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Residence Time Distribution for a Class of Gaussian Markov Processes
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We study the distribution of residence time or equivalently that of “mean magnetization” for a family of Gaussian Markov
processes indexed by a positive parameter α. The persistence exponent for these processes is simply given by θ = α but
the residence time distribution is nontrivial. The shape of this distribution undergoes a qualitative change as θ increases,
indicating a sharp change in the ergodic properties of the process. We develop two alternate methods to calculate exactly but
recursively the moments of the distribution for arbitrary α. For some special values of α, we obtain closed form expressions of
the distribution function.

PACS numbers: 02.50.Ey, 05.40.-a

I. INTRODUCTION

The problem of persistence in spatially extended
nonequilibrium systems has recently generated a lot of in-
terest both theoretically [1–7] and experimentally [8–10].
These systems include the Ising or Potts model undergo-
ing phase ordering dynamics [1–4,11–16], simple diffusion
equation with random initial conditions [5,6], several re-
action diffusion systems in both pure [17] and disordered
[18] environments, fluctuating interfaces [19–21], Lotka-
Volterra models [22] and inelastic collapse of a randomly
forced particle [23]. In many of these systems the spatial
degrees of freedom of the original many body problem can
be integrated out and the problem of persistence effec-
tively reduces to the calculation of the probability P0(t)
of no zero crossing upto some time t of an effective single
site stochastic process y(t).

In most cases of interests, this probability decays as a
power law for large time, P0(t) ∼ t−θ, where the persis-
tence exponent θ is nontrivial. This nontriviality can be
traced back to the fact that once the spatial degrees of
freedom are integrated out, the effective single site pro-
cess y(t) becomes non-Markovian. For a non-Markovian
process, it is well known that the calculation of any his-
tory dependent quantity such as persistence (no zero
crossing probability) is extremely hard [29,30]. As an
example, for the diffusion equation with random initial
condition, the effective single site process y(t) is a Gaus-
sian non-Markovian process characterized by its two-time
correlator, 〈y(t1)y(t2)〉 = [4t1t2/(t1 + t2)

2]d/4 where d is
the spatial dimension [5]. Even for this simple case, the
corresponding persistence exponent θ is nontrivial and is
known only numerically and approximately by analytical
methods [5,25] but not exactly so far. Though recently,
an exact series expansion result for the exponent θ has
been derived for arbitrary smooth Gaussian processes

that includes the diffusion equation [6].
Recently it was argued [24,25] that given this stochas-

tic process y(t), it might be useful to investigate a more
general quantity, namely the “residence time distribu-
tion”, whose limiting behaviour determines the persis-
tence exponent. This is the distribution f(r, t) of the

random variable, r(t) = 1
t

∫ t

0 θ[y(t′)]dt′ where θ(x) is the
Heaviside theta function. Thus r(t) is simply the frac-
tion of time spent by the process y(t) within time t on
one side of zero. It was shown in ref. [25] that for any
Gaussian stochastic process, the distribution f(r) is in-
dependent of time t. For Gaussian processes with zero
mean, the symmetry r ↔ (1− r) indicates that the func-
tion f(r) is symmetric around r = 1/2. Also in the limit
r → 0 (and symmetrically for r → 1), the function f(r)
is clearly the probability that the process remains only
on one side of zero and hence is proportional to per-
sistence. This indicates that as r → 0, the function
f(r) must behave as ∼ rθ−1 (and as ∼ (1 − r)θ−1 for
r → 1), so that f(r)dr ∼ t−θ as r → 0 or 1. A somewhat
more convenient variable is the “mean magnetization”
[24], m(t) = 2r(t) − 1, whose range is [−1, 1] and whose
distribution function, P (m) = 1

2f [(1 + m)/2] is symmet-
ric around m = 0 and behaves as P (m) ∼ (1 ± m)θ−1

near m = ±1.
The distribution P (m) is known exactly for the process

that represents the position of a one dimensional Brown-
ian walker [26]. Lamperti [27] derived an exact expression
of P (m) for a class of renewal processes where successive
zero crossing intervals are statistically independent. Re-
cently a special case of Lamperti’s results [27], when the
successive intervals are distributed according to a Lev́y
law, was rederived by Baldassari et. al. [28] by a differ-
ent method. The distribution P (m) has been determined
numerically for diffusion equation [25] and for interface
growth models [21]. Besides, moments of P (m) have been
determined analytically for diffusion equation under the
independent interval approximation [24].

The distribution function P (m) provides a somewhat
more detailed information on the statistical nature of
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the stochastic process y(t). For example, in the con-
text of diffusion equation it was pointed out by New-
man and Toroczkai [25] that an interesting information
can be extracted from the shape of the function P (m).
For diffusion equation, the exponent θ(d) (which con-
trols the shape of the function P (m) near m = ±1) in-
creases monotonically with space dimension d. There
exists a critical dimension dc where θ(dc) = 1 such that
for d < dc, θ < 1 and the function P (m) diverges as
m → ±1, has a minimum at m = 0 and is concave up-
wards in the range [−1, 1]. On the other hand, for d > dc,
θ > 1, the function P (m) goes to zero as m → ±1, has a
maximum at m = 0 and is convex upwards in [−1, 1]. The
peak of the distribution shifts from the edges m = ±1 to
the center m = 0 as d increases through dc. Thus for
d < dc, the most probable configurations of the process
y(t) are the ones which do not cross zero whereas such
configurations are least probable for d > dc, signalling
the existence of a sharp change in the ergodic proper-
ties of the diffusion field. Such a detailed information is
not contained in the persistence exponent θ. In ref. [25],
dc for diffusion equation was approximately determined,
dc ≈ 36.

These useful informations contained in P (m) of the
diffusion equation have so far not been possible to derive
exactly mainly due to the non-Markovian nature of the
single site Gaussian process. It would therefore be useful
to find and study some simpler Markovian Gaussian pro-
cesses with some tunable parameter (which would play
the similar role as the spatial dimension d does in dif-
fusion equation) where exact calculations can be per-
formed. In this paper we study the magnetization distri-
bution P (m) of a family of such Gaussian Markov pro-
cesses parametrized by an index α. By varying this pa-
rameter α, the persistence exponent θ for this process
can be varied continuously. The Markovian nature of
the process also makes many exact calculations possible.

The Markov process y(t) that we study in this paper,
satisfies the following stochastic Langevin equation,

dy

dt
=

√
2αtα−1/2η(t) (1)

where η(t) is a Gaussian white noise with 〈η(t)〉 = 0 and
〈η(t1)η(t2)〉 = δ(t1 − t2) and α is a positive parameter.
There are various physical processes that are described by
the above Langevin equation. For example, for α = 1/2,
y(t) represents the position of a one dimensional Brown-
ian random walker. For α = 1/4, y(t) can be interpreted
[11] to be the “total magnetization” of a Glauber chain
undergoing zero temperature coarsening dynamics after
being quenched rapidly from infinite temperature.

The persistence of the process y(t) is simply the prob-
ability for this process not to cross zero upto time t
and decays as t−θ for large t. The exponent θ for this
process can be trivially computed, θ = α. The sim-
plest way to derive this is to define a new time vari-

able t′ = t2α such that the equation of motion becomes
dy/dt′ = ζ(t′) where the new noise ζ(t′) has zero mean
and 〈ζ(t′1)ζ(t′2)〉 = δ(t′1 − t′2). But this is simply the
equation of motion of a one dimensional Brownian walker
whose probability of no return to zero upto time t′ de-
cays as ∼ 1/

√
t′ ∼ t−α. Thus the persistence exponent

for y(t) is simply θ = α.
However we show in the rest of the paper that even

though the persistence exponent θ = α trivially for this
process, the magnetization distribution P (m) is non-
trivial. In fact, as α and hence θ is increased, the
shape of P (m) changes from concave upwards to con-
vex upwards. For α = 1/2 (i.e., for ordinary Brownian
walker), the distribution P (m) was already known ex-
actly, P (m) = 1/(π

√
1 − m2) [26]. For general α, while

we have not been able to determine the full distribution
P (m) in closed form, we demonstrate below by two com-
pletely different methods that the moments of P (m) can
be calculated exactly. In the first method we generalize
the formalism developed by Kac [31] for α = 1/2 case to
arbitrary α. In the second method, we use the formalism
recently developed in the context of diffusion equation by
Dornic and Godrèche [24] using independent interval ap-
proximation (IIA). We point out however that while this
latter method yields only approximate results for diffu-
sion equation [24], it gives exact results for the Markov
processes that we study in this paper.

The paper is organized as follows. In section (II), we
generalize Kac’s formalism for α = 1/2 to arbitrary α
and derive an exact recursion relations satisfied by the
moments of P (m). In section (III), we rederive the same
results by using an alternate IIA formalism. In section
(IV) we use the formalism developed in sections-II and
III to obtain explicit results for the distribution of mean
magnetization for some special values of the parameter
α. Finally we conclude with a summary and discuss the
relative merits of the two formalisms and some applica-
tions.

II. METHOD I: GENERALIZATION OF KAC’S

FORMALISM

We consider the Gaussian process y(t) evolving
stochastically via Eq. 1 and define the “mean magnetiza-
tion”, m(t) = 1

t

∫ t

0 V [y(t′)]dt′, where the functional V (y)
in our case is simply, V (y) = sgn(y). Let G(y, t | y′, t′)
denote the propagator of the process, i.e., the probability
that the process takes the value y at time t given that it
was at y′ at time t′ < t. This can be easily computed for
our process and is given by,

G(y, t | y′, t′) =
1

√

2π(t2α − t′2α)
e−(y−y′)2/2(t2α−t′2α). (2)

Following Kac [31], we define the moment generating
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function,

〈e−utm〉 =

∞
∑

n=0

(−u)n

n!
νn, (3)

where νn are the moments defined by:

νn = 〈(
∫ t

0

V [y(t′)]dt′)n〉. (4)

To compute the moments νn, it is useful to first define a
set of functions Qn(y, t) via the recursion relation,

Qn+1(y, t) =

∫ t

0

dt′
∫ ∞

−∞

dy′G(y, t | y′, t′)V (y′)Qn(y′, t′)

Q0(y, t) = G(y, t | 0, 0). (5)

It can then easily be checked that,

νn = n!

∫ ∞

−∞

Qn(y, t)dy. (6)

Using Eq. 3 and Eq. 6, we finally get,

〈e−utm〉 =

∫ ∞

−∞

dyQu(y, t) (7)

where Qu(y, t) is the generating function,

Qu(y, t) =

∞
∑

0

Qn(y, t)(−u)n. (8)

Thus the moments of the mean magnetization m can
be computed exactly from Eq. 7 provided we can evalu-
ate the function Qu(y, t). By using the recursion relation
Eq. 5, it can be checked that Qu(y, t) satisfies the fol-
lowing integral equation,

Qu(y, t) = G(y, t | 0, 0)

−u

∫ t

0

dt′
∫ ∞

−∞

dy′G(y, t | y′, t′)V (y′)Qu(y′, t′). (9)

Using the definition of the propagator G, this integral
equation can then be converted to a partial differential
equation,

∂Qu(y, t)

∂t
= αt2α−1 ∂2Qu(y, t)

∂y2
− uV (y)Qu(y, t) (10)

with Qu(y, t = 0) = δ(y) and V (y) = sgn(y).
We first make the scale transforms:

z =
y

tα
; a = ut; Qu(y, t) =

1

tα
F (z, a).

Substituting in Eq. 10 we get the following equation for
F :

a
∂F

∂a
= α

∂2F

∂z2
+ αz

∂F

∂z
+ [α − aV (z)]F

F (z, a = 0) =
e−z2/2

√
2π

(11)

where V (z) = sgn(z). This equation has the following
series solution:

F (z, a) =
1√
2π

∞
∑

n=0

bnaneaD−n/α(−z)e−z2/4 z < 0

F (z, a) =
1√
2π

∞
∑

n=0

cnane−aD−n/α(z)e−z2/4 z > 0, (12)

where Dp(z) are parabolic cylinder functions. The coeffi-
cients bn and cn are to be determined from the boundary
conditions, namely the continuity of both F and ∂F/∂z
at z = 0. The initial conditions determine b0 = c0 = 1.
Using the boundary conditions we get:

∞
∑

n=0

bnaneaD−n/α(0) =
∞
∑

n=0

cnane−aD−n/α(0)

∞
∑

n=0

bnaneaD−n/α+1(0) = −
∞
∑

n=0

cnane−aD−n/α+1(0). (13)

By expanding in powers of a and equating coefficients of
all powers of a we finally obtain the following recursions
for the coefficients bn and cn

cn =

n−1
∑

m=0

(−1)mcm

(n − m)!

D−m/α(0)

D−n/α(0)
(n odd)

= −
n−1
∑

m=0

(−1)mcm

(n − m)!

D−m/α+1(0)

D−n/α+1(0)
cn−m (n even)

bn = (−1)ncn (14)

where we have used few identities satisfied by the
parabolic cylinder functions [34]. Now from Eq. 7 it
follows that the moments µk = 〈mk〉 satisfy,

∫ ∞

−∞

F (z, a)dz =
∞
∑

k=0

(−a)k

k!
µk. (15)

Finally, substituting the series solution for F (z, a) (Eq.
12) in the above equation we obtain:

µn = n!

√

2

π

n
∑

m=0

(−1)mcm

(n − m)!
D−m/α−1(0) (16)

for the even moments, while the odd ones vanish. The
coefficents cm are determined from Eq. 14. This thus
gives an iterative scheme to generate all moments of the
required distribution.
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III. AN ALTERNATE DERIVATION OF THE

MOMENTS

There is an alternate scheme to calculate the moments
of the distribution P (m). This scheme assumes statis-
tical independence of the successive zero crossing inter-
vals of the process y(t) and was first used by Dornic and
Godrèche in the context of diffusion equation [24]. We
however stress that while this assumption is only approxi-
mate for non-Markov processes such as diffusion equation
[24], it is however exact for Markov processes such as the
one we study in this paper. An additional complication
in our case arises due to the fact that the average distance
between zero-crossings vanishes. This is a standard result
which is true for any Gaussian Markov process [32]. In
our calculations we introduce this average distance be-
tween two consequtive zeros 〈l〉 as a cut-off parameter
and then take the limit 〈l〉 → 0 in the end.

Consider a particular realization of the process y(t)
ending at time t. Let at time t the process y have a posi-
tive sign. Let tn denote the time instant at which the nth
zero-crossing takes place. Then the mean magnetization
is given by:

m =
1

t
((t − tn) − (tn − tn−1) + ...) = 1 − 2ξ, where

ξ =
tn
t
− tn−1

t
+

tn−2

t
+ ...

Similarly if y(t) < 0 then we get x = 2ξ−1. We note that
at any t, the sign of y can be positive and negative with
equal probability. Hence if we can find the distribution
of ξ, that of m can be computed easily. Now in the
logarithmic time variable T = log(t), we can write ξ in
the form:

ξ = e−(T−Tn) − e−(T−Tn−1) + e−(T−Tn−2) + ...

= e−λ(1 − e−ln + e−ln−ln−1 + ...)

= e−λXn where (17)

Xn = (1 − e−ln + e−ln−ln−1 + ...), (18)

ln = Tn − Tn−1 and λ is the time from the last zero-
crossing to time t. The variables Xn satisfy Kesten re-
cursion relations,

Xn = 1 − e−lnXn−1. (19)

One then assumes that the successive zero crossing inter-
vals are statistically independent. In the long time limit
the distribution of X is determined by the following set
of equations:

X = η(1 − 2ξ) + (1 − η)(2ξ − 1)

ξ = e−λX

X = 1 − e−lX,

where η is an independent random variable that can take
values 0 and 1 with equal probabilities. Since one can

compute the distributions of l and λ, it is then straight-
forward though tedious to compute all the moments of
the mean magnetization, µk = 〈mk〉 recursively [24].

As noted above, the mean distance between zero cross-
ings, 〈l〉 vanishes and we introduce this as a cut-off pa-
rameter. We now show that the µn are actually indepen-
dent of 〈l〉.

We first note that the Laplace transforms of the dis-
tributions of l and λ, which we denote by f̂(s) and q̂(s)
respectively, are given by [24]:

f̂(s) =
1 − 〈l〉g(s)

1 + 〈l〉g(s)

q̂(s) =
2g(s)

s(1 + 〈l〉g(s))
, (20)

where g(s) = s(1 − sÂ(s))/2, and Â(s) is defined
as follows. Consider the normalized process Y =
y(t)/

√

〈y2(t)〉. In the logarithmic time, T = log(t), this
has a stationary autocorrelator, C(T =| T1 − T2 |) =
e−α|T |. Now consider the autocorrelation function A(T )
of the “signed” process, A(T ) = 〈sgn(Y (0))sgn(Y (T ))〉.
The quantity Â(s) is just the Laplace transforms of A(T ).
Using the fact that y(T ) is Gaussian with a correla-
tor C(T ), the function A(T ) can be easily computed,
A(T ) = (2/π)sin−1[C(T )]. In our case, C(T ) = e−α|T |

which finally gives,

Âs =
1

s
− 1

sπ
B

[s + α

2α
,
1

2

]

(21)

where B[a, b] is the standard Beta function.
It is now convenient to define the moments rn =<

Xn > /(1 + 〈l〉gn). Then taking the nth power of the

equation X = 1−e−lX and using the expression for f̂(s)
given in Eq. 20, it can be shown that rn’s are recursively
generated through the following sets of equations:

2r2n+1 =

2n
∑

k=0

(

2n + 1

k

)

(−1)krk

2g2nr2n = −
2n−1
∑

k=1

(

2n

k

)

(−1)kgkrk (22)

with r0 = 1. Note that all rn’s are independent of 〈l〉.
The moments of ξ are then given by:

< ξn >= q̂(n) < Xn >=
2gnrn

n
(23)

and are also independent of the cut-off 〈l〉. Finally
the non-vanishing even moments of m can be obtained
through:

µ2n = 〈(2ξ − 1)2n〉 (24)

and clearly do not depend on 〈l〉.
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The final expressions of the first few even moments are
as follows ( see Eq. (B.4) in the appendix of ref. [24]),

µ2 = Â1

µ4 = 1 − (1 − 3Â1 + 4Â2)(1 − 3Â3)

1 − 2Â2

... (25)

We have checked that the moments µn’s calculated re-
cursively by this method are identical to those obtained
by the first method in section-II.

IV. MOMENTS FOR SOME SPECIAL VALUES

OF α

In this section, we use the formalisms developed in the
previous two sections to derive some explicit results for
the moments of the distribution P (m). While the it-
erative schemes developed in the previous sections are
exact, it seems that for general α it is quite hard to ob-
tain an exact closed form expression of µn for aribitrary
n. They have to be determined only recursively. How-
ever the equations simplify for some special values of the
parameter α, for which not just the moments but the full
distribution P (m) can be obtained explicitly.

In order to see that the peak of the distribution shifts
from m = ±1 for small α to m = 0 for large α, it is
natural to examine the two extreme limits α = 0 and
α = ∞ for which fortunately we can obtain exact form
of the distribution. Consider first α = 0. In this case it
is somewhat easier to consider the second method used
in section (III). It can be easily seen then that all the
gn’s vanish while the moments rn’s remain finite. Thus
from Eq. 23 all moments of ξ vanish. Hence from Eq. 24
we get µn = 1 for all even n. The same result can also
be derived via the first method of section (II) by taking
carefully the α → 0 limit in Eqns. 14 and 16. Immediate
inspection then determines,

P (m) =
1

2

[

δ(m − 1) + δ(m + 1)
]

(26)

for α = 0. Now consider the other extreme limit, α = ∞.
In this case, one finds from Eq. 14 that cm = 1/m!.
Then the series in Eq. 16 just reduces to the expansion
of (1 − 1)n. Hence µn = 0 for all n. This indicates that
for α = ∞

P (m) = δ(m). (27)

Another case where exact form of P (m) can be ob-
tained is for α = 1/2. In this case, using the known values
of the parabolic cylinder functions, it is easy to compute
the first few terms of the series {cn, n = 0, 1, 2, · · ·} =
{1, 1, 2, 5, 14, 42, 132, 429, · · ·} from Eq. 14. We then
make an ansatz, cn = (2n)!/[n!(n + 1)!] and verify from

Eq. 14 that it is indeed the solution for arbitrary n.
Substituting this in Eq. 16, we get

µ2n(α = 1/2) =
(2n)!

(n!)222n
, (28)

and the odd moments are identically zero. A little in-
spection then shows that these are the moments of the
distribution function,

P (m) =
1

π
√

1 − m2
(29)

with m varying in [−1, 1]. We thus reproduce the well
known [26] magnetization distribution for the ordinary
random walk (α = 1/2).

Unfortunately we were unable to get a closed form
expression of µn for other values of α. For exam-
ple, for α = 1/4, we get by solving Eq. 14 the
first few terms of the sequence, {cn, n = 0, 1, 2, · · ·} =
{1, 3, 72, 3663, 292824, 32227002, · · ·}. We found however
that this is not listed in the catalogue of known integer
sequences [35] and we could not guess any formula for
this sequence.

Thus as expected, the distributions of mean magneti-
zation show a qualitative change in shape as α changes.
As we go from small α to large α, the peak of the dis-
tribution shifts from the edges to the center. This can
be understood physically since for small α the noise be-
comes small as time increases and the probability of zero
crossing becomes negligible. On the other hand, for large
α, the noise increases with time and the magnetization
keeps changing sign and thus the most probable value
gets peaked at m = 0.

While obtaining an exact form of P (m) is difficult for
general α, there is no problem in obtaining the exact
values of the moments of P (m) by using the recursion
relations and the known values of the parabolic cylinder
functions. In Fig. 1 we plot the moments for α = 1/4,
1/2 and 3/4.

V. CONCLUSION

In this paper, we have studied the distribution of res-
idence times or equivalently that of mean magnetization
of a family of Gaussian markov processes parametrized by
an index α which takes values continuously from 0 to ∞.
We have shown that the shape of the distribution P (m)
undergoes a qualitative change as α is increased from 0
to ∞. For small α, P (m) has peaks at the edges m = ±1
and has a minimum at m = 0 whereas for large α, the
peak of the distribution shifts to m = 0 with minima at
the edges m = ±1. This change in the ergodicity prop-
erties of a stochatic process as one changes a parameter
was first noted in ref. [25] in the context of diffusion equa-
tion. The advantage of the process studied here, apart
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from representing various physical situations, is that the
Markov nature of the process makes it possible to derive
many exact analytical results.

In this paper we have developed two alternate for-
malisms to compute the moments of the residence times
or mean magnetization. While both methods yield exact
results for the moments, they do so only recursively. A
closed form expression for the moments and hence that
of the full distribution is possible only for some special
values of the parameter α that characterizes the process.
But unfortunately this special set of solvable values of α
turn out to be the same for both these methods. Thus
so far as the problem studied in this paper is concerned,
both these methods are on equal footing. However there
are other problems where the former method that gener-
alizes Kac’s formalism seems to have an advantage over
the second method. We briefly mention below one such
application.

The general problem of a random walker in a space
with moving boundaries has been well studied and has
lot of applications [33]. It would be interesting to study
the residence time distribution in such problems. For
example, consider a random walker moving in one di-
mension and ask what is the distribution of the fraction
of times spent by the walker in the region bounded by
+∞ and a point O that moves deterministically as xO(t)
where xO(t) is some arbitrary function of t. For the spe-
cial case when xO(t) = c

√
t where c is a constant, this

problem can be solved by using the techniques presented
in section-II of this paper. The calculations will be sim-
ilar except that the potential V (z) = sgn(z) as used in
Eq. 11 should be replaced by V (z) = θ(z − c). The cor-
responding equations can be solved as before except that
now the boundary conditions are to be applied at z = c.
We note however that the second method illustrated in
section-III does not seem to be easily generalizable to
solve this problem.

We conclude with one last remark. The magnetiza-
tion distribution P (m) is a useful quantity to study for
a generic stochastic process and contain in it many use-
ful informations regarding ergodicity etc. However as is
obvious from the efforts of this paper, exact analytical
calculation of P (m) seems quite nontrivial even for the
simple Gaussian Markov processes studied here. Thus at
present, the only hope to compute P (m) for non-Markov
processes which are richer and more abundant in nature,
seems to be via numerical or approximate methods.
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27, 175 (1994).

[4] S.N. Majumdar, and C. Sire, Phys. Rev. Lett. 77, 1420
(1996); C. Sire, S.N. Majumdar, and A. Rudinger, cond-
mat/9810136.

[5] S.N. Majumdar, C. Sire, A.J. Bray, and S.J. Cornell,
Phys. Rev. Lett. 77, 2867 (1996); B. Derrida, V. Hakim,
and R. Zeitak, ibid. 2871.

[6] S.N. Majumdar, and A.J. Bray, Phys. Rev. Lett. 81, 2626
(1998).

[7] A. Watson, Science, 274, 919 (1996).
[8] M. Marcos-Martin, D. Beysens, J-P Bouchaud, C.
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FIG. 1. In this figure the first few non-vanishing moments
of P (m) are plotted, for α = 1/4, 1/2 and 3/4.
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