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Heat conduction in the disordered Fermi-Pasta-Ulam chain
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We address the question of the effect of disorder on heat conduction in an anharmonic chain with
interactions given by the Fermi-Pasta-Ulam (FPU) potential. In contrast to the conclusions of an
earlier paper [Phys. Rev. Lett. 86, 63 (2001)] which found that disorder could induce a finite
thermal conductivity at low temperatures, we find no evidence of a finite temperature transition
in conducting properties. Instead, we find that at low temperatures, small system size transport
properties are dominated by disorder but the asymptotic system size dependence of current is given
by the usual FPU result J ∼ 1/N2/3. We also present new interesting results on the binary-mass
ordered FPU chain.

PACS numbers:

It is now generally believed that heat conduction in
one-dimensional (1D) systems is anomalous [1, 2]. In the
absence of an external pinning potential, as is the case in
most realistic situations, one finds that Fourier’s law is
not satisfied. One of the predictions from Fourier’s law
is the scaling form of heat current J with system size N
for a system with a fixed applied temperature difference.
From Fourier’s law one gets J ∼ 1/N . The conclusion,
from a large number of studies of 1D momentum con-
serving systems seems to be:

J ∼
1

N1−α
α 6= 0 . (1)

The main results on the exponent α can be summarized
as follows: (1) for a pure harmonic chain J ∼ N0 [3],
(2) for a disordered harmonic chain α depends on the
spectral properties of the bath and on boundary condi-
tions [4, 5, 6], and (3) for a nonlinear system without
disorder α seems to be independent of properties of heat
baths and the results from the most recent simulations
indicate a universal value of α = 1/3 [2, 7].

Transport in systems with both disorder and interac-
tions has recently attracted a lot of interest both theoret-
ically [8, 9, 10, 11, 12] and experimentally [13]. The main
interest is to understand the transition from an insulating
state governed by the physics of Anderson localization to
a conducting state as one increases interactions. In the
context of oscillator chains we note that the physics of the
disordered harmonic chain is dominated by localization
physics which has its strongest effect in 1D systems. The
question of the effect of anharmonicity on localization
was recently addressed for a system where the harmonic
part of the Hamiltonian included an external pinning po-
tential and the anharmonicity was a quartic onsite poten-
tial [11]. In this case, in the absence of the anharmonic
term, J ∼ e−cN . Surprisingly it was found that adding
a small amount of anharmonicity leads to a conducting
(Fourier-like) behaviour with a power law decay J ∼ 1/N
and no transition to the insulating state was found on de-

creasing the anharmonicity. An important feature seen
was that with decreasing anharmonicity one had to go to
larger system sizes to see the true asymptotic behaviour
of the current.

In the present letter we investigate the same question,
namely that of the effect of interactions (phonon-phonon)
on localization, but in the absence of any external pin-
ning potential. We study the mass disordered FPU model
with interactions put in through a quartic inter-particle
potential. In the absence of pinning, for the harmonic

case, low frequency modes with ω
<
∼ 1/N1/2 remain ex-

tended and this gives rise to a power law dependence of
J on N [4, 5, 6]. On the other hand, for the pure FPU
chain also, low frequency modes are believed to play an
important role in transport and give rise to anomalous
transport. An earlier study by Li et al [8] on this model
concluded that this model showed a transition, from a
Fourier like scaling J ∼ 1/N at low temperatures, to
a pure FPU like behaviour with J ∼ 1/N0.57 at high
temperatures. Our study suggests that this conclusion
may not be correct. We do not find any evidence of
a finite temperature transition. Instead we find that a
small amount of anharmonicity leads to the same system
size dependence as seen in the pure system. We discuss
possible sources of error in the conclusions of Li et al .
We also present new results on the ordered binary mass
FPU chain including nontrivial scaling properties of the
system size dependence of current.

Model.— We consider the following FPU Hamiltonian:

H =

N∑

l=1

p2
l

2ml
+

N+1∑

l=1

[
(xl − xl−1)

2

2
+ ν

(xl − xl−1)
4

4
], (2)

where {xl, pl} denotes the position and momenta of par-
ticles and we use fixed boundary conditions x0 = xN+1 =
0. The interparticle harmonic spring constant has been
set to one and ν denotes the strength of the quartic in-
teraction. We consider a binary random alloy and set
the masses of half of the particles, at randomly chosen
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sites, to m1 and the rest to m2. The particles at the two
ends of the chain are connected to stochastic white noise
heat baths at different temperatures. The equations of
motion of the chain are then given by:

mlẍl = −(2xl − xl−1 − xl+1)

− ν[(xl − xl−1)
3 + (xl − xl+1)

3] − γlẋl + ηl , (3)

with ηl = ηLδl,1 + ηRδl,N , γl = γ(δl,1 + δl,N), and where
the noise terms satisfy the fluctuation dissipation rela-
tions 〈ηL(t)ηL(t′)〉 = 2γkBTLδ(t − t′), 〈ηR(t)ηR(t′)〉 =
2γkBTRδ(t − t′), kB being Boltzmann’s constant. The
heat current is given by J =

∑
l〈fl,l−1ẋl〉/(N − 1) where

fl,l−1 is the force exerted by the (l− 1)th particle on the
lth particle and 〈...〉 denotes a steady state average. We
will denote by [J ] an average over disorder. As noted
in [11], Eqs. (3) are invariant under the transformation
TL,R → sTL,R, {xl} → {s1/2xl} and ν → ν/s. This im-
plies the scaling relation J(sTL, sTR, ν) = sJ(TL, TR, sν)
and thus the effect of changing ν can be equivalently
studied by changing TL, TR. In the present study we will
fix temperatures and consider the effect of changing ν.

Let us consider first the harmonic case ν = 0. In this
case it is known from detailed numerical work and an-
alytic arguments that the exponent α depends on the
properties of the bath and on boundary conditions. For
white noise baths one finds α = −1/2 for fixed bound-
aries and α = 1/2 for free boundaries. In the presence
of anharmonicity it is expected, and indeed we have veri-
fied in simulations, that α does not depend on boundary
conditions. Here we use fixed boundary conditions only.

Before presenting the results of simulations for the
binary-mass disordered anharmonic chain it is important
to know the value of α for the binary ordered chain. Let
us thus discuss this first. This case was earlier studied
in [7] where it was found that the temperature profile
showed oscillations with an amplitude that decreased as
N−1/2. Let us denote the mass ratio m1/m2 = A. For
A = 1, the simulations in [7] gave strong evidence for
an exponent α = 1/3. However for the value A = 2.62 a
clear convergence could not be obtained. Here we will ar-
gue that the exponent remains unchanged from the A = 1
value. In Fig. (1) we present simulation results for the N -
dependence of the current J in the binary-mass ordered
chain for different values of the parameter A, all corre-
sponding to the same average mass (m1 + m2)/2 = 1.
Remarkably we find that at large enough system sizes
the actual values of the currents for different A tend to
converge to the same value as the A = 1 value. Thus
clearly the exponent α remains unchanged for any value
of A. However for a large mass ratio one has to go to
large system sizes to see the true exponent. A similar ef-
fect was seen in Refn.[2] for the binary hard-particle gas.
In our simulations we used the velocity-Verlet algorithm
with time steps dt = 0.005 [14]. For small system sizes
we used O(107) − O(108) steps for relaxation and same
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FIG. 1: Plot of the heat current J versus system size in the
binary mass ordered chain for different values of the mass
ratio A = 1.0, 1.1, 1.22 and 1.5.

number of steps for averaging, while for larger systems,
up to O(109) steps were used. In all our simulations we
used TL = 1.25, TR = 0.75 and γ = 1.0.

For the disordered anharmonic case, we wish to study
the cases with weak and strong anharmonicity and see if
there is a transition in the value of α. For small ν we
expect the system’s behaviour to be close to a harmonic
one, and so one would have to go to very large system
sizes to see the effect of anharmonicity and the correct ex-
ponent. It then becomes necessary to try and understand
the data using some sort of a scaling analysis. Let us first
do this for the ordered case. We fix the value of A = 1.5
and look at the N -dependence of the current for different
values of ν. The results are shown in Fig. (2a). For small
system sizes, we find a flat region which is expected since
for system sizes smaller than the phonon-phonon scat-
tering length scale we expect the system to behave as a
harmonic chain. The scattering length should be larger
for smaller ν and this can be seen in the plot. At large
enough system sizes all curves tend to show the same de-
cay coefficient α = 2/3. To see this clearly we scale the
system size by a length factor ℓ(ν). Fig. (2b) shows a
nice collapse of the data and the value of the exponent is
confirmed. We find empirically that the ν-dependence of
the length parameter is given by ℓ(ν) = 1/ tanh(2ν). We
note the interesting and somewhat surprising point that
for any given system size, the value of the current satu-
rates as we keep increasing ν. In Fig. (3a) we show the
temperature profiles for different system size for ν = 0.1.
As noted earlier in [7] we see the large oscillations in
temperature. An interesting general feature of temper-
ature profiles in FPU chains is the following. A coarse-
grained temperature profile obtained by averaging over
many particles would be smooth and monotonic. How-
ever the temperature gradient is non-monotonic and this
appears to be true even for small temperature differences.
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FIG. 2: Plot of the heat current J versus system size for the
binary mass ordered chain, for different values of ν and with
the mass ratio A = 1.5 (a). Fig (b) shows the same data
plotted with a scaled x-axis.

This implies that it may not even be possible to write a
phenomenological relation such as J = −κN (T )∇T .

Finally we now give the results for the disordered an-
harmonic case. We take averages over 50 − 100 samples
N < 1024, 10 samples for N = 1024− 16384, and 2 sam-
ples for N = 32768 and 65536. In Fig. (4) we plot the
results of simulations for [J ] for ν = 0.004 and 0.02. Also
we show the result for ν = 0.0. For small values of ν we
see that, at small system sizes the current value is close
to the ν = 0 value. As expected one has to go to large
system sizes to see the effect of the weak anharmonicity.
At sufficiently large N we find the same system size de-
pendence of [J ] as obtained for the ordered FPU chain,
namely that given by α = 1/3. In fact by scaling the
current by appropriate factors we find that the data for
the disordered case can be made to collapse on to the
binary-mass ordered case. This is shown in Fig. (5) (for
ν = 0.02, 0.1, 2.0). Thus our results show that the asymp-
totic power law dependence of the current is always domi-
nated by anharmonicity while disorder only decreases the
overall conductance of a sample. In Fig. (3b) we plot the
temperature profile for ν = 0.1 and find that the asymp-
totic profile is similar to the ordered case. We now throw
some light on the reasons which led to the erroneous con-
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FIG. 3: Plot of the temperature profiles in the (a) ordered
and (b) disordered lattices for ν = 0.1 and for different system
sizes.

clusions in [8], of a transition in conducting properties
at low temperatures (or equivalently small anharmonic-
ity). Consider the data for [J ]N plotted in Fig. (4) for
ν = 0.004. We see that at around N ∼ 1000 − 2000 the
data seems to flatten and if one had just looked at data in
this range, as was done by [8], one would conclude that
Fourier’s law is valid. However the behaviour changes
drastically when one looks at larger system sizes and one
again gets the usual FPU behaviour. To verify that this
is indeed what happens for the particular case studied by
Li et al we have repeated simulations with their set of pa-
rameters but for much larger system sizes and the results
are shown in the inset of Fig. (4). This case corresponds
to a much smaller value of ν and so it is expected that
it will follow the ν = 0 curve till very long length scales
and this is clearly seen. However at around N = 16384
we see a tendency for the curve to turn up and we expect
that the same asymptotic behaviour to eventually show
up. While a transition cannot be ruled out at even lower
temperatures, this seems unlikely. Also, if there is such
a transition, it should probably be to a disordered phase
with [J ] ∼ 1/N3/2.

Temperature dependence of conductivity.— The scaling
property of the current, mentioned earlier [after Eq. (3)],
implies that the thermal conductivity has the form κ =
κ(νT ). For small anharmonicity (ν << 1), our earlier
results imply that at large system sizes κ ∼ (Nν)1/3

and from the scaling property this immediately gives
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FIG. 4: Plot of heat current versus system size, for the dis-
ordered anharmonic chain, for different values of ν. The
data in the inset, corresponds to parameters (TL, TR) =
(0.001, 0.0005) with Gaussian white noise bath for ν = 1
(WN) and ν = 0, and Nose-Hoover bath (NH) for ν = 1.
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FIG. 5: Plot of scaled heat current versus scaled system size,
for the binary-mass ordered (J) and disordered ([J ]s) anhar-
monic chains, for different values of ν.

κ ∼ T 1/3 at low temperatures. However at small system
sizes [N << ℓ(ν)], we expect the system to behave like
a harmonic system with κ ∼ T 0. At high temperatures
the conductivity will saturate to a constant value.

Discussion.— Our main conclusion is that there is no
change, in the asymptotic power law dependence of the
current on system size, on decreasing the temperature in
the disordered FPU problem. At low temperatures one
has to go to much larger system sizes to see the true ex-
ponent, whose value (α = 1/3) is the same as that for
the ordered FPU chain. We also find several interesting
new results for the binary-mass ordered FPU chain: (i)
the exponent α is independent of the mass ratio A and
is the same as the A = 1 value, (ii) the data for different

values of ν can be collapsed by scaling the system size by
a ν-dependent length scale. Also we make the interest-
ing and somewhat surprising observation that for a finite
FPU chain, J → const 6= 0 as ν → ∞. Experiments
measuring heat conduction in quasi-1D systems such as
nanowires, nanotubes [15] are now being done. The ef-
fect of isotopic disorder has also been measured [16]. Our
prediction is that while disorder will lower the current in
a wire, the system-size dependence of [J ] is unaffected.
Experimentally, the temperature dependence of the ther-
mal conductivity may be easier to measure and one can
verify if this is unaffected by disorder.
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