system. This shift is reflected in the oscillation
in the density profile of B The probability of finding a vehicle at i = 4t + 3 is smaller
than at ¢ = 4t and it is much smaller for ¢+ = 44 2 and even much smaller for i = 4¢+ 1.

As we move from the free flowing regime to congested flow regime (keeping « fixed
and decreasing [3) something interesting happens: the oscillations start vanishing and
envelope of density profile rises (see Fig. [@). For low values of (3, the density profile
is just a constant whose value increases with decreasing 3. This phenomenon is due
to the hindrance that vehicles feel at the right boundary with decreasing probability
(. Consequently a jam develops at the right boundary which expands to the left with
decreasing (3.

4.2. Phase Diagram in the ADM

In order to identify the regions of free-flow and congested flow in the phase diagram of
the ADM we measure the bulk density and the flux in the middle of the open system
by varying the boundary rates. Density-flux pairs falling on the free flow branch of the
periodic system are identified as belonging to the free flow phase, those falling on the
jammed branch as congested flow. Since density profile shows a periodic structure in
the free flow regime, in order to compute the bulk density in the middle of the system,
we average over the densities of V. lattice sites (i.e. one period of oscillation) for a
given Viax.

The phase diagram of the ADM with open boundary conditions for V., = 4 and
Vinax = 9 is shown in Fig. The system will be found either in free-flow or congested-
flow regime depending on the values of a and 3. Here, the a = 3 line does not separate
the free flowing and congested flow regime. Instead, the free flow regime is larger than
the congested flow regime. The span of the free-flow regime increases with increasing
Vimax- In the special case V.« = 1 the above insertion and extraction scheme leads us to
the phase diagram of TASEP with open boundary and where the line a = (3 separates
free flow and congested flow regime.

5. Cytoplasmic dynein: from experiment to model

In this section we first mention the main experimentally observed features of the
steppings of dynein motors. Then, by extending the ADM, we develope a simple
theoretical model that captures the essential features of dynein stepping.

5.1. Stepping of dynein: experimental results

In order to understand the mechanism of a single dynein motor, Mallik et al. [36]
extracted the step size of single dynein motor from their experimental data. In their
experiment, hindrance against forward movemnent of dyneins was caused by an opposing
force. In principle, this hindrance could also be created by other motors. The smallest
possible step size would be 8 nm as the equispaced binding sites on the microtubule form
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Figure 10. Phase diagram of aggressive driving model with open boundary conditions
for Vinax = 4 and Viypax = 9.

a lattice with lattice constant of 8 nm. Mallik et al. [36] observed that in the absence
of hindrance the step sizes of dyneins were mostly ~ 32 nm, i.e., four times the lattice
constant. Moreover, the step size decreased with increasing hindrance: under weak
hindrance the step size was approximately ~ 24 nm, under intermediate hindrance
step size was about ~ 16 nm, whereas under strong hindrance dynein takes steps of
~ 8 nm. On the basis of these observations, Mallik et al. [36] suggested a molecular
gear mechanism for dynein motors.

In their generic model of molecular motor traffic, Parmeggiani et al. [I5] implicitly
assumed a hindrance-independent step size of the motors. Therefore, in the light of
the experimental observations on dynein steppings [36], one may interpret the model
developed in [T5] to be a minimal model for the traffic of kinesin motors which are known
to take steps of 8 nm irrespective of the hindrance. Therefore, to model the traffic of
dynein motors, which can take steps of upto 32 nm (i.e., four times the lattice spacing
in between the successive binding sites) at one go in the absence of hindrance, we need
a more sophisticated model. In the next subsection we describe the model which we
propose for the traffic of dynein motors.

5.2. Dynein traffic model (DTM)

Our dynein traffic model (DTM) has been obtained by extending the ADM which we
have discussed extensively in the preceeding sections. The lattice sites in this case
represent the dynein binding site on the microtubule track and the lattice constant is
8 nm. In order to capture the fact that in the absence of hindrance a single dynein motor
can take a single step of 32 nm, we set V., = 4 in the ADM. Moreover, to capture the
attachment and detachment of the motors from the microtubule track, we also allow
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the detachment of a motor from an occupied site with rate wp and attachment of a
motor to an empty site with rate ws. The state of the system is updated in a random
sequential manner. In this DTM, a single dynein motor can move forward by four
lattice sites (i.e., 32 nm) in one single step if the available gap is greater than or equal
to 32 nm; otherwise, the step size will be equal to the available gap as the mutual

exclusion between the motors hinders the motion of the following dynein.

6. Results for DTM with periodic boundary conditions
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Figure 11. Flux f in the DTM with V4, = 4 for different values of the binding
constant K and with (a) random-sequential updating, (b) parallel updating.

In the case of periodic boundary condition we allow attachment and detachment of
motors from all lattice sites with probability w4 and wp respectively. This prescription
is very similar to that followed by Parmeggiani et al.[T5] in their generic model of
molcular motor traffic. In order to compare and contrast our DTM with the model
of Parmeggiani et al.[I5], all our computer simulations of the DTM have been carried
out by random sequential updating which was adopted in ref.[I5]. We have carried
out limited investigation of the DTM also by implementing parallel updating. But,
unless explicitly stated otherwise, by computer simulation of the DTM we shall mean
simulation using random sequential updating.

Fig. [ shows the values of flux f as a function of the binding constant K = wa/wp
for different values of wp obtained from the computer simulations implementing random-
sequential updating (Fig. [I(a)) and parallel updating (Fig. [I(b)). In both the cases
the flux initially increase with increasing K. However, beyond a threshold value of K the
flux starts decreasing with the further increase of K. Comparing the figures [[Tl(a) and
[[T(b) we find that, for the same set of values of the parameters, higher flux is obtained
with parallel updating; this effect becomes more pronounced at higher wp. This is
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consistent with the well known result that flux obtained with parallel updating is higher
than that obtained with random-sequential updating even in the simpler situation of
TASEP.

We have carried out a Site-Oriented Mean Field (SOMF) calculation for the DTM
following the same procedure as we followed earlier for the ADM. For V., = 4, we get

co(i,t +1) =cli+1,t)[c1(it) + caiy t) + c3(i, 1) + ca(i, t)] (34)
c1(iyt+1) = qe(i 4+ 1,t)d(i,t)c(i — 1,t) (35)
co(i,t+1) =qe(i+ 1,t)d(i — 1,t)d(i, t)e(i — 2,t) (36)
cs(iyt+1) =qe(i + 1, t)d(i — 2,t)d(i — 1,¢)d(i,t)c(i — 3,¢) (37)
ca(iyt+1) =qd(i — 3,t)d(i — 2,t)d(i — 1,¢)d(i, t)c(i — 4,1) (38)

In the steady state, i.e. t — o0, ¢y (i,t) are independent of ¢. For periodic boundary
conditions the system becomes homogeneous in the steady state and hence the -
dependence of ¢y (i) also drops out. Therefore the steady state flux for V.. = 4 is
given by

f=c1+2cy 4 3cs + 4ey = qed[c + 2cd + 3ed? + 4d°] (39)

where ¢ is the probability that the motor does, indeed, hop, instead of getting detached
from the track. Finally, substituting ¢ = 1 —wp, the steady flux in the DTM, under the
SOMF approximation, is given by

f=cd((1—wp)e+2(1 —wp)ed + 3(1 — wp)ed® + 4(1 — wp)d?) (40)

where ¢ is given by the well-know ratio K/(1+ K) of Langmuir equilibrium density and
d =1—c In Figs. [(a) and (b) we have shown the curves obtained from Eq. (@)
to compare the predictions of the SOMF theory with the corresponding simulation
data. Although the agreement is not very good, we find that the SOMF provides better
estimates of flux at higher values of the detachment probability wp.

One interesting feature of the SOMF result is that it is an overestimate of the flux
for random-sequential updating whereas it is an underestimate of that corresponding
to parallel updating. Moreover, the SOMF estimates are closer to the simulation data
from random-sequential updating than those from parallel updating. This behaviour
indicates that the underlying correlations are rather subtle.

The agreement between SOMF theory and computer simulations is much better
in the DTM than in the ADM. Is it an artefact of the different values of V,,,, used
in Figh(a) and Fig. [(b)? In order to investigate this possibility, we have studied
a hypothetical DTM with V,,.. = 2 by SOMF as well as by computer simulation
implementing parallel updating. The SOMF estimate for the flux in this hypothetical
DTM with V.. = 2 is given by

f=cd2—c)(1—wy) (41)

where ¢ = K/(1 + K). This SOMF estimate is compared in Figll2 with the numerical
data obtained from the simulation of the same model with parallel updating. The
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Figure 13. Schematic representation of the DTM with open boundary conditions.

agreement is as good as that in Fig. [[1l for the actual DTM with V., = 4. Thus, the
reason for better success of SOMF in DTM than in ADM remains a challenging open
problem for future investigation.

7. DTM with open boundary condition

A schematic representation of the analysed system with open boundary conditions is
given in Fig. [3l To capture the attachment and detachment of the motors from the
microtubule we allow the detachment of a motor from an occupied site with rate wp
and attachment of a motor to an empty site with rate w4 in the bulk i.e. from all site
other except those who belong to the reservoirs at the left and right boundary. Our
proposed model with open boundary conditions reduced to the model of Parmeggiani
et al. [T5], which is a minimal model for the intra-cellular traffic of kinesin motors, if
one sets Viyax = 1.

A competition between bulk dynamics (Langmuir kinetics) and boundary induced non-
equilibrium effects (TASEP-like dynamics) is expected only if the particles injected
either at boundary or somewhere in bulk visits a finite fraction of the total system size.



From aaaressive drivina to molecular motor traffic 22

aVv =4
08 _@Vig=4

Q,=10

0.6 — i

02+ 3 02 0, =0.001

0, =001

|
o'00,0 0.2 0.4 0.6 0.8 10 0'%.0 0.2 0.4 0.6 0.8 10

Figure 14. Average density profiles (n;) in the DTM obtained from Monte Carlo
simulations and plotted against the rescaled space variable x = i/ L for different values
of Qp. The common parameter values are L = 10000, = 0.2, 3 = 0.6, K = 3.

In that case particles will spend enough time on lattice to feel mutual influence and
eventually would produce collective effects.

Study of competition between bulk and boundary dynamics for large systems
(L > 1) requires that the kinetic rates wy and wp decrease simultaneously with
increasing system size L. This can be illustrated by considering the following heuristic
argument given in ref. [I5]. The average time 7 spent by a particle before detachment
is roughly of the order of ~ 1/wp. During this time 7 the number of sites n visited by
a given particle is of the order of n ~ 7. Therefore the fraction n/L (= 1/wpL) of the
lattice site visited by a given particle during this time would tend to zero for fixed wp
as L — oo. In order that a given particles explores a finite fraction of the total sites
before detaching for system size L > 1, one has to define the “total” detachment rate
Qp = wplL such that Qp remain constant as L — oo. A similar argument shows that a
vacancy visits a finite fraction lattice sites until it is filled by the attachment of a particle
if wa scales to zero as 2, /L with fixed “total” detachment rate Q4 [I5]. Therefore we
define total detachment rate Qp = wpL and total attachment rate 24 = w4 L such that
Qp and Q4 remain constant as L — oo. Note that the binding constant K = w4 /wp
remains unchanged as L — oc.

7.1. Density profiles in the DTM

7.1.1. Density profiles In Fig.[[dl (a) we have plotted the typical average density profiles
(n;) obtained from Monte Carlo simulations for this model in rescaled space variable
x = i/L (where n; denotes occupation of nth lattice site in the bulk i.e. i = 1,2,...L)
by choosing a path in the parameter space along the curves with fixed «, § and K while
increasing Qp = Q4/K. For low values of kinetic rates Qp, Q04 < «a, the system
remain in low-density phase where average density in the bulk remains constant. For
High values of kinetic rates €)p and €24 the system goes to high density phase where
average density in the bulk again constant. The bulk density in this case is determined
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Figure 15. Average density profiles in the DTM obtained from Monte Carlo
simulations and plotted against rescaled space variable for different system sizes. The
common parameter values are a = 0.2, = 0.6, K = 3 and Qp = 0.2.

by the well know ratio K/(1 + K) of Langmuir equilibrium density. For intermediate
values of the rates, for example 2p = 0.2, the density profile in the bulk exhibits unusual
feature where regions of high density and low density are connected by a steep rise. In
Fig. [ (b) we have shown the density profiles obtained by Parmeggiani et al. [I5] for
their model where Vi, = 1. Comparison of Figs. [ (a) and [ (b) shows that the
average bulk density in the low density phase in Fig. [[4 (a) is smaller than in Fig. [[4]
(b). This observed decrease in the bulk density in the low density phase for identical
values of the parameters «, 3, K and p is due to the fact that particles in low density
phase move with higher velocity which leads to higher current and lower density. Fig. [[4]
(a) also shows oscillations in the density profile at the beginning of the system in the
low density phase. These oscillations result from the hindrance that particles have at
the beginning of the system from each other [37]. These oscillations die out for higher
systems sites. Comparison of Fig. [[4 (a) and Fig. [ (b) also shows that in the case of
dynein motors the domain wall is found inside the the system for slightly higher value
of Q D-

Figure shows the average density profile (n;) computed from Monte Carlo
simulation in rescaled space variable x for different system sizes. The width of the
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Figure 16. Domain wall positions in the DTM for different values of Qp. The common
parameter values are L = 10000, = 0.2, = 0.6 and K = 3.

transition region decreases with increasing system size. The data obtained from our
simulations suggest a sharp discontinuity of the density profile in terms of the rescaled
space variable z = i/L in the limit L — oo. Therefore the low and high density phases
separated by a sharp domain wall coexist in our model over an intermediate range of
parameter values where boundary and bulk kinetic rates compete against each other.
This discontinuity in the density profile is stable and the position of the domain wall is
determined by the values of the kinetic rates as shown in Fig. This coexistence of
high and low density phase separated by a domain wall can be regarded as a traffic jam
for molecular motors.

7.2. Phase diagrams in the DTM

In order to identify the regions of coexistence, we have obtained the phase diagram of
our model for intra-cellular traffic of dynein motors by varying the boundary rates o and
G for fixed values of K and Qp. Fig.[[D(a) shows the phase diagram for p = 0. In this
case model reduces to the aggressive driving model with random sequential updating.
For Qp = 0, by varying boundary rates a and (3 one gets three kind of phases namely
Low density phase (LD), High density phase (HD) and Maximal Current phase (MC).
For very small values of Qp (2p ~ 0.001) the boundary rates @ and 5 dominate and the
structure of the phase diagram is determined only by the boundary rates a and 3. For
Qp ~ 0.001 one obtained a phase digram similar to Fig. [7(a). On increasing the value
of €p the boundary and bulk rates start competing with each other and in this case
one gets a phase diagram where MC phase disappears and one can identify four distinct
regions in the phase diagram namely, Low density phase (LD), Low density high density
coexistence region (LD-HD), High density phase (HD) and “Meissner” (M) phase. The
Meissner phase [I5] has some interesting features that are genuinely distinct from the
High density phase. The density profile in the bulk is independent of the boundary rates
a and (8 and is determined only by the bulk. On further increase of {2p the low density
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Figure 17. Phase diagrams of the DTM for (a) Vijax = 4,Qp = 0.0 (b) Vinax =
4,Qp = 0.1 (¢) Vinax = 4,2p = 0.2 and (d) Vinax = 4, 2p = 10 (€) Vinax = 1, 2p = 0.0
() Viax = 1,Qp = 0.1 (g) Vimax = 1,2p = 0.2 and (h) Vinax = 1,Qp = 10. Other
common parameter values are L = 10000, K = 3.

phase also disappears from the phase diagram as shown in Fig. [M(c) and in this case
one gets HD phase, M phase and coexistence region. For large values of {2 the phase
diagram is spanned only by the M phase as shown in Fig. [[7 (d). In Fig. Id(e)-(h) we
have shown phase diagrams of the model of Parmeggiani et al. [I5] for the identical set
of parameters. Comparison of the phase diagrams shown in Figs. [7(a)-(d) and [[7(e)-
(h) shows that the regions of coexistence of Low and High density phases are slightly
different in the oo — (3 plane for identical values of the parameters K and Q2p.

7.8. Transportation efficiency

Comparison of 32 nm step of dynein at in the absence of hindrance and 8 nm step of
kinesin implies that as a cargo transporter the dynein is four times more fuel-efficient
than kinesin as both require one molecule of ATP as fuel. To study the transportation
efficiency of dynein motors and kinesin motors as a function of the parameters K and
Q) p we define the transportation efficiency by the relation

No. of steps taken

% Transportation efficiency = 100 (42)

No. of attempts made x 4 %

The above relation has been defined in such a way that if a dynein motor takes
4 steps of 8 nm in each attempt (i.e. for each ATP hydrolysis) then its efficiency will
be 100 % similarly if a kinesin motor takes 1 step of 8 nm in each attempt then its
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Figure 18. Efficiency of dynein and kinesin motors for (a) different values of K and
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efficiency will be equal to 25 %. The transportation efficiency of cytoplasmic dynein
motors (Viax = 4) and kinesin motors (V. = 1) are plotted in Fig. [[§ (a) and Fig.
(b) for different values of Qp and K. There is practically no difference between the
efficiency of dynein and kinesin motors for very large values of Qp and K (Qp ~ 10 and
K ~ 10) as for very large values of 2p and K system is found in high density phase
(HD).

8. Summary and conclusions

In this paper we have first investigated the properties of the aggressive driving model
(ADM) which is a simple cellular automata model for vehicular traffic. One of the
motivations for considering this model is that the rule for aggressive driving can be
naturally extended to capture the special features of step sizes of dynein motors and,
therefore, the ADM is ideally suited for extending so as to study intra-cellular molecular
motor traffic by dynein motors.

The ADM shows different behavior for Vy.e = 1 and Viux > 1. For Viae = 1
the model is identical to the NaSch model with V., = 1 which has perfect particle-
hole symmetry. This symmetry is broken for V., > 1. The fundamental diagram
of this model in the special limit V., = oo has a form which is quite different from
that of the NaSch model in the limit V.« = oo. We have also shown few distance
headway and time-headway distributions. We have calculated the fundamental diagram
using two different mean-field approaches, namely, site-oriented mean-field approach
(SOMF) and car-oriented mean-field approach (COMF). A simple SOMF theory shows
a poor agreement with the simulation data. However, an improved mean field theory,
namely COMF, shows good agreement with the numerical data obtained from computer
simulations. We compare our ADM with the Nagel-Schreckenberg model which captures
essential features of normal driving. We have also investigated the density profiles
and phase diagrams of this model replacing the periodic boundary conditions by open
boundary conditions. The density profile of this model with open boundary conditions
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shows periodic structures in the free-flowing regime whose period of oscillation depends
on the maximum attainable velocity Vi ax.

We have extended the ADM to develope a dynein traffic model (DTM) which is a
model of intra-cellular molecular motor traffic from cell periphery towards the nucleus
of the cell. We have investigated the properties of this model with periodic and open
boundary conditions. Under open boundary conditions, DTM shows an unusual feature
where low and high density phases separated by a static domain wall coexist over a
range of parameter values which can be interpreted as a traffic jam of molecular motors.
This is in sharp contrast to the phase diagram of the ADM which does not exhibit
such coexistence of congested and free-flowing regions. The occurrence of the phase
is, thus intimately related to the competition between the hopping and the kinetics of
attachment /detachment of the motors on the track. Finally, we have compared the
efficiencies of dynein and kinesin motors for different values of parameters. For very
large values of the parameters 2p and K system is found in the high density phase and,
in that case, one observes practically no difference between the efficiencies of kinesin
and dynein motors.

To our knoweledge, our DTM is the first model of traffic-like collective transport
of dynein motors on filamentary microtubule tracks. A model that incorporates both
the species of dyneins and kinesin motors, which move in opposite directions along the
same track, may provide deep insight into experimentally observed bidirectional traffic
3.
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