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Effect of phonon-phonon interactions on localization
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We study the heat current J in a classical one-dimensional disordered chain with onsite pinning
and with ends connected to stochastic thermal reservoirs at different temperatures. In the absence
of anharmonicity all modes are localized and there is a gap in the spectrum. Consequently J
decays exponentially with system size N . Using simulations we find that even a small amount of
anharmonicity leads to a J ∼ 1/N dependence, implying diffusive transport of energy.
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The effect of interactions between electrons or phonons
on localization caused by disorder is a subject of both the-
oretical [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and experimen-
tal interest [13]. As is well known localization of eigen-
functions or of normal modes strongly affects transport
in materials containing random impurities. Localization,
first discovered in electronic systems by Anderson [14],
has its strongest effect in one dimensions where any fi-
nite disorder makes all eigenstates localized [15] and one
has an insulator. The presence of inelastic scattering,
such as is caused by electron-phonon interactions, leads
to hopping of electrons between localized states and gives
rise to a finite conductivity. The question as to whether
electron-electron interactions lead to a similar effect [2, 4]
has attracted much attention recently but is still not fully
understood [5, 6, 7, 8, 9].

In this paper we address the same question in the con-
text of heat conduction by phonons and consider the ef-
fect that phonon-phonon interactions have on localiza-
tion. In particular we investigate the effect of anhar-
monicities on the steady state transport of heat through
a chain of oscillators with random masses. We focus on
the case where the masses are subjected to an external
pinning potential, in addition to nearest neighbor inter-
actions. Pinning greatly enhances the difference between
heat transport in a random chain with and without an-
harmonicity and thus is a good testing ground for the
effect of anharmonicity on localization. We also discuss
the unpinned case and comment on results from some
earlier studies.

The Hamiltonian of our system has the form

H =
∑

l=1,N

[
p2

l

2ml
+ ko

x2
l

2
+ λ

x4
l

4
]

+
∑

l=1,N+1

[ k
(xl − xl−1)

2

2
+ ν

(xl − xl−1)
4

4
] (1)

where {xl, pl} denote the position and momenta of the
particles and we set x0 = xN+1 = 0. The masses {ml}
are chosen independently from some distribution p(m),

e.g. one uniform in the interval (m − ∆, m + ∆). The
chain is connected at its ends to two heat baths at tem-
peratures TL and TR respectively. The baths will be
modeled by Ornstein-Uhlenbeck (Langevin white noise)
reservoirs. The equations of motion of the chain are then
given by:

mlẍl = −koxl − lx3
l − k(2xl − xl−1 − xl+1)

− ν[(xl − xl−1)
3 + (xl − xl+1)

3] − γlẋl + ηl ,(2)

with ηl = ηLδl,1 + ηRδl,N , γl = γ(δl,1 + δl,N ), and
where the Gaussian noise terms satisfy the fluctuation
dissipation relations 〈ηL(t)ηL(t′)〉 = 2γkBTLδ(t − t′),
〈ηR(t)ηR(t′)〉 = 2γkBTRδ(t − t′), kB being Boltzmann’s
constant. It is known that this system has a unique sta-
tionary state [16].

Here we investigate the N dependence of the heat
current and the temperature profile, in the nonequi-
librium stationary state (NESS) of this system, when
TL > TR. The heat current from left to right is given
by 〈JN 〉 =

∑
l〈fl,l−1ẋl〉/(N − 1) where fl,l−1 is the force

exerted by the (l − 1)th particle on the lth particle and
〈...〉 denotes an average over the NESS. It follows from
stationarity that each term in the sum, l = 2, ..., N is
equal to 〈JN 〉.

Note that Eq.(2) is invariant under the transformation
TL,R → sTL,R, {xl} → {s1/2xl} and (l, ν) → (l, ν)/s.
This implies the scaling relation 〈JN (sTL, sTR, l, ν)〉 =
s〈JN (TL, TR, sl, sν)〉. Thus the effect of changing non-
linearity could be equivalently studied by changing tem-
peratures.

In the harmonic case, λ = ν = 0, the scaling
gives 〈JN 〉 proportional to (TL − TR). In this case
the quadratic Hamiltonian can be written in the form
H0 = (1/2)[PT M−1P + XT ΦX ] using matrix notation
for the mass and force matrices. The stationary heat cur-
rent, for any given realization of disorder is then given
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by the following expression [17, 18]:

〈JN 〉 =
kB(TL − TR)

π

∫
∞

−∞

dωTN (ω) , (3)

where TN (ω) = γ2ω2|G1N |2 ,

with the matrix G = [−ω2M + Φ − Σ]−1 and Σlm =
iγωδlm[δl1 + δlN ].

The NESS in the harmonic chain without random-
ness, i.e ml = m can be solved exactly. It gives
〈JN 〉 → ckB(TL − TR), with c > 0, for N → ∞ [19, 20] ,
i.e. the conductivity grows linearly with N .

The nature of 〈JN 〉 for the random harmonic chain
without pinning was analyzed in much detail in [17, 18,
21, 22]. In [17] it was proved that, for an arbitrary
nontrivial random mass distribution, 〈JN 〉 → 0, with
〈JN 〉 ≥ N−3/2. The results in [17, 18, 21, 22] are based
on the use of the Furstenberg theorem [23] first intro-
duced into this problem by Matsuda and Ishii [24]. (In
fact, Casher and Lebowitz use the 〈JN 〉 → 0 as N → ∞
result to prove the absence of an absolutely continuous
part of the spectrum for the random semi-infinite chain.)
The fact that the random 1D system has no extended
states is of course well-known. The mathematical proof
given in [25] shows that such a chain has pure point spec-
trum, i.e. all the eigenfunctions are square integrable.
The flux 〈JN 〉 in this chain is carried entirely by the

long wave-length modes with frequencies ω
<
∼ N−1/2

which “do not see” the randomness. More detailed re-
sults about this case can be found in [17, 18, 21, 22]. In
particular, based on numerical evidence [18, 26] we be-
lieve that indeed 〈JN 〉 ∼ N−3/2. We note however that
〈JN 〉 in the unpinned harmonic case with disorder de-
pends on the particular type of heat bath [18]. For the
Rubin model [22, 27], where the baths are semi-infinite
ordered harmonic chains in equilibrium at temperatures
TL(TR) at the left (right) ends of the system and with no
pinning anywhere, one gets 〈JN 〉 ∼ N−1/2.

Considering now the random mass harmonic pinned
case, ko > 0, one can show that 〈JN 〉 ∼ e−cN , c > 0.
This follows from the fact that the spectrum of this
chain now lies entirely in the interval [(ko

m )1/2, (ko+2k
m )1/2]

where m(m) are the maximum (minimum) of the masses
{ml}. This means that there is a gap in the spec-

trum and Furstenberg’s theorem implies that TN (ω)
<
∼

e−Nδ(ω) , δ(ω) > 0 for all ω in the allowed frequency
range. An elementary calculation shows that TN (ω) ∼
e−Na , a > 0 for ω outside the spectrum (true for both
the ordered and disordered case). Hence, in the disor-
dered harmonic pinned case, we will have asymptotically
for almost all realizations of disorder

−
1

N
ln〈JN 〉 ∼ c = ℓ−1 , (4)

where we can interpret ℓ as the largest localization length.
A rough estimate of the value of ℓ can be obtained using

known results for the unpinned case at small ω. Sub-
stituting in these results the smallest allowed frequency
ω2

m = ko/m we get ℓ = 12km/(ω2
m∆2) for masses cho-

sen from a uniform distribution between [m−∆, m+∆].
This can be compared with the results from a numeri-
cal evaluation of the integral in Eq. (3) for the case with
ko = k = 1 , m = 1 and ∆ = 0.2. In Fig. (1) (λ = 0 data)
we have plotted N [〈JN 〉], averaged over 100 disorder re-
alizations, as a function of system size. From the data
we find an exponential decay with ℓ ≈ 200 while our very
rough estimate gives ℓ ≈ 360.

For the anharmonic chain there are no rigorous result
about 〈JN 〉, even for the ordered case but the general
expectation is that 〈JN 〉 ∼ Nα−1 for the unpinned case.
The actual value of α is a matter of some dispute with
values ranging in the interval α = 1/3− 1/2 [28, 29, 30].
The most recent simulations found α = 1/3 [31].

A number of simulations for the disordered unpinned
case with ν > 0, ko = λ = 0 show that anharmonicity
in general tends to destroy localization [12]. In a recent
work, Li et al [32] found a transition from α = 0 at
small anharmonicity to α ∼ 0.43 at large anharmonicity.
They did the simulations using a deterministic model for
the reservoirs, namely Nose-Hoover thermostats. How-
ever this model of thermostats has been shown in [33] to
be problematic for the harmonic case and these problems
persist for small anharmonicity as well [34]. Preliminary
simulations carried out for the unpinned disordered an-
harmonic case, with white noise Langevin heat baths, do
not find evidence of a finite ν transition [35].

We now consider the pinned case k = ko = 1, λ >
0, ν = 0 when the system without randomness is much
better understood. It is generally agreed that, in the ab-
sence of disorder, models with onsite pinning and anhar-
monicity show regular heat transport with 〈JN 〉 ∼ 1/N
[36, 37]. This is proven rigorously for the case when a
certain amount of stochasticity is added to the dynamics
[38]. This model is also closer in spirit to charge trans-
port by hopping in random media [14, 15] .

In our simulations with both disorder and anhar-
monicity we fixed the values of k, TR, 〈m〉, γ. We then
measure time and distance in units of (〈m〉/k)1/2 and
(kBTRγ)1/2/k respectively and set ko/k = 1, TL/TR = 2.
The only free parameters ∆ and λ are measured in units
of 〈m〉 and k3/(kBTRγ) respectively (in the simulations
we set k = ko = 〈m〉 = γ = TR = 1). In Fig. (1) we
plot N [< JN >] as a function of N for a fixed disorder
strength ∆ = 0.2 and different values of anharmonicity
λ = 0.004 − 1.0. As can be seen from our data, there is
a dramatic increase in the heat current on introduction
of a small amount of anharmonicity and the system-size
dependence goes from exponential decay to a 1/N de-
pendence implying diffusive transport. For smaller λ the
diffusive regime sets in at larger length scales. Similar
results are obtained for the case with λ = 0, ν > 0 and
are shown in the inset of Fig. (1).
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The simulations were done by the velocity Verlet algo-
rithm adapted for Langevin dynamics [39]. Equilibration
times ranged from 108 − 2 × 108 time steps of step-size
0.005 − 0.01 and steady state averages were taken over
another 108 − 8× 108 time steps. Equilibration times in-
crease rapidly with decreasing λ and with increasing N
and these cases required the longest runs. The error bars
correspond to sample to sample fluctuations (other errors
are smaller) and the number of samples varied from 10
for the small sizes to 3 for the largest (N = 4096). We
find that the sample-sample fluctuations become smaller
with increasing N . A measure of the relative strengths of
anharmonicity and disorder is obtained by looking at the
ratio of the energy scales Ea = l〈x4〉/4 and Ed = T∆/m.
For our parameters we estimate ǫ = Ea/Ed ≈ 0.3λT/∆
and for T = (TL + TR)/2 = 1.5 this gives ǫ ≈ 0.008 for
λ = 0.004.

It follows from the scaling relation described earlier
that 〈JN 〉 = (TL − TR)f(λTL, lTR). Hence the conduc-
tivity, for N → ∞ and TL → TR = T , should depend
only on λT , κ = κ(lT ). For TL > TR the tempera-
ture and hence the conductivity varies across the chain,
we therefore measure the effective thermal conductiv-
ity κeff = N [< JN >], evaluated at large N (bound-
ary temperature jumps are negligible). For small λ we
find κeff ∼ (lT )a with a < 1. Assuming that this is
also the behaviour of κ this implies, using the fact that
κdT/dy =constant, that the temperature profile is given
by T (y) = [T a+1

L (1 − y) + T a+1
R y]1/(a+1) where y is the

distance, scaled by N , from the left end of the chain. We
now look at the local temperature profiles in the NESS
obtained in the simulations. The local temperature at
the ith site is defined by Ti = mi〈ẋ

2
i 〉. The temperature

profiles for l = 0.1 for a single sample, with and without
disorder, are plotted in Fig. (2). The plots (a),(b) corre-
spond respectively to averaging over 8×108 and 32×108

time steps with dt = 0.005 and show that the profiles
are reasonably converged.The noise amplitude does not
decrease much on increased averaging. We find that the
temperature profile, for the disordered case, is consistent
with the predicted form with a ∼ 1/2 (see however be-
low).

For the case without disorder we find a temperature
profile consistent with a 1/T 2 (thus a = −2) dependence
for the conductivity. The κ(T ) ∼ 1/T 2 dependence has
been predicted from recent kinetic theory calculations
and should apply for small nonlinearity [37]. The inset
in Fig. (2) shows temperature profiles for the disordered
chain with a smaller and a larger value of λ. We find that
these profiles have some amount of structure, possibly re-
flecting the local mass distribution, and vary appreciably
from sample to sample.

Discussion: We have studied heat conduction in a dis-
ordered pinned anharmonic chain. We find that introduc-
tion of a small amount of phonon-phonon interactions in
the disordered harmonic chain leads to diffusive energy
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FIG. 1: Plot of the disordered averaged heat current [〈JN 〉]
multiplied by N as a function of N for different values of λ.
The inset shows results obtained for the case with interparticle
anharmonicity.
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FIG. 2: The temperature profile for an anharmonic chain with
λ = 0.1 and N = 2048 is shown for both the ordered and
disordered cases. The inset shows the temperature profiles
for a smaller value of anharmoncity λ = 0.02 (upper curve)
and a larger value λ = 0.5. In all disordered cases ∆ = 0.2.

transfer, i.e. the insulating chain becomes a normal heat
conductor. We do not find evidence of the existence of
a finite critical value of anharmonicity required for this
transition. For small values of anharmonicity it is nec-
essary to go to larger system sizes to see the transition
from insulating to diffusive. Hence a transition to a lo-
calized phase at a very small value of anharmonicity is
possible and would be difficult to observe in simulations.
Even assuming that no such transition occurs, the limit-
ing behavior of κ(λT ) for (λT ) → 0 cannot be obtained
from our data. A. Pal and D. Huse [40] have investi-
gated this type of question for a chain of classical spins.
Their system corresponds very roughly to the case where
k = λ = 0 and so the interaction between particles on
different sites only comes via ν: they find a diffusivity
which behaves like e−c/ν. We remark that for the or-
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dered harmonic chain letting k → 0 gives 〈JN 〉 ∼ k for
the unpinned case and 〈JN 〉 ∼ k2 for the pinned case.

We note that in the ordered chain nonlinearity leads
to scattering of otherwise freely moving phonons thereby
changing the system from a super-heat conductor to a
normal one. By contrast, in the disordered chain the
nonlinearity appears to produce effective extended states
which lead to diffusive transfer of energy between local
regions. How exactly this occurs is not clear.

The diffusive transport observed in our disordered
open system seems to differ from recent numerical stud-
ies of spreading of localized energy pulses in disordered
nonlinear lattices which suggest sub-diffusion [8] or even
absence of diffusion [9]. To understand this we have
also performed some studies on our system without heat
baths. From these we find that while a heat pulse intro-
duced at one end of a long chain does indeed not prop-
agate, a periodic driving at one end leads to significant
energy transmission. This suggests that an isolated pulse
behaves differently from a continuously driven or open
system [41].

Finally we note that experimental measurements of
heat conduction in one-dimensional systems are now be-
coming possible [42, 43, 44]. Interesting measurable ef-
fects which our study suggests are the effect of temper-
ature and system-size on heat conduction in disordered
wires. Both of these enhance the effect of nonlinearity
and lead to diffusive transport.
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