
ar
X

iv
:0

80
8.

32
56

v2
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  1
9 

N
ov

 2
00

8
November 19, 2008 19:56 Advances in Physics reva

Advances in Physics
Vol. 00, No. 00, Oct 2008, 1–78

RESEARCH ARTICLE

Heat Transport in low-dimensional systems

Abhishek Dhar∗ Raman Research Institute, Bangalore 560080, India

Recent results on theoretical studies of heat conduction in low-dimensional systems are pre-
sented. These studies are on simple, yet nontrivial, models. Most of these are classical systems,
but some quantum-mechanical work is also reported. Much of the work has been on lattice
models corresponding to phononic systems, and some on hard particle and hard disc systems.
A recently developed approach, using generalized Langevin equations and phonon Green’s
functions, is explained and several applications to harmonic systems are given. For interact-
ing systems, various analytic approaches based on the Green-Kubo formula are described, and
their predictions are compared with the latest results from simulation. These results indicate
that for momentum-conserving systems, transport is anomalous in one and two dimensions,
and the thermal conductivity κ, diverges with system size L, as κ ∼ Lα. For one dimensional
interacting systems there is strong numerical evidence for a universal exponent α = 1/3, but
there is no exact proof for this so far. A brief discussion of some of the experiments on heat
conduction in nanowires and nanotubes is also given.
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1. Introduction

It is now about two hundred years since Fourier first proposed the law of heat
conduction that goes by his name. Consider a macroscopic system subjected to
different temperatures at its boundaries. One assumes that it is possible to have a
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coarse-grained description with a clear separation between microscopic and macro-
scopic scales. If this is achieved, it is then possible to define, at any spatial point x

in the system and at time t, a local temperature field T (x, t) which varies slowly
both in space and time (compared to microscopic scales). One then expects heat
currents to flow inside the system and Fourier argued that the local heat current
density J(x, t) is given by

J(x, t) = −κ∇T(x, t) , (1)

where κ is the thermal conductivity of the system. If u(x, t) represents the local
energy density then this satisfies the continuity equation ∂u/∂t + ∇.J = 0. Using
the relation ∂u/∂T = c, where c is the specific heat per unit volume, leads to the
heat diffusion equation:

∂T (x, t)

∂t
=

1

c
∇.[ κ∇T (x, t) ] . (2)

Thus, Fourier’s law implies diffusive transfer of energy. In terms of a microscopic
picture, this can be understood in terms of the motion of the heat carriers, i.e.

, molecules, electrons, lattice vibrations(phonons), etc., which suffer random col-
lisions and hence move diffusively. Fourier’s law is a phenomological law and has
been enormously succesful in providing an accurate description of heat transport
phenomena as observed in experimental systems. However there is no rigorous
derivation of this law starting from a microscopic Hamiltonian description and
this basic question has motivated a large number of studies on heat conduction in
model systems. One important and somewhat surprising conclusion that emerges
from these studies is that Fourier’s law is probably not valid in one and two di-
mensional systems, except when the system is attached to an external substrate
potential. For three dimensional systems, one expects that Fourier’s law is true in
generic models, but it is not yet known as to what are the neccessary conditions.

Since one is addressing a conceptual issue it makes sense to start by looking at
the simplest models which incorporate the important features that one believes
are necessary to see normal transport. For example, one expects that for a solid,
anharmonicity and disorder play important roles in determining heat transport
properties. Thus most of the theoretical studies have been on these simple models,
rather than on detailed models including realistic interparticle potentials, etc. The
hope is that the simple models capture the important physics, and understanding
them in detail is the first step towards understanding more realistic models. This
review almost exclusively will talk about simple models of heat conduction in low
dimensional systems, mostly one dimensional (1D) and some two dimensional (2D).
Also a lot of the models that have been studied are lattice models, where heat is
transported by phonons, and are relevant for understanding heat conduction in
electrically insulating materials. Some work on hard particle and hard disc systems
will also be reviewed.

There are two very good earlier review articles on this topic, including those by
Bonetto et al. [1] and Lepri et al. [2]. Some areas that have not been covered
in much detail here can be found in those reviews. Another good review, which
also gives some historic perspective, is that by Jackson [3]. Apart from being an
update on the older reviews, one area which has been covered extensively in this
review is the use of the nonequilibrium Green’s function approach for harmonic
systems. This approach nicely shows the connection between results from various
studies on heat transport in classical harmonic chain models, and results obtained
from methods such as the Landauer formalism, which is widely used in mesoscopic
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physics. As we will see, this is one of the few methods where explicit results can
be obtained for the quantum case also.

The article is organized as follows. In Sec. (2), some basic definitions and a de-
scription of some of the methods used in transport studies is given. In Sec. (3),
results for the harmonic lattice are given. The nonequilibrium Green’s function
theory will be developed using the Langevin equation approach and various ap-
plications of this method are described. The case of interacting particles ((non-
harmonic inter-particle interactions) in one dimension is treated in Sec. (4). This
section briefly summarizes the analytic approaches, and then gives results of the
latest simulations in momentum-conserving and momentum non-conserving one
dimensional systems. The next section [Sec. (5)] looks at the joint effect of disorder
and interactions in one dimensional systems. In Sec. (6) results on two dimensional
interacting systems are presented while Sec. (7) gives results for billiard like systems
of noninteracting particles. Some of the recent experimental results on nanowires
and nanotubes are discussed in Sec. (8). Finally the conclusions of the review are
summarized in Sec. (9) and a list of some interesting open problems is provided.

2. Methods

The most commonly used approaches in heat transport studies have been: (i) those
which look at the nonequilibrium steady state obtained by connecting a system
to reservoirs at different temperatures, and (ii) those based on the Green-Kubo

relation between conductivity and equilibrium correlation functions. In this section
we will introduce some of the definitions and concepts necessary in using these
methods [secs. (2.1,2.2)]. Apart from these two methods, an approach that has
been especially useful in understanding ballistic transport in mesoscopic systems,
is the nonequilibrium Green’s function method and we will describe this method in
sec. (2.3). Ballistic transport of electrons refers to the case where electron-electron
interactions are negligible. In the present context ballistic transport means that
phonon-phonon interactions can be neglected.

2.1. Heat bath models, definitions of current, temperature and conductivity

To study steady state heat transport in a Hamiltonian system, one has to connect it
to heat reservoirs. In this section we will first discuss some commonly used models
of reservoirs, and give the definitions of heat current, temperature and thermal
conductivity. It turns out that there are some subtle points involved here and we
will try to explain these.

First let us discuss a few models of heat baths that have been used in the litera-
ture. For simplicity we here discuss the 1D case since the generalization to higher
dimension is straight-forward. We consider a classical 1D system of particles in-
teracting through a nearest neighbour interaction potential U and which are in an
external potential V . The Hamiltonian is thus:

H =

N
∑

l=1

[
p2

l

2ml
+ V (xl) ] +

N−1
∑

l=1

U(xl − xl+1) (3)

where {ml, xl, pl = mlẋl} for l = 1, 2, ...N denotes the masses, positions and mo-
menta of the N particles. For the moment we will assume that the interparticle
potential is such that the particles do not cross each other and so their ordering
on the line is maintained.
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To drive a heat current in the above Hamiltonian system, one needs to connect
it to heat reservoirs. Various models of baths have been used in the literature and
here we discuss three popular ones.

(i) Langevin baths: These are defined by adding additional force terms in the
equation of motion of the particles in contact with baths. In the simplest form,
the additional forces consist of a dissipative term, and a stochastic term, which
is taken to be Gaussian white noise. Thus with Langevin reservoirs connected to
particles l = 1 and l = N , the equations of motion are given by:

ṗ1 = f1 −
γL

m1
p1 + ηL(t)

ṗl = fl for l = 2, 3...N − 1

ṗN = fN − γR

mN
pN + ηR(t) (4)

where fl = −∂H

∂xl

is the usual Newtonian force on the lth particle. The noise terms given by ηL,R are
Gaussian, with zero mean, and related to the dissipation coefficients γL,R by the
usual fluctuation dissipation relations

〈ηL(t)ηL(t′)〉 = 2kBTLγLδ(t − t′)

〈ηR(t)ηR(t′)〉 = 2kBTRγRδ(t − t′)

〈ηL(t)ηR(t′)〉 = 0 ,

where TL, TR are the temperatures of the left and right reservoirs respectively.
More general Langevin baths where the noise is correlated will be described in

sec. (3.2). Here we briefly discuss one particular example of a correlated bath,
namely the Rubin model. This model is obtained by connecting our system of
interest to two reservoirs which are each described by semi-infinite harmonic oscil-
lator chains with Hamiltonian of the form Hb =

∑∞
l=1 P 2

l /2+
∑∞

l=0(Xl −Xl+1)
2/2,

where {Xl, Pl} denote reservoir degrees of freedom and X0 = 0. One assumes that
the reservoirs are initially in thermal equilibrium at different temperatures and
are then linearly coupled, at time t = −∞, to the two ends of the system. Let us
assume the coupling of system with left reservoir to be of the form −x1X1. Then,
following the methods to be discussed in sec. (3.2), one finds that the effective
equation of motion of the left-most particle is a generalized Langevin equation of
the form:

ṗ1 = f1 +

∫ t

−∞
dt′ΣL(t − t′)x1(t

′) + ηL(t) , (5)

where the fourier transform of the kernel ΣL(t) is given by:

Σ̃L(ω) =

∫ ∞

0
dtΣL(t)eiωt = eiq for |ω| < 2

= −e−ν for |ω| > 2 ,

and q, ν are defined through cos(q) = 1 − ω2/2, cosh(ν) = ω2/2 − 1 respectively.
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The noise correlations are now given by:

〈η̃L(ω)η̃L(ω′)〉 =
kBTL

πω
Im[Σ̃L(ω)] δ(ω + ω′), (6)

where η̃L(ω) = (1/2π)
∫ ∞
−∞ dtηL(t)eiωt. Similar equations of motion are obtained

for the particle coupled to the right reservoir.
(ii) Nosé-Hoover baths: These are deterministic baths with time-reversible

dynamics which however, surprisingly, have the ability to give rise to irreversible

dissipative behaviour. In its simplest form, Nosé-Hoover baths attached to the end
particles of the system described by the Hamiltonian Eq. (3), are defined through
the following equations of motion for the set of particles:

ṗ1 = f1 − ζLp1

ṗl = fl for l = 2, 3...N − 1

ṗN = fN − ζRpN , (7)

where ζL and ζR are also dynamical variables which satisfy the following equations
of motion:

ζ̇L =
1

θL

(

p2
1

m1kBTL
− 1

)

ζ̇R =
1

θR

(

p2
N

mNkBTR
− 1

)

,

with θL and θR as parameters which control the strength of coupling to reservoirs.
Note that in both models (i) and (ii) of baths, we have described situations where

baths are connected to particular particles and not located at fixed positions in
space. These are particularly suited for simulations of lattice models, where par-
ticles make small displacements about equilibrium positions. Of course one could
modify the dynamics by saying that particles experience the bath forces (Langevin
or Nosé-Hoover type) whenever they are in a given region of space, and then these
baths can be applied to fluids too. Another dynamics where the heat bath is located
at a fixed position, and is particularly suitable for simulation of fluid systems, is
the following:

(iii) Maxwell baths: Here we take particles described by the Hamiltonian
Eq. (3),and moving within a closed box extending from x = 0 to x = L. The
particles execute usual Hamiltonian dynamics except when any of the end parti-
cles hit the walls. Thus when particle l = 1 at the left end (x = 0) hits the wall at
temperature TL, it is reflected with a random velocity chosen from the distribution:

P (v) =
m1v

kBTL
θ(v) e−m1v2/(2kBTL) , (8)

where θ(v) is the Heaviside step function. A similar rule is applied at the right end.
There are two ways of defining a current variable depending on whether one is

using a discrete or a continuum description. For lattice models, where every particle
moves around specified lattice points, the discrete definition is appropriate. In a
fluid system, where the motion of particles is unrestricted, one has to use the
continuum definition. For the 1D hard particle gas, the ordering of particles is
maintained, and in fact both definitions have been used in simulations to calculate
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the steady state current. We will show here explicitly that they are equivalent. Let
us first discuss the discrete definition of heat current.

For the Langevin and Nosé-Hoover baths, we note that the equation of motion
has the form ṗl = fl + δl,1fL + δl,NfR where fL and fR are forces from the bath.
The instantaneous rate at which work is done by the left and right reservoirs on
the system are respectively given by:

j1,L = fLv1

and jN,R = fRvN ,

and these give the instantaneous energy currents from the reservoirs into the sys-
tem. To define the local energy current inside the wire we first define the local
energy density associated with the lth particle (or energy at the lattice site l) as
follows:

ǫ1 =
p2
1

2m1
+ V (x1) +

1

2
U(x1 − x2) ,

ǫl =
p2

l

2ml
+ V (xl) +

1

2
[ U(xl−1 − xl) + U(xl − xl+1) ] , for l = 2, 3...N − 1

ǫN =
p2

N

2mN
+ V (xN ) +

1

2
U(xN−1 − xN ) . (9)

Taking a time derivative of these equations, and after some straightforward ma-
nipulations, we get the discrete continuity equations given by:

ǫ̇1 = −j2,1 + j1,L

ǫ̇l = −jl+1,l + jl,l−1 for l = 2, 3...N − 1

ǫ̇N = jN,R + jN,N−1 , (10)

with jl,l−1 =
1

2
(vl−1 + vl)fl,l−1 (11)

and where fl,l+1 = −fl+1,l = −∂xl
U(xl − xl+1)

is the force that the (l + 1)th particle exerts on the lth particle and vl = ẋl. From
the above equations one can identify jl,l−1 to be the energy current from site l− 1
to l. The steady state average of this current can be written in a slightly different
form which has a clearer physical meaning. We will denote steady state average
of any physical quantity A by 〈A〉. Using the fact that 〈dU(xl−1 − xl)/dt〉 = 0 it
follows that 〈vl−1fl,l−1〉 = 〈vlfl,l−1〉 and hence:

〈jl,l−1〉 = 〈1
2
(vl + vl−1)fl,l−1〉 = 〈vlfl,l−1〉 , (12)

and this has the simple interpretation as the average rate at which the (l − 1)th

particle does work on the lth particle. In the steady state, from Eq. (10), we get
the equality of current flowing between any neighbouring pair of particles:

J = 〈j1,L〉 = 〈j2,1〉 = 〈j3,2〉 = ...〈jN,N−1〉 = −〈jN,R〉 , (13)

where we have used the notation J for the steady state energy current per bond.
In simulations one can use the above definition, which involves no approximations,
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and a good check of convergence to steady state is to verify the above equality on
all bonds. In the case where interaction is in the form of hard particle collisions we
can write the expression for steady state current in a different form. Replacing the
steady state average by a time average we get:

〈jl,l−1〉 = 〈vlfl,l−1〉 = lim
τ→∞

1

τ

∫ τ

0
dtvl(t)fl,l−1(t) = lim

τ→∞

1

τ

∑

tc

∆Kl,l−1 , (14)

where tc denotes time instances at which particles l and (l−1) collide and ∆Kl,l−1

is the change in energy of the lth particle as a result of the collision.
Next we discuss the continuum definition of current which is more appropriate for

fluids but is of general validity. We will discuss it for the case of Maxwell boundary
conditions with the system confined in a box of length L. Let us define the local
energy density at position x and at time t as:

ǫ(x, t) =

N
∑

l=1

ǫl δ[x − xl(t)] , (15)

where ǫl is as defined in Eq. (9). Taking a time derivative we get the required
continuum continuity equation in the form (for 0 < x < L ):

∂ǫ(x, t)

∂t
+

∂j(x, t)

∂x
= j1,Lδ(x) + jN,Rδ(x − L) (16)

where j(x, t) = jK(x, t) + jI(x, t)

with jK(x, t) =

N
∑

l=1

ǫl(t)vl(t)δ[x − xl(t)]

and jI(x, t) =

N−1
∑

l=2

(jl+1,l − jl,l−1) θ[x − xl(t)] + j2,1θ[x − x1(t)] − jN,N−1θ[x − xN (t)] .

Here jl,l−1, j1,L, jN,R are as defined earlier in the discrete case, and we have
written the current as a sum of two parts, jK and jI , whose physical meaning we
now discuss. To see this, consider a particle configuration with x1, x2, ...xk < x <
xk+1, xk+2, ...xN . Then we get

jI(x, t) = jk+1,k

which is thus simply the rate at which the particles on the left of x do work on
the particles on the right. Hence we can interpret jI(x, t) as the contribution to
the current density coming from interparticle interactions. The other part jK(x, t)
arises from the physical flow of particles carrying energy across the point x. Note,
however, that even in the absence of any net convection particle flow, both jK and
jI can contribute to the energy flow. In fact for point particles interacting purely
by hard elastic collisions jk+1,k is zero whenever the kth and (k + 1)th particles are
on the two sides of the point x and hence jI is exactly zero. The only contribution
to the energy current then comes from the part jK and we thus for the steady-
state current we obtain

〈j(x, t)〉 =
N

∑

l=1

〈mlv
3
l

2
δ(x − xl)〉 . (17)
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In simulations either of expressions Eq. (14) or Eq. (17) can be used to evaluate the
steady state current and will give identical results. For hard particle simulations
one often uses a simulation which updates between collisions and in this case it is
more efficient to evaluate the current using Eq. (14). We now show that, in the
nonequilibrium steady state, the average current from the discrete and continuum
definitions are the same, i.e. ,

〈jl,l−1〉 = 〈j(x, t)〉 = J . (18)

Note that the steady state current is independent of l or x. To show this we first
define the total current as:

J (t) =

∫ L

0
dxj(x, t) =

∑

l=1,N

ǫlvl −
∑

l=2,N−1

xl(jl+1,l − jl,l−1) − x1j2,1 + xNjN,N−1

=
∑

l=1,N

ǫlvl +
∑

l=1,N−1

(xl+1 − xl)jl+1,l . (19)

Taking the steady-state average of the above equation and using the fact that
〈ǫlvl〉 = −〈ǫ̇lxl〉 = 〈(jl+1,l − jl,l−1)xl〉, where j1,0 = j1,L, jN+1,N = −jN,R we get:

〈J 〉 = −〈x1j1L + xNjNR〉 .

Since the Maxwell baths are located at x = 0 and x = L, the above then gives
〈J 〉 = L〈j(x, t)〉 = −L〈jNR〉 and hence from Eq. (13), we get 〈j(x, t)〉 = J =
〈jl,l−1〉, which proves the equivalence of the two definitions.

The extensions of the current definitions, both the discrete and continuum ver-
sions, to higher dimensions is straightforward. Here, for reference, we outline the
derivation for the continuum case since it is not easy to see a discussion of this in
the literature. Consider a system in d-dimensions with Hamiltonian given by:

H =
∑

l

[

p2
l

2ml
+ V (xl)

]

+
1

2

∑

l 6=n

∑

n

U(rln) , (20)

where xl = (x1
l , x

2
l , ...x

d
l ) and pl = (p1

l , p
2
l , ...p

d
l ) are the vectors denoting the po-

sition and momentum of the lth particle and rln = |xl − xn|. The particles are
assumed to be inside a hypercubic box of volume Ld. As before we define the local
energy density as:

ǫ(x, t) =
∑

l

δ(x − xl)ǫl where

ǫl =
p2

l

2ml
+ V (xl) +

1

2

∑

n 6=l

U(rln) .

Taking a derivative with respect to time (and suppressing the source terms arising
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from the baths) gives:

∂ǫ(x, t)

∂t
= −

d
∑

α=1

[

∂

∂xα

∑

l

δ(x − xl) ǫlv
α
l

]

+
∑

l

δ(x − xl)ǫ̇l (21)

= −
∑

α

∂

∂xα
[ jK

α + jI
α ] ,

where

jα
K(x, t) =

∑

i

δ(x − xl) ǫl vα
l

and jα
I (x, t) = −

∑

l

∑

n 6=l

θ(xα − xα
l )

∏

ν 6=α

δ(xν − xν
l ) jl,n (22)

where jl,n =
1

2

∑

ν

( vν
l + vν

n ) f ν
l,n ,

and fα
l,n = −∂U(rl,n)/∂xα

l is the force, in the αth direction, on the lth particle due

to the nth particle. We have defined jl,n as the current, from particle n to particle
l, analogously to the discrete 1D current. The part jα

I gives the energy flow as
a result of physical motion of particles across xα. The part jα

I also has a simple
physical interpretation, as in the 1D case. First note that we need to sum over
only those n for which xα

n < xα. Then the formula basically gives us the net rate,
at which work is done, by particles on the left of xα, on the particles to the right.
This is thus the rate at which energy flows from left to right. By integrating the
current density over the full volume of the system, we get the total current:

J α(t) =
∑

l

ǫlv
α
l +

1

2

∑

l 6=n

∑

n

(xα
l − xα

n) jl,n . (23)

Thus we get an expression similar to that in 1D given by Eq. (19). In simulations
making nonequilibrium measurements, any of the various definitions for current
can be used to find the steady state current. However, it is not clear whether other
quantities, such as correlation functions obtained from the discrete and continuum
definitions, will be the same.

The local temperature can also be defined using either a discrete approach (giv-
ing Tl) or a continuum approach (giving T (x, t)). In the steady state these are
respectively given by (in the 1D case):

kBTl =

〈

p2
l

ml

〉

kBT (x) =
〈∑l

p2
l

ml
δ(x − xl)〉

〈
∑

l δ(x − xl)〉
(24)

Again it is not obvious that these two definitions will always agree. Lattice simu-
lations usually use the discrete definition while hard particle simulations use the
continuum definition.
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The precise definition of thermal conductivity would be:

κ = lim
L→∞

lim
∆T→0

JL

∆T
, (25)

where ∆T = TL−TR. In general κ would depend on temperature T . The finiteness
of κ(T ), along with Fourier’s law, implies that even for arbitrary fixed values of
TL, TR the current J would scale as ∼ L−1 (or N−1). What is of real interest is
this scaling property of J with system size. We will typically be interested in the
large N behaviour of the conductivity defined as:

κN =
JN

∆T
, (26)

which will usually be denoted by κ. For large N , systems with normal diffusive
transport give a finite κ while anomalous transport refers to the scaling

κ ∼ Nα α 6= 0 , (27)

and the value of the heat conduction exponent α is one of the main objects of
interest. For the current, this implies J ∼ Nα−1.

The only examples where the steady state current can be analytically evaluated,
and exact results are available for the exponent α, corresponds to harmonic lattices,
using very specific methods that will be discussed in sec. (3).

Coupling to baths and contact resistance: In the various models of heat
baths that we have discussed, the efficiency with which heat exchange takes place
between reservoirs and system depends on the strength of coupling constants. For
example, for the Langevin and Nosé-Hoover baths, the parameters γ and θ re-
spectively determine the strength of coupling ( for the Maxwell bath one could
introduce a parameter which gives the probability that after a collision the parti-
cle’s speed changes and this can be used to tune the coupling between system and
reservoir). From simulations it is found that typically there is an optimum value of
the coupling parameter for which energy exchange takes place most efficiently, and
at this value one gets the maximum current for given system and fixed bath tem-
peratures. For too high or too small values of the coupling strength the current is
small. The coupling to bath can be thought of as giving rise to a contact resistance.
An effect of this resistance is to give rise to boundary jumps in the temperature
profile measured in simulations. One expects that these jumps will be present as
long as the contact resistance is comparable to the systems resistance. We will later
see that in order to be sure that one is measuring the true resistance of the system,
it is necessary to be in parameter regimes where the contact resistances can be
neglected.

2.2. Green-Kubo Formula

The Green-Kubo formula provides a relation between transport coefficients, such
as the thermal conductivity κ or the electrical conductivity σ, and equilibrium time
correlation functions of the corresponding current. For the thermal conductivity in
a classical 1D system, the Green-Kubo formula gives:

κ =
1

kBT 2
lim

τ→∞
lim

L→∞

1

L

∫ τ

0
dt〈J (0)J (t)〉 , (28)
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where J is the total current as defined in Eq. (19) and 〈...〉 denotes an average over
initial conditions chosen from either a micro-canonical ensemble or a canonical one
at temperature T . Two important points to be remembered with regard to use of
the above Green-Kubo formula are the following:

(i) It is often necessary to subtract a convective part from the current definition
or, alternatively, in the microcanonical case one can work with initial conditions
chosen such that the centre of mass velocity is zero (see also discussions in [7, 8]).
To understand this point, let us consider the case with V (x) = 0. Then for a closed
system that is not in contact with reservoirs, we expect the time average of the
total current to vanish. But this is true only if we are in the centre of mass frame.
If the centre of mass is moving with velocity v then the average velocity of any
particle 〈vl〉 = v. Transforming to the moving frame let us write vl = v′

l +v. Then
the average total current in the rest frame is given by (in d-dimensions):

〈J α〉 =

[

M

2
v2 +

∑

l

〈ǫ′l〉
]

vα +
∑

ν







∑

l

〈mlv
′α
l v

′ν
l 〉 +

1

2

∑

l,n

l 6=n

〈 (xα
l − xα

n) f ν
l,n 〉






vν

= (E + PV ) vα , (29)

where M =
∑

ml and E is the average total energy of the system as measured in
the rest frame and V = Ld . In deriving the above result we have used the standard
expression for equilibrium stress-tensor given by:

V σαν =
∑

〈mlv
′α
l v

′ν
l 〉 +

1

2

∑

l 6=n

〈 (xα
l − xα

n) f ν
l,n 〉 , (30)

and assumed an isotropic medium. Thus, in general, to get the true energy current
in an arbitrary equilibrium ensemble one should use the expression:

J α
c = J α − (E + PV )vα . (31)

The corresponding form in 1D should be used to replace J in Eq. (28).
(ii) The second point to note is that in Eq. (28) the order of limits L → ∞ and

then τ → ∞ has to be strictly maintained. In fact for a system of particles inside
a finite box of length L it can be shown exactly that:

∫ ∞

0
dt〈Jc(0)Jc(t)〉 = 0 . (32)

To prove this, let us consider a microcanonical ensemble (with 〈J 〉 = 0, so that
Jc = J ), in which case from Eq. (19) we get:

J (t) =
d

dt

[

N
∑

l=1

ǫl(t)xl(t)

]

. (33)

Multiplying both sides of the above equation by J (0), integrating over t and noting
that both the boundary terms on the right hand side vanish, we get the required
result in Eq. (32). With the correct order of limits in Eq. (28), one can calculate the
correlation functions with arbitrary boundary conditions and apply the formula to
obtain the response of an open system with reservoirs at the ends.
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Derivation of the Green-Kubo formula for thermal conductivity: There
have been a number of derivations of this formula by various authors including
Green, Kubo, Mori, McLennan, Kadanoff and Martin, Luttinger, and Visscher [4,
5, 6, 7, 8, 9, 10, 11, 12]. None of these derivations are rigorous and all require certain
assumptions. Luttinger’s derivation was an attempt at a mechanical derivation and
involves introducing a fictitious ’gravitational field’ which couples to the energy
density and drives an energy current. However one now has to relate the response
of the system to the field and its response to imposed temperature gradients. This
requires additional inputs such as use of the Einstein relation relating diffusion
coefficient (or thermal conductivity) to the response to the gravitational field. We
believe that this derivation, as is also the case for most other derivations , implicitly
assumes local thermal equilibrium. Although these derivations are not rigorous,
they are quite plausible, and it is likely that the assumptions made are satisfied in
a large number of cases of practical interest. Thus the wide use of the Green-Kubo
formula in calculating thermal conductivity and transport properties of different
systems is possibly justified in many situations.

Here we give an outline of a non-mechanical derivation of the Green-Kubo for-
mula, one in which the assumptions can be somewhat clearly stated and their
physical basis understood. The assumptions we will make here are:

(a) The nonequilibrium state with energy flowing in the system can be described
by coarse-grained variables and the condition of local thermal equilibrium is satis-
fied.

(b) There is no particle flow, and energy current is equal to heat current.
The energy current satisfies Fourier’s law which we write in the form J(x, t) =
−D∂u(x, t)/∂x where D = κ/c, c is the specific heat capacity, and u(x, t) =
ǭ(x, t), J(x, t) = j̄(x, t) are macroscopic variables obtained by a coarse-graining
(indicated by bars) of the microscopic fields.

(c) Finally, we assume that regression of equilibrium energy fluctuations occurs
in the same way as nonequilibrium flow of energy.

We consider a macroscopic system of size L. Fluctuations in energy density in
equilibrium can be described by the correlation function S(x, t) = 〈ǫ(x, t)ǫ(0, 0)〉−
〈ǫ(x, t)〉 〈ǫ(0, 0)〉. Assumption (c) above means that the decay of these fluctuations
is determined by the heat diffusion equation and given by:

∂S(x, t)

∂t
= D

∂2S(x, t)

∂x2
for t > 0 ,

where we have also assumed temperature fluctuations to be small enough so that
the temperature dependence of D can be neglected. From time reversal invariance
we have S(x, t) = S(x,−t). Using this and the above equation we get:

S̃(k, ω) =

∫ ∞

−∞
dtŜ(k, t)e−iωt =

2Dk2Ŝ(k, t = 0)

D2k4 + ω2
,

where Ŝ(k, t) =
∫ ∞
−∞ dxS(x, t)eikx. Now, from equilibrium statistical mechanics we

have Ŝ(k = 0, t = 0) = ckBT 2 and using this in the above equation we obtain:

κ = cD =
1

2kBT 2
lim
ω→0

lim
k→0

ω2

k2
S̃(k, ω) . (34)

One can relate the energy correlator to the current correlator using the continuity
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equation ∂ǫ(x, t)/∂t + ∂j(x, t)/∂x = 0 and this gives:

〈j̃(k, ω)j̃(k′, ω′)〉 = (2π)2
ω2

k2
S̃(k, ω) δ(k + k′)δ(ω + ω′) ,

where j̃(k, ω) =
∫ ∞
−∞ dxdtj(x, t)ei(kx−ωt). Integrating the above equation over k′

gives:

∫ ∞

−∞
dx

∫ ∞

−∞
dt 〈j(x, t)j(0, 0)〉 ei(kx−ωt) =

ω2

k2
S̃(k, ω) . (35)

From Eq. (34) and Eq. (35) we then get:

κ = lim
ω→0

lim
k→0

1

2kBT 2

∫ ∞

−∞
dx

∫ ∞

−∞
dt 〈j(x, t)j(0, 0)〉 ei(kx−ωt) . (36)

Finally, using time-reversal and translational invariance and interpreting the
ω → 0, k → 0 limits in the alternative way ( as τ → ∞, L → ∞) we recover the
Green-Kubo formula in Eq. (28) .

Limitations on use of the Green-Kubo formula: There are several situa-
tions where the Green-Kubo formula in Eq. (28) is not applicable. For example,
for the small structures that are studied in mesoscopic physics, the thermodynamic
limit is meaningless, and one is interested in the conductance of a specific finite sys-
tem. Secondly, in many low dimensional systems, heat transport is anomalous and
the thermal conductivity diverges. In such cases it is impossible to take the limits
as in Eq. (28); one is there interested in the thermal conductance as a function of
L instead of an L-independent thermal conductivity. The usual procedure that has
been followed in the heat conduction literature is to put a cut-off at tc ∼ L, in the
upper limit in the Green-Kubo integral [2]. The argument is that for a finite system
connected to reservoirs, sound waves traveling to the boundaries at a finite speed,
say v, lead to a decay of correlations in a time ∼ L/v. However there is no rigorous
justification of this assumption. A related case is that of integrable systems, where
the infinite time limit of the correlation function in Eq. (28) is non-zero.

Another way of using the Green-Kubo formula for finite systems is to include
the infinite reservoirs also while applying the formula and this was done, for ex-
ample, by Allen and Ford [13] for heat transport and by Fisher and Lee [14] for
electron transport. Both these cases are for non-interacting systems and the final
expression for conductance (which is more relevant than conductivity in such sys-
tems) is basically what one also obtains from the Landauer formalism [15], or the
nonequilibrium Green’s function approach [see sec. (2.3)].

It has been shown that Green-Kubo like expressions for the linear response heat
current for finite open systems can be derived rigorously by using the steady state
fluctuation theorem [16, 17, 18, 19, 20, 21, 22]. This has been done for lattice mod-
els coupled to stochastic Markovian baths and the expression for linear response
conductance of a one dimensional chain is given as:

lim
∆T→0

J

∆T
=

1

kBT 2

∫ ∞

0
〈jl(0)jl(t)〉 , (37)

where jl is the discrete current defined in sec. (2.1). Some of the important dif-
ferences of this formula with the usual Green-Kubo formula are worth keeping in
mind: (i) the dynamics of the system here is non-Hamiltonian since they are for a
system coupled to reservoirs, (ii) one does not need to take the limit N → ∞ first,
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the formula being valid for a finite system, (iii) the discrete bond current appears
here, unlike the continuum one in the usual Green-Kubo formula. Recently, an ex-
act linear response result similar to Eq. (37), for the conductance of a finite open
system has been derived using a different approach [23]. This has been done for
quite general classical Hamiltonian systems and for a number of implementations
of heat baths.

It appears that the linear response formula given by Eq. (37) is the correct
one to use to evaluate the conductance in systems where there is a problem with
the usual Green-Kubo formula, e.g. in finite systems or low dimensional systems
showing anomalous transport (because of slow decay of 〈J (0)J (t)〉. We note here
the important point that the current-current correlation can have very different
scaling properties, for a purely Hamiltonian dynamics, as compared to a heat bath
dynamics. This has been seen in simulations by Deutsche and Narayan [24] for
the random collision model [defined in sec. (4.2.1)]. Of course this makes things
somewhat complicated since the usefulness of the Green-Kubo formalism arises
from the fact that it allows a calculation of transport properties from equilibrium
properties of the system, and without any reference to heat baths, etc. In fact, as
we will see in sec. (4.1), all the analytic results for heat conduction in interacting
one dimensional systems rely on Eq. (28) and involve a calculation of the current-
current correlator for a closed system. Some of the simulation results discussed later
suggest that, for interacting (nonlinearly) systems, in the limit of large system size
the heat current is independent of details of the heat baths. This means that, in
the linear response regime and the limit of large system sizes, a description which
does not take into account bath properties may still be possible.

2.3. Nonequilibrium Green’s function method

The nonequilibrium Green’s function method (NEGF) is a method, first invented
in the context of electron transport, to calculate steady state properties of a finite
system connected to reservoirs which are themselves modeled by noninteracting
Hamilitonians with infinite degrees of freedom [46, 47, 48]. Using the Keldysh
formalism, one can obtain formal expressions for the current and other observ-
ables such as electron density, in models of electrons such as those described by
tight-binding type Hamiltonians. Recently this approach has been applied both to
phonon [50, 51] and photon [55, 56] transport.

The main idea in the formalism is as follows. One starts with an initial density
matrix describing the decoupled system, and two infinite reservoirs which are in
thermal equilibrium, at different temperatures and chemical potentials. The system
and reservoirs are then coupled together and the density matrix is evolved with the
full Hamiltonian for an infinite time so that one eventually reaches a nonequilibrium
steady state. Various quantitites of interest such as currents and local densities, etc
can be obtained using the steady state density matrix and can be written in terms of
the so called Keldysh Green’s functions. An alternative and equivalent formulation
is the Langevin approach where, instead of dealing with the density matrix, or
in the classical case with the phase space density, one works with equations of
motion of the phase space variables of the full Hamiltonian (system plus reservoirs).
Again the reservoirs, which are initially in thermal equilibrium, are coupled to the
system in the remote past. It is then possible to integrate out the reservoir degrees
of freedom, and these give rise to generalized Langevin terms in the equation of
motion. For non-interacting systems, one can show that it is possible to recover all
the results of NEGF exactly, both for electrons and phonons. Here we will discuss
this approach for the case of phonons, and describe the main results that have been
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obtained [sec. (3.2)].
For non-interacting systems, the formal expressions for current obtained from

the NEGF approach is in terms of transmission coefficients of the heat carriers
(electrons, phonons or photons) across the system, with appropriate weight fac-
tors corresponding to the population of modes in the reservoirs. These expressions
are basically what one also obtains from the Landauer formalism [15]. We note
that in the Landauer approach one simply thinks of transport as a transmission
problem and the current across the system is obtained directly using this picture.
In the simplest set-up one thinks of one-dimensional reservoirs (leads) filled with
non-interacting electrons at different chemical potentials. On connecting the sys-
tem in between the reservoirs, electrons are transmitted through the system from
one reservoir to the other. The net current in the system is then the sum of the
currents from left-moving and right-moving electron states from the two reservoirs
respectively.

3. Heat conduction in harmonic lattices

The harmonic crystal is a good starting point for understanding heat transport
in solids. Indeed in the equilibrium case we know that studying the harmonic
crystal already gives a good understanding of, for example, the specific heat of
an (electrically) insulating solid. In the nonequilibrium case, the problem of heat
conduction in a classical one dimensional harmonic crystal was studied for the
first time by Rieder, Lebowitz and Lieb (RLL) [25]. They considered the case of
stochastic Markovian baths and were able to obtain the steady state exactly. The
main results of this paper were: (i) the temperature in the bulk of the system was
constant and equal to the mean of the two bath temperatures, (ii) the heat cur-
rent approaches a constant value for large system sizes and an exact expression for
this was obtained. These results can be understood physically when one realizes
that in the ordered crystal, heat is carried by freely propagating phonons. RLL
considered the case where only nearest neighbour interparticle interactions were
present. Nakazawa (NK) [26] extended these results to the case with a constant
onsite harmonic potential at all sites and also to higher dimensions. The approach
followed in both the RLL and NK papers was to obtain the exact nonequilibrium
stationary state measure which, for this quadratic problem, is a Gaussian distri-
bution. A complete solution for the correlation matrix was obtained and from this
one could obtain both the steady state temperature profile and the heat current.

In sec. (3.1) we will briefly describe the RLL formalism. In sec. (3.2) we will
describe a different and more powerful formalism. This is the Langevin equation
and nonequilibrium Green’s function method and various applications of this will
be discussed in secs. (3.3,3.4,3.5).

3.1. The Rieder-Lebowitz-Lieb method

Let us consider a classical harmonic system of N particles with displacements
about the equilibrium positions described by the vector X = {x1, x2, ...xN}T , where
T denotes transpose. The particles can have arbitrary masses and we define a
diagonal matrix M̂ whose diagonal elements Mll = ml, for l = 1, 2...N , give the
masses of the particles. The momenta of the particles are given by the vector
P = (MẊ) = {p1, p2, ...pN}T . We consider the following harmonic Hamiltonian for
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the system:

H =
1

2
P T M̂−1P +

1

2
XT Φ̂X , (38)

where Φ̂ is the force matrix. Let us consider the general case where the lth particle is
coupled to a white noise heat reservoir at temperature TB

l with a coupling constant
γl. The equations of motion are given by:

ẋl =
pl

ml

ṗl = −
∑

n

Φlnxn − γl

ml
pl + ηl for l = 1, 2...N (39)

with the noise terms satisfying the usual fluctuation dissipation relations

〈ηl(t)ηn(t′)〉 = 2γlkBTB
l δl,nδ(t − t′) . (40)

Defining new variables q = {q1, q2...q2N}T = {x1, x2...xN , p1, p2...pN}T we can
rewrite Eqs. (39,40) in the form:

q̇ = −Â q + η

〈η(t)ηT (t′)〉 = D̂δ(t − t′) (41)

where the 2N dimensional vector ηT = (0, 0, ..0, η1 , η2...ηN ) and the 2N × 2N

matrices Â, D̂ are given by:

Â =

(

0 −M̂−1

Φ̂ M̂−1Γ̂

)

D̂ =

(

0 0

0 Ê

)

and Γ̂ and Ê are N × N matrices with elements Γln = γlδl,n, Eln = 2kBTB
l γlδln

respectively. In the steady state, time averages of total time derivatives vanish,
hence we have 〈d(qqT )/dt〉 = 0. From Eq. (41) we get

〈 d

dt
(qqT )〉 = 〈(−Âq + η)qT + q(−qT ÂT + ηT )〉

= −Â.B̂ − B̂.ÂT + 〈ηqT + qηT 〉 = 0 (42)

where B̂ is the correlation matrix 〈qqT 〉. To find the average of the term involving
noise we first write the formal solution of Eq. 41:

q(t) = Ĝ(t − t0)q(t0) +

∫ t

t0

dt′Ĝ(t − t′)η(t′) where Ĝ(t) = e−Ât. (43)
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Setting t0 → −∞ and assuming Ĝ(∞) = 0 (so that a unique steady state exists),

we get q(t) =
∫ t
−∞ dt′Ĝ(t − t′)η(t′) and hence

〈qηT 〉 =

∫ t

−∞
dt′Ĝ(t − t′)〈η(t′)ηT (t)〉

=

∫ t

−∞
dt′Ĝ(t − t′)D̂δ(t − t′) =

1

2
D̂ (44)

where we have used the noise correlations given by Eq. (40), and the fact that

Ĝ(0) = Î, a unit matrix. Using Eq. (44) in Eq. (42), we finally get

Â.B̂ + B̂.ÂT = D̂ (45)

The solution of this equation gives the steady state correlation matrix B̂ which
completely determines the steady state since we are dealing with a Gaussian pro-
cess. In fact the steady state is given by the Gaussian distribution

P ({ql}) = (2π)−NDet[B̂]−1/2e−
1

2
qT B̂−1q . (46)

Some of the components of the matrix equation Eq. (45) have simple physical

interpretations. To see this we first write B̂ in the form

B̂ =

(

B̂x B̂xp

B̂T
xp B̂p

)

where B̂x, B̂p and B̂xp are N×N matrices with elements (B̂x)ln = 〈xlxn〉, (B̂p)ln =

〈plpn〉 and (B̂xp)ln = 〈xlpn〉. From Eq. (45) we then get the set of equations:

M̂−1B̂T
xp + B̂xpM̂

−1 = 0 (47)

B̂xΦ̂T − M̂−1B̂p + B̂xpM̂
−1Γ̂ = 0 (48)

M̂−1Γ̂B̂p + B̂pΓ̂M̂−1 + Φ̂B̂xp + B̂T
xpΦ̂ = Ê (49)

From Eq. 47 we get the identity 〈xlpn/mn〉 = −〈xnpl/ml〉. Thus 〈xlpl〉 = 0. The
diagonal terms in Eq. 48 give

∑

n

〈xl(Φlnxn)〉 − 1

ml
〈p2

l 〉 + 〈xlpl〉
γl

ml
= 0

⇒ 〈xl
∂H

∂xl
〉 = 〈 p2

l

ml
〉 = kBTl

where we have defined the local temperature kBTl = 〈p2
l /ml〉. This equation has

the form of the ‘equipartition’ theorem of equilibrium physics. It is in fact valid
quite generally for any Hamiltonian system at all bulk points and simply follows
from the fact that 〈(d/dt)xlpl〉 = 0. Finally let us look at the diagonal elements of
Eq. 49. This gives the equation

∑

n

〈(Φlnxn)
pl

ml
〉 =

γl

ml
kB(TB

l − Tl) (50)
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which again has a simple interpretation. The right hand can be seen to be equal
to 〈(−γlpl/ml + ηl)pl/ml〉 which is simply the work done on the lth particle by
the heat bath attached to it (and is thus the heat input at this site). On the left
hand side 〈(−Φlnxn)pl/ml〉 is the rate at which the nth particle does work on the
lth particle and is therefore the energy current from site n to site l. The left side is
thus is just the sum of the outgoing energy currents from the lth site to all the sites
connected to it by Φ̂. Thus we can interpret Eq. (50) as an energy-conservation
equation. The energy current between two sites is given by

Jn→l = −〈(Φlnxn)
pl

ml
〉 . (51)

Our main interests are in computing the temperature profile and the energy current
in the steady state. This requires solution of Eq. (45) and this is quite difficult and
has been achieved only in a few special cases. For the one-dimensional ordered
harmonic lattice, RLL were able to solve the equation exactly and obtain both
the temperature profile and the current. The extension of their solution to higher
dimensional lattices is straightforward and was done by Nakazawa. More recently
Bonetto et al [67] have used this approach to solve the case with self-consistent
reservoirs attached at all the bulk sites of a ordered harmonic lattice.

A numerical solution of Eq. (45) requires inversion of a N(2N + 1)×N(2N + 1)
matrix which restricts one to rather small system sizes. The RLL approach is
somewhat restrictive since it is not easily generalizable to other kinds of heat
baths or to the quantum case. Besides, except for the ordered lattice, it is difficult
to obtain useful analytic results from this approach. In the next section we discuss a
different approach which is both analytically more tractable, as well as numerically
more powerful.

3.2. Langevin equations and Green’s function (LEGF) formalism

This approach involves a direct solution of generalized Langevin equations. Using
this solution one can evaluate various quantities of interest such as steady state
current and temperature profiles. Compact formal expressions for various quanti-
ties of interest can be obtained and, as pointed out earlier, it turns out that these
are identical to results obtained by the nonequilibrium Green’s function (NEGF)
method described in sec. (2.3). The method can be developed for quantum me-
chanical systems, in which case we deal with quantum Langevin equations (QLE),
and we will see that the classical results follow in the high temperature limit. In all
applications we will restrict ourselves to this approach which we will henceforth re-
fer to as the Langevin equations and Green’s function (LEGF) method. As we will
see, for the ordered case to be discussed in sec. (3.3), one can recover the standard
classical results as well as extend them to the quantum domain using the LEGF
method. For the disordered case too [sec. (3.4)], one can make significant progress.
Another important model that has been well studied in the context of harmonic
systems is the case where self-consistent heat reservoirs are attached at all sites
of the lattice. In sec. (3.5) we will review results for this case obtained also from
the LEGF approach. All examples in this section deal with the case where particle
displacements are taken to be scalars. The generalization to vector displacements
is straightforward.

The LEGF formalism has been developed in the papers by [40, 41, 42, 43, 44]
and relies on the approach first proposed by Ford, Kac and Mazur [45] of modeling
a heat bath by an infinite set of oscillators in thermal equilibrium. Here we will
outline the basic steps as given in [44]. One again considers a harmonic system
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which is coupled to reservoirs which are of a more general form than the white
noise reservoirs studied in the last section. The reservoirs are now themselves taken
to be a collection of harmonic oscillators, whose number will be eventually taken
to be infinite. As we will see, this is equivalent to considering generalized Langevin
equations where the noise is still Gaussian but in general can be correlated. We
will present the discussion for the quantum case and obtain the classical result as
a limiting case.

We consider here the case of two reservoirs, labeled as L (for left) and R (right)
, which are at two different temperatures. It is easy to generalize to the case where
there are more than two reservoirs. For the system let X = {x1, x2, ...xN}T now
be the set of Heisenberg operators corresponding to the displacements (assumed
to be scalars) of the N particles, about equilibrium lattice positions. Similarly let
XL and XR refer to position operators of the particles in the left and right baths
respectively. The left reservoir has NL particles and the right has NR particles.
Also let P,PL, PR be the corresponding momentum variables satisfying usual com-
mutation relations with the position operators (i.e. [xl, pn] = i~δl,n, etc.). The
Hamiltonian of the entire system and reservoirs is taken to be:

H = HS + HL + HR + HI
L + HI

R (52)

where HS =
1

2
P T M̂−1P +

1

2
XT Φ̂X ,

HL =
1

2
P T

L M̂−1
L PL +

1

2
XT

L Φ̂LXL ,

HR =
1

2
P T

R M̂−1
R PR +

1

2
XT

RΦ̂RXR ,

HI
L = XT V̂LXL, HI

R = XT V̂RXR ,

where M, ML, MR are real diagonal matrices representing masses of the particles in
the system, left, and right reservoirs respectively. The quadratic potential energies
are given by the real symmetric matrices Φ̂, Φ̂L, Φ̂R while V̂L and V̂R denote the
interaction between the system and the two reservoirs respectively. It is assumed
that at time t = t0, the system and reservoirs are decoupled and the reservoirs are
in thermal equilibrium at temperatures TL and TR respectively.

The Heisenberg equations of motion for the system (for t > t0) are:

M̂Ẍ = −Φ̂X − V̂LXL − V̂RXR , (53)

and the equations of motion for the two reservoirs are

M̂LẌL = −Φ̂LXL − V̂ T
L X , (54)

M̂RẌR = −Φ̂RXR − V̂ T
R X . (55)

One first solves the reservoir equations by considering them as linear inhomoge-
neous equations. Thus for the left reservoir the general solution to Eq. (54) is (for
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t > t0):

XL(t) = f̂+
L (t − t0)M̂LXL(t0) + ĝ+

L (t − t0)M̂LẊL(t0)

−
∫ t

t0

dt′ ĝ+
L (t − t′)V̂ T

L X(t′) , (56)

with f̂+
L (t) = ÛL cos (Ω̂Lt)ÛT

L θ(t), ĝ+
L (t) = ÛL

sin (Ω̂Lt)

Ω̂L

ÛT
L θ(t) ,

where θ(t) is the Heaviside function, and ÛL, Ω̂L are the normal mode eigenvector
and eigenvalue matrices respectively, corresponding to the left reservoir Hamilto-
nian HL, and which satisfy the equations:

ÛT
L Φ̂LÛL = Ω̂2

L , ÛT
L M̂LÛL = Î .

A similar solution is obtained for the right reservoir. Plugging these solutions back
into the equation of motion for the system, Eq. (53), one gets the following effective
equations of motion for the system:

M̂Ẍ = −Φ̂X + ηL +

∫ t

t0

dt′Σ̂L(t − t′)X(t′) + ηR +

∫ t

t0

dt′Σ̂R(t − t′)X(t′), (57)

where Σ̂L(t) = V̂L ĝ+
L (t) V̂ T

L , Σ̂R(t) = V̂R ĝ+
R(t) V̂ T

R

and ηL = −V̂L

[

f̂+
L (t − t0)M̂LXL(t0) + ĝ+

L (t − t0)M̂LẊL(t0)
]

ηR = −V̂R

[

f̂+
R (t − t0)M̂RXR(t0) + ĝ+

R(t − t0)M̂RẊR(t0)
]

.

This equation has the form of a generalized quantum Langevin equation. The
properties of the noise terms ηL and ηR are determined using the condition that, at
time t0, the two isolated reservoirs are described by equilibrium phonon distribution
functions. At time t0, the left reservoir is in equilibrium at temperature TL and
the population of the normal modes (of the isolated left reservoir) is given by the
distribution function fb(ω, TL) = 1/[e~ω/kBTL − 1]. One then gets the following
correlations for the left reservoir noise:

〈ηL(t)ηT
L (t′)〉 = V̂LÛL

[

cos Ω̂L(t − t′)
~

2Ω̂L

coth (
~Ω̂L

2kBTL
)

−i sin Ω̂L(t − t′)
~

2Ω̂L

]

ÛT
L V̂ T

L , (58)

and a similar expression for the right reservoir. The limits of infinite reser-
voir sizes (NL, NR → ∞) and t0 → −∞ are now taken. One can then solve
Eq. (57) by taking Fourier transforms. Let us define the Fourier transforms
X̃(ω) = (1/2π)

∫ ∞
−∞ dt X(t)eiωt, η̃L,R(ω) = (1/2π)

∫ ∞
−∞ dt ηL,R(t)eiωt, ĝ+

L,R(ω) =
∫ ∞
−∞ dt ĝ+

L,R(t)eiωt . One then gets the following stationary solution to the equations
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of motion Eq. (57):

X(t) =

∫ ∞

−∞
dωX̃(ω)e−iωt , (59)

with X̃(ω) = Ĝ+(ω) [η̃L(ω) + η̃R(ω)] ,

where Ĝ+(ω) =
1

[−ω2M̂ + Φ̂ − Σ̂+
L (ω) − Σ̂+

R(ω)]
,

and Σ̂+
L (ω) = V̂Lĝ+

L (ω)V̂ T
L , Σ̂+

R(ω) = V̂Rĝ+
R(ω)V̂ T

R .

For the reservoirs one obtains [using Eq. (56)]

− V̂LX̃L(ω) = η̃L(ω) + Σ̂+
LX̃(ω) ,

−V̂RX̃R(ω) = η̃R(ω) + Σ̂+
RX̃(ω) . (60)

The noise correlations, in the frequency domain, can be obtained from Eq. (58)
and we get (for the left reservoir):

〈η̃L(ω)η̃T
L (ω′)〉 = δ(ω + ω′) Γ̂L(ω)

~

π
[1 + fb(ω, TL)] (61)

where Γ̂L(ω) = Im[Σ̂+
L (ω)]

which is a fluctuation-dissipation relation. This also leads to the more commonly
used correlation:

1

2
〈 η̃L(ω)η̃T

L (ω′) + η̃L(ω′)η̃T
L (ω) 〉 = δ(ω + ω′) Γ̂L(ω)

~

2π
coth(

~ω

2kBTL
). (62)

Similar relations hold for the noise from the right reservoir. The identification
of Ĝ+(ω) as a phonon Green function, with Σ̂+

L,R(ω) as self energy contributions
coming from the baths, is the main step that enables a comparison of results derived
by the LEGF approach with those obtained from the NEGF method. This has been
demonstrated in refn. [44].

Steady state properties: The simplest way to evaluate the steady state current
is to evaluate the following expectation value for current from left reservoir into
the system:

J = −〈 ẊT V̂LXL 〉. (63)

This is just the rate at which the left reservoir does work on the wire. Using the
solution in Eq. (59,60,61) one obtains, after some manipulations:

J =
1

4π

∫ ∞

−∞
dω T (ω)~ω [f(ω, TL) − f(ω, TR)] . (64)

where T (ω) = 4 Tr[ Ĝ+(ω) Γ̂L(ω)Ĝ−(ω) Γ̂R(ω)] ,

and Ĝ−(ω) = Ĝ+†(ω). This expression for current is of identical form as the NEGF
expression for electron current (see for example [46, 47, 48, 49]) and has also been
derived for phonons using the NEGF approach in refns.[50, 51]. In fact this expres-
sion was first proposed by Angelescu et al.[52] and by Rego and Kirczenow [53] for
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a 1D channel and they obtained this using the Landauer approach. Their result was
obtained more systematically later by Blencowe [54]. Note that Eq. (64) above can
also be written as an integral over only positive frequencies using the fact that the
integrand is an even function of ω. The factor T (ω) is the transmission coefficient
of phonons at frequency ω through the system, from the left to right reservoir. The
usual Landauer result for a 1D channel precisely corresponds to Rubin’s model of
bath, to be discussed in sec. (3.4.1).

For small temperature differences ∆T = TL−TR << T , where T = (TL +TR)/2,
i.e. , in the linear response regime the above expression reduces to:

J =
∆T

4π

∫ ∞

−∞
dω T (ω)~ω

∂f(ω, T )

∂T
. (65)

(66)

The classical limit is obtained by taking the high temperature limit ~ω/kBT → 0.
This gives:

J =
kB ∆T

4π

∫ ∞

−∞
dω T (ω) . (67)

One can similarly evaluate various other quantities such as velocity-velocity corre-
lations and position-velocity correlations. The expressions for these in the classical
case are respectively:

K = 〈ẊẊT 〉

=
kBTL

π

∫ ∞

−∞
dω ω G+(ω)ΓL(ω)G−(ω) +

kBTR

π

∫ ∞

−∞
dω ω G+(ω)ΓR(ω)G−(ω) ,

C = 〈XẊT 〉

=
ikBTL

π

∫ ∞

−∞
dω G+(ω)ΓL(ω)G−(ω) +

ikBTR

π

∫ ∞

−∞
dω G+(ω)ΓR(ω)G−(ω) .

The correlation functions K can be used to define the local energy density which
can in turn be used to define the temperature profile in the non-equilibrium steady
state of the wire. Also we note that the correlations C give the local heat current
density. Sometimes it is more convenient to evaluate the total steady state current
from this expression rather than the one in Eq. (64).

For one-dimensional wires the above results can be shown [32] to lead to ex-
pressions for current and temperature profiles obtained in earlier studies of heat
conduction in disordered harmonic chains [28, 30, 32].

In our derivation of the LEGF results we have implicitly assumed that a unique

steady state will be reached. One of the necessary conditions for this is that no
modes outside the bath spectrum are generated for the combined model of system
and baths. These modes, when they exist, are localized near the system and any
initial excitation of the mode is unable to decay. This has been demonstrated and
discussed in detail in the electronic context [49].

We note that unlike other approaches such as the Green-Kubo formalism and
Boltzmann equation approach, the Langevin equation approach explicitly includes
the reservoirs. The Langevin equation is physically appealing since it gives a nice
picture of the reservoirs as sources of noise and dissipation. Also just as the Lan-
dauer formalism and NEGF have been extremely useful in understanding electron
transport in mesoscopic systems it is likely that a similar description will be useful
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for the case of heat transport in (electrically) insulating nanotubes, nanowires, etc.
The LEGF approach has some advantages over NEGF. For example, in the clas-
sical case, it is easy to write Langevin equations for nonlinear systems and study
them numerically. Unfortunately, in the quantum case, one does not yet know how
to achieve this, and understanding steady state transport in interacting quantum
systems is an important open problem.

3.3. Ordered harmonic lattices

As mentioned above, heat conduction in the ordered harmonic chain was first
studied in the Rieder, Lebowitz and Lieb (RLL) paper and its higher dimensional
generalization was obtained by Nakazawa. The approach followed in both the RLL
and Nakazawa papers was to obtain the exact nonequilibrium stationary state
measure which, for this quadratic problem, is a Gaussian distribution. A complete
solution for the correlation matrix was obtained and from this one could obtain
both the steady state temperature profile and the heat current.

Here we follow refn. [57] to show how the LEGF method, discussed in the previous
section, can be used to calculate the heat current in ordered harmonic lattices
connected to Ohmic reservoirs (for a classical system this is white noise Langevin
dynamics). We will see how exact expressions for the asymptotic current (N → ∞)
can be obtained from this approach. We also briefly discuss the model in the
quantum regime and extensions to higher dimensions.

3.3.1. One dimensional case

The model considered in [57] is a slightly generalized version of those studied by
RLL and Nakazawa. An external potential is present at all sites and the pinning
strength at the boundary sites are taken to be different from those at the bulk
sites. Thus both the RLL and Nakazawa results can be obtained as limiting cases.
Also it seems that this model more closely mimics the experimental situation. In
experiments the boundary sites would be interacting with fixed reservoirs, and the
coupling to those can be modeled by an effective spring constant that is expected
to be different from the interparticle spring constant in the bulk. We also note here
that the constant onsite potential present along the wire relates to experimental
situations such as that of heat transport in a nanowire attached to a substrate or,
in the two-dimensional case, a monolayer film on a substrate. Another example
would be the heat current contribution from the optical modes of a polar crystal.

Consider N particles of equal masses m connected to each other by harmonic
springs of equal spring constants k. The particles are also pinned by onsite quadratic
potentials with strengths ko at all sites except the boundary sites where the pinning
strengths are ko + k′. The Hamiltonian is thus:

H =
N

∑

l=1

[
p2

l

2m
+

1

2
kox

2
l ] +

N−1
∑

l=1

1

2
k(xl+1 − xl)

2 +
1

2
k′(x2

1 + x2
N ) , (68)

where xl denotes the displacement of the lth particle from its equilibrium position.
The particles 1 and N at the two ends are connected to heat baths at temperature
TL and TR respectively, assumed to be modeled by Langevin equations correspond-
ing to Ohmic baths (Σ(ω) = iγω). In the classical case the steady state heat current
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from left to right reservoir can be obtained from Eq. (67) and given by [29, 32]:

J =
kB(TL − TR)

4π

∫ ∞

−∞
dωTN (ω), (69)

where TN(ω) = 4 Γ2(ω)|Ĝ1N (ω)|2, Ĝ(ω) = Ẑ−1/k

and Ẑ = [−mω2Î + Φ̂ − Σ̂(ω)]/k ,

where Î is a unit matrix, Φ̂ is the force matrix corresponding to the Hamiltonian in
Eq. (68). The N ×N matrix Σ̂ has mostly zero elements except for Σ11 = ΣNN =

iΓ(ω) where Γ(ω) = γω. The matrix Ẑ is tri-diagonal matrix with Z11 = ZNN =
(k+ko+k′−mω2−iγω)/k, all other diagonal elements equal to 2+ko/k−mω2/k and
all off-diagonal elements equal to −1. Then it can be shown easily that |G1N (ω)| =

1/(k |∆N |) where ∆N is the determinant of the matrix Ẑ. This can be obtained
exactly. For large N , only phonons within the spectral band of the system can
transmit, and the integral over ω in Eq. (69) can be converted to one over q to
give:

J =
2γ2kB(TL − TR)

k2π

∫ π

0
dq|dω

dq
|

ω2
q

|∆N |2 , (70)

with mω2
q = ko + 2k[1 − cos (q)]. Now using the result:

lim
N→∞

∫ π

0
dq

g1(q)

1 + g2(q) sin Nq
=

∫ π

0
dq

g1(q)

[1 − g2
2(q)]

1/2
, (71)

where g1(q) and g2(q) are any two well-behaved functions, one can show that in
the limit N → ∞, Eq. (70) gives

J =
γk2kB(TL − TR)

mΩ2
(Λ −

√

Λ2 − Ω2) , (72)

where Λ = 2k(k − k′) + k′2 +
(ko + 2k)γ2

m
and Ω = 2k(k − k′) +

2kγ2

m
.

Two different special cases lead to the RLL and Nakazawa results. First in the case
of fixed ends and without onsite potentials, i.e. k′ = k and ko = 0, we recover the
RLL result [25]:

JRLL =
kkB(TL − TR)

2γ

[

1 +
ν

2
− ν

2

√

1 +
4

ν

]

where ν =
mk

γ2
. (73)

In the other case of free ends, i.e. k′ = 0, one gets the Nakazawa result [26]:

JN =
kγkB(TL − TR)

2(mk + γ2)

[

1 +
λ

2
− λ

2

√

1 +
4

λ

]

where λ =
koγ

2

k(mk + γ2)
. (74)

In the quantum case, in the linear response regime, Eq. (65) and similar manip-
ulations made above for the N → ∞ limit leads to the following final expression
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for current:

J =
γk2

~
2(TL − TR)

4πkBmT 2

∫ π

0
dq

sin2 q

Λ − Ω cos q
ω2

q cosech2
(

~ωq

2kBT

)

, (75)

where ω2
q = [ko + 2k(1 − cos q)]/m .

While one cannot perform this integral exactly, numerically it is easy to obtain the
integral for given parameter values. It is interesting to examine the temperature
dependence of the conductance J/∆T . In the classical case this is independent
of temperature while one finds that at low temperatures the quantum result is
completely different. For three different cases one finds, in the low temperature
(T << ~(k/m)1/2/kB) regime, the following behaviour:

J ∼











T 3 for k′ = k, ko = 0

∼ T for k′ = 0, ko = 0

∼ e−~ωo/(kBT )

T 1/2 for k′ = 0, ko 6= 0 ,

(76)

where ωo = (ko/m)1/2. In studies trying to understand experimental work on
nanosystems [see sec. (8)] , the temperature dependence of the conductance is
usually derived from the Landauer formula, which corresponds to the Rubin model
of bath. The temperature dependence will then be different from the above results.

3.3.2. Higher dimensions

As shown by Nakazawa [26] the problem of heat conduction in ordered har-
monic lattices in more than one dimension can be reduced to an effectively one-
dimensional problem. We will briefly give the arguments here and also give the
quantum generalization.

Let us consider a d-dimensional hypercubic lattice with lattice sites labeled by the
vector n = {nα}, α = 1, 2...d, where each nα takes values from 1 to Lα. The total
number of lattice sites is thus N = L1L2...Ld. We assume that heat conduction
takes place in the α = d direction. Periodic boundary conditions are imposed
in the remaining d − 1 transverse directions. The Hamiltonian is described by a
scalar displacement Xn and, as in the 1D case, we consider nearest neighbour
harmonic interactions with a spring constant k and harmonic onsite pinning at
all sites with spring constant ko. All boundary particles at nd = 1 and nd = Ld

are additionally pinned by harmonic springs with stiffness k′ and follow Langevin
dynamics corresponding to baths at temperatures TL and TR respectively.

Let us write n = (nt, nd) where nt = (n1, n2...nd−1). Also let q = (q1, q2...qd−1)
with qα = 2πs/Lα where s goes from 1 to Lα. Then defining variables

Xnd
(q) =

1

L
1/2
1 L

1/2
2 ...L

1/2
d−1

∑

nt

Xnt,nd
eiq.nt , (77)

one finds that, for each fixed q, Xnd
(q) (nd = 1, 2...Ld) satisfy Langevin equations

corresponding to the 1D Hamiltonian in Eq. (68) with the onsite spring constant
ko replaced by

λ(q) = ko + 2 k [ d − 1 −
∑

α=1,d−1

cos (qα) ] . (78)

For Ld → ∞, the heat current J(q) for each mode with given q is then simply
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given by Eq. (72) with ko replaced by λq. In the quantum mechanical case we use
Eq. (75). The heat current per bond is then given by:

J =
1

L1L2....Ld−1

∑

q

J(q) . (79)

Note that the result holds for finite lengths in the transverse direction. For infinite
transverse lengths we get J =

∫

...
∫ 2π
0 dqJ(q)/(2π)d−1 .

3.4. Disordered harmonic lattices

From the previous section we see that the heat current in an ordered harmonic
lattice is independent of system size (for large systems) and hence transport is
ballistic. Of course this is expected since there is no mechanism for scattering
of the heat carriers, namely the phonons. Two ways of introducing scattering of
phonons are by introducing disorder in the system, or by including anharmonicity
which would cause phonon-phonon interactions. In this section we consider the
effect of disorder on heat conduction in a harmonic system.

Disorder can be introduced in various ways, for example by making the masses of
the particles random as would be the case in a isotopically disordered solid, or by
making the spring constants random. Here we will discuss the case of mass-disorder
only since the most important features do not seem to vary much with the type of
disorder one is considering. Specifically, we will consider harmonic systems where
the mass of each particle is an independent random variable chosen from some
fixed distribution.

It can be expected that heat conduction in disordered harmonic systems will
be strongly affected by the physics of Anderson localization. In fact the problem
of finding the normal modes of the harmonic lattice can be directly mapped to
that of finding the eigenstates of an electron in a disordered potential (in a tight-
binding model, for example) and so we expect the same kind of physics as in
electron localization. In the electron case the effect of localization is strongest in one
dimensions where it can be proved rigorously that all eigenstates are exponentially
localized, hence the current decays exponentially with system size and the system is
an insulator. This is believed to be true in two dimensions also. In the phonon case
the picture is much the same except that, in the absence of an external potential,
the translational invariance of the problem leads to the fact that low frequency

modes are not localized and are effective in transporting energy. Another important
difference between the electron and phonon problems is that electron transport

is dominated by electrons near the Fermi level while in the case of phonons, all

frequencies participate in transport. These two differences lead to the fact that the
disordered harmonic crystal in one and two dimensions is not a heat insulator,
unlike its electronic counterpart. Here we will present results using the LEGF
approach to determine the system size dependence of the current in one dimensional
mass-disordered chains. We note that basically this same approach (NEGF) is also
popular in the electron case and is widely used in mesoscopic physics. Also earlier
treatments by, for example, Rubin and Greer [28] and by Casher and Lebowitz [29]
of the disordered harmonic chain, can be viewed as special examples of the LEGF
approach. We will also discuss results of simulations for the two-dimensional case.

Our main conclusions here will be that Fourier’s law is not valid in a disordered
harmonic crystal in one and two dimensions, the current decays as a power law
with system size and the exponent α is sensitive to boundary conditions (BC) and
spectral properties of the heat baths.
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3.4.1. One dimensional disordered lattice

We first briefly review earlier work on this problem [2]. The thermal conductivity
of disordered harmonic lattices was first investigated by Allen and Ford [13] who,
using the Kubo formalism, obtained an exact expression for the thermal conduc-
tivity of a finite chain attached to infinite reservoirs. From this expression they
concluded, erroneously as we now know, that the thermal conductivity remains
finite in the limit of infinite system size. Simulations of the disordered lattice con-
nected to white noise reservoirs were carried out by Payton et al. [153]. They
were restricted to small system sizes (N ∼ 400) and also obtained a finite thermal
conductivity.

Possibly the first paper to notice anomalous transport was that by Matsuda
and Ishii (MI) [27]. In an important work on the localization of normal modes
in the disordered harmonic chain, MI showed that all high frequency modes were
exponentially localized. However, for small ω the localization length in an infinite

sample was shown to vary as ω−2, hence normal modes with frequency ω
<∼ ωd

have localization length greater than N , and cannot be considered as localized.
For a harmonic chain of length N , given the average mass m = 〈ml〉, the variance
σ2 = 〈(ml − m)2〉 and interparticle spring constant k, it was shown that

ωd ∼
(

km

Nσ2

)1/2

(80)

They also evaluated expressions for thermal conductivity of a finite disordered
chain connected to two different bath models, namely:
• model(a): white noise baths and
• model(b): baths modeled by semi-infinite ordered harmonic chains (Rubin’s

model of bath).
In the following we will also consider these two models of baths. For model(a)

MI used fixed BC (boundary particles in external potential) and the limit of weak
coupling to baths, while for case (b) they considered free BC (boundary particles
not pinned) and this was treated using the Green-Kubo formalism given by Allen
and Ford [13]. They found α = 1/2 in both cases, a conclusion which we will see
is incorrect. The other two important theoretical papers on heat conduction in
the disordered chain were those by Rubin and Greer [28] who considered model(b)
and of Casher and Lebowitz [29] who used model(a) for baths. A lower bound
[J ] ≥ 1/N1/2 was obtained for the disorder averaged current [J ] in refn. [28] who
also gave numerical evidence for an exponent α = 1/2. This was later proved
rigorously by Verheggen [31]. On the other hand, for model(a), [29] found a rigorous
bound [J ] ≥ 1/N3/2 and simulations by Rich and Visscher [65] with the same
baths supported the corresponding exponent α = −1/2. The work in [32] gave a
unified treatment of the problem of heat conduction in disordered harmonic chains
connected to baths modeled by generalized Langevin equations and showed that
models(a,b) were two special cases. An efficient numerical scheme was proposed
and used to obtain the exponent α and it was established that α = −1/2 for
model(a) (with fixed BC) and α = 1/2 for model(b) (with free BC). It was also
pointed out that in general, α depended on the spectral properties of the baths. We
will briefly describe this formulation [33] here and see how one can understand
the effect of boundary conditions on heat transport in the disordered chain. We
will consider both the white noise [model(a)] and Rubin baths [model(b)]. One of
the main conclusions will be that the difference in exponents obtained for these
two cases arises from use of different boundary conditions, rather than because of
differences in spectral properties of the baths.
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The Hamiltonian of the mass-disordered chain is given by

H =
N

∑

l=1

p2
l

2ml
+

N−1
∑

l=1

1

2
k(xl+1 − xl)

2 +
1

2
k′(x2

1 + x2
N ) . (81)

The random masses {ml} are chosen from, say, a uniform distribution between
(m − ∆) to (m + ∆). The strength of onsite potentials at the boundaries is k′.
The particles at two ends are connected to heat baths, at temperature TL and TR,
and modelled by generalized Langevin equations. The steady state classical heat
current through the chain is given by:

J =
kB(TL − TR)

4π

∫ ∞

−∞
dωTN (ω), (82)

where TN (ω) = 4Γ2(ω)|Ĝ1N (ω)|2, Ĝ(ω) = Ẑ−1/k

and Ẑ = [−ω2M̂ + Φ̂ − Σ̂(ω)]/k ,

where M̂ and Φ̂ are respectively the mass and force matrices corresponding to
Eq. (81). As shown in [32], the non-zero elements of the diagonal matrix Σ̂(ω) for
models(a,b) are Σ11(ω) = ΣNN (ω) = Σ(ω) and given by

Σ(ω) = −iγω model(a)

Σ(ω) = k{1 − mω2/2k − iω(m/k)1/2[1 − mω2/(4k)]
1/2} model(b) , (83)

where γ is the coupling strength with the white noise baths, while in case of Rubin’s
baths it has been assumed that the Rubin bath has spring constant k and equal
masses m. As noted above, TN (ω) is the transmission coefficient of phonons through
the disordered chain. To extract the asymptotic N dependence of the disorder
averaged current [J ] one needs to determine the Green’s function element G1N (ω).
It is convenient to write the matrix elements Z11 = −m1ω

2/k + 1 + k′/k − Σ/k =
−m1ω

2/k+2−Σ′ where Σ′ = Σ/k−k′/k+1 and similarly ZNN = −mNω2/k+2−Σ′.
Following the techniques used in [29, 32] one gets:

|G1N (ω)|2 = k−2|∆N (ω)|−2 with (84)

∆N (ω) = D1,N − Σ′(D2,N + D1,N−1) + Σ′2D2,N−1

where ∆N (ω) is the determinant of Ẑ and the matrix elements Dl,m are given by

the following product of (2 × 2) random matrices T̂l:

D̂ =

(

D1,N −D1,N−1

D2,N −D2,N−1

)

= T̂1T̂2....T̂N (85)

where T̂l =

(

2 − mlω
2/k −1

1 0

)

We note that the information about bath properties and boundary conditions are
now contained entirely in Σ′(ω) while D̂ contains the system properties. It is known
that |Dl,m| ∼ ecNω2

[27], where c is a constant, and so we need to look only at the

low frequency (ω
<∼ 1/N1/2) form of Σ′ . Let us now discuss the various cases.

For model(a) free BC correspond to k′ = 0 and so Σ′ = 1 − iγω/k while for
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Figure 1. Plot of [J ] versus N for free and fixed boundary conditions. Results are given for both
models(a,b) of baths. The two straight lines correspond to the asymptotic expressions given in

Eqs. (87,88) and have slopes −1/2 and −3/2. Parameters used were m = 1, ∆ = 0.5, k = 1, γ = 1,
TL = 2, TR = 1 and ko = 1 (from [33]).

model(b) free boundaries corresponds to k′ = k and this gives, at low frequencies,
Σ′ = 1 − i(m/k)1/2ω. Other choices of k′ correspond to pinned boundary sites
with an onsite potential kox

2/2 where ko = k′ for model(a) and ko = k′ − k for
model(b). The main difference, from the unpinned case, is that now Re[Σ′] 6= 1.
The arguments of [32] then immediately give α = 1/2 for free BC and α = −1/2 for
fixed BC for both bath models. In fact for the choice of parameters γ = (mk)1/2,
the imaginary part of Σ′ is the same for both baths and hence we expect, for large
system sizes, the actual values of the current to be the same for both bath models.
This can be seen in Fig. (1) where the system size dependence of the current for
the various cases is shown. The current was evaluated numerically using Eq. (82)
and averaging over many realizations. Note that for free BC, the exponent α = 1/2
settles to its asymptotic value at relatively small values (N ∼ 103) while, with
pinning, one needs to examine much longer chains (N ∼ 105).

These results clearly show that, for both models(a,b) of baths, the exponent α is
the same and is controlled by the presence or absence of pinning at the boundaries.
The reason that both models give the same exponents is that the imaginary part
of their self energies, given by Eq. (83), have the same small ω dependence. If the
imaginary part of the self energy, i.e. Γ(ω), has a different ω dependence, then
one can get different exponents for the same boundary conditions [32].

For the present case, some more specific predictions can also be obtained. As

mentioned before only modes ω
<∼ ωd are involved in conduction. An observation

made in [106] was that in this low frequency regime one can approximate [TN (ω)]
by the transmission coefficient of the ordered chain T O

N (ω). One can then write:

[J ] ∼ (TL − TR)

∫ ωd

0
T O

N (ω)dω . (86)

By looking at the N → ∞ limit results for the ordered lattice, the following results
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are obtained for the two different boundary conditions [33]:

[J ]Fr = A c
kB(TL − TR)

π

( km

Nσ2

)1/2
(87)

[J ]F i = A′ c′
kB(TL − TR)

π

( km

Nσ2

)3/2
, (88)

where c = 2γ(mk)1/2/(γ2 + mk), 1 for model(a), model(b) respectively. For fixed
boundaries we have c′ = γ(mk)1/2/ko

2, mk/ko
2 for model(a), model(b) respec-

tively. A,A′ are constant numbers, taken to be fitting parameters. For model(b)
this agrees with an exact expression for [J ]Fr due to Papanicolau (apart from a fac-
tor of 2π) and with A = π3/2

∫ ∞
0 dt [t sinh(πt)]/[(t2 + 1/4)1/2 cosh2(πt)] ≈ 1.08417

(see [[31]]).
In the case where all sites of the chain are pinned (i.e. in the presence of a

substrate potential) it was been noted in [32, 34] that the current decays exponen-
tially with N and this was proved in [156]. Another interesting result obtained in
[33] is the case with a finite number n of pinned sites. It was shown, using heuristic
arguments and numerics, that α = 3/2 − n for 2 ≤ n << N .

A question that has been discussed in the literature is that of uniqueness of
the steady state. This depends on the choice of heat baths as well as the system
studied. For models(a,b) of baths, the uniqueness of the steady state of a chain
has been discussed in [28] and [29]. For baths consisting of harmonic oscillators
one obvious necessary condition for uniqueness is that the bath spectrum should
include the modes of the system (see for example [35]).

The quantum mechanical disordered chain has been discussed in [42] where it
was argued that the asymptotic system size dependence of the current should
remain unchanged from the classical case (unlike the low temperature behaviour
for ordered case). The temperature profile in a quantum mechanical disordered
chain and quantum aspects such as entanglement have been numerically studied
in [36].

3.4.2. Two dimensional disordered harmonic lattice

So far there has not been much progress in understanding heat conduction in
higher dimensional disordered lattices. The LEGF theory is still applicable and
provides a general expression for the steady state current, Eq. (64), in terms of the
phonon Green’s function of the harmonic lattice. However in one dimension one
could make progress by writing the transmission coefficient in terms of a product
of random matrices as in Eqs. (84,85). This enables one to use some known math-
ematical theorems from which some analytic results could be obtained. Also this
representation makes it possible to evaluate the current by very efficient numerical
procedures. However in two and higher dimensions things become more compli-
cated and it has not been possible to make much analytic progress. This state of
things is also reflected in the fact that while in one dimension it can be proved
exactly that all finite frequency states are localized, there is no such proof in two
dimensions, although this is the general belief. As far as phonon localization is con-
cerned a renormalization group study by John et al. [58] found that things are very
similar to electronic localization. The important difference is again at low frequen-
cies where one gets extended states. Their study indicates the following: in 1D, all
modes with ω > 1/L1/2 are localized; in 2D, all modes with ω > [log(L)]−1/2 are
localized; in 3D, there is a finite band of frequencies of non-localized states. How-
ever this study was unable to extract the system size dependence of heat current
in a disordered lattice in any dimension.
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Figure 2. Temperature at all the sites of a 8 × 8 fully disordered lattice, from simulations and from the
exact solution. Inset shows the disorder-averaged temperature profiles (averaged over the transverse

direction) for different system sizes and seems to approach a linear form (from [63]).

There have been a few simulation studies on the 2D disordered harmonic lat-
tice. Lei Yang [59] considered a lattice with bond-missing defects and looked at
the system size dependence of conductivity at various defect densities. The first
observation that was made was that disorder gives rise to a temperature gradient
across the system, unlike the flat profile for the ordered case. Also it was found
that at small densities, the conductivity diverged logarithmically, while at larger
densities, a finite heat conductivity was obtained. However this conclusion is prob-
ably incorrect since the paper uses Nose-Hoover thermostats and it is known that,
for harmonic systems, these have equilibration problems [37, 38, 60, 61, 62, 155].

The most detailed study of the 2D disordered harmonic lattice is by Lee and
Dhar [63]. They considered stochastic heat baths and looked at the case of mass
disorder. In their model, the masses of exactly half the particles on randomly cho-
sen sites of a L×L square lattice were set to one and the remaining to two. To see
the effect of spectral properties of baths, two kinds of baths were studied: one with
uncorrelated Gaussian noise and the other with exponentially correlated Gaussian
noise. Simulations in disordered systems have to be done with care since one can
have slow equilibration. In [63] the authors first checked their simulation results
by comparing them with results obtained from an exact numerical solution of the
general RLL matrix equations Eq. (45) for a 8 × 8 lattice. The comparision, for
the temperature at various lattice points, obtained by the two methods is shown
in Fig. (2) and one can see excellent agreement between the exact results and
simulation. Also shown in the inset are the disorder-averaged temperature profiles
across the system for different sizes. One can see approach to a linear profile. To
find the system size dependence of the current, lattices with sizes upto L = 256
were studied. In Fig. (3) we show the data for the disorder averaged current for
different system sizes and for the two different bath models. From this data the
exponents α ≈ 0.41 for white noise baths and α ≈ 0.49 for the correlated bath
was obtained. A special case of correlated disorder, first discussed in [30], was also
studied. Here the lattice was disordered in the conducting direction, but ordered in
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baths. The case of correlated disorder with white noise is also shown. For the full disorder cases, the solid
lines are fits to the last three points and have slopes −0.59 and −0.51. For the case of correlated disorder,

the slope from exact numerics (and also simulations) is compared to −1.5 which is what one expects
analytically (from [63]).

the transverse direction. Using the same methods as discussed in sec. (3.3.2), one
can transform this into an effectively 1D problem and then use the numerical tech-
niques for evaluating the heat current as in the 1D case. In [63], the current was
evaluated numerically (upto L = 512) as well as from simulations (upto L = 128
and with white noise baths). Excellent agreement between the two confirmed the
accuracy of the simulations. From the transformation to an effective 1D problem
it is possible to argue for an exponent α = −1/2 for the correlated disorder case
and this could be already verified at the system size L = 512. This is somewhat
surprising considering the fact that in the 1D case, one has to go to sizes ∼ 105 to
see this exponent [see Fig. (1)]. This result gives some confidence that the results
obtained, for the fully disordered cases, are also close to the asymptotic values. An
interesting observation in [63] is that equilibration times for local temperatures is
typically much larger than that for the current. This is expected since the tem-
perature gets contributions from all modes including the localized ones which are
weakly coupled to the reservoirs. On the other hand the current is mainly carried
by low frequency extended modes. This point was also noted for the disordered 1D
chain in [34].

3.5. Harmonic lattices with self-consistent reservoirs

As another application of the LEGF formalism we consider the problem of heat
transport in a harmonic chain with each site connected to self-consistent heat
reservoirs. The classical version of this model was first studied by Bolsteri, Rich and
Visscher [64, 65], who introduced the self-consistent reservoirs as a simple scattering
mechanism for phonons which might ensure local equilibration and the validity of
Fourier’s law. The extra reservoirs connected to the system can roughly be thought
of as other degrees of freedom with which the lattice interacts. It is interesting
to note that the self-consistent reservoirs are very similar to the Buttiker probes
[68, 69] which have been used to model inelastic scattering and phase decoherence
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in electron transport. In the electron case they lead to Ohm’s law being satisfied
just as in the harmonic chain the introduction of self-consistent reservoirs leads to
Fourier’s law being satisfied. In fact it has recently been shown how one can obtain
both Ohm’s law and Fourier’s law in an electron model by using self-consistent
reservoirs represented microscopically by noninteracting electron baths [70].

The ordered harmonic lattice with self-consistent reservoirs was solved exactly
by Bonetto et al [67], in arbitrary dimensions, who proved local equilibration and
validity of Fourier’s law, and obtained an expression for the thermal conductivity
of the system. They also showed that the temperature profile in the wire was linear.
The quantum version of the problem was also studied by Visscher and Rich [66]
who analyzed the limiting case of weak coupling to the self-consistent reservoirs.
We will here follow the LEGF approach as given in [44] to obtain results in the
quantum-mechanical case. The classical results of Bonetto et al are obtained as the
high temperature limit while the quantum mechanical results of Vischer and Rich
are obtained in the weak coupling limit. We will consider only the one-dimensional
case. A generalization to higher dimensions can be easily achieved, as in Sec. (3.3).

Consider the quantum-mechanical Hamiltonian:

H =

N
∑

l=1

[
p2

l

2m
+

ω2
0x

2
l

2
] +

N+1
∑

l=1

mω2
c

2
(xl − xl−1)

2 , (89)

where we have chosen the boundary conditions x0 = xN+1 = 0. All the particles are
connected to heat reservoirs which are taken to be Ohmic. The coupling strength
to the reservoirs is controlled by the dissipation constant γ. The temperatures of
the first and last reservoirs are fixed and taken to be T1 = TL and TN = TR. For
other particles, i.e , l = 2, 3...(N − 1), the temperature of the attached reservoir
Tl is fixed self-consistently in such a way that the net current flowing into any of
these reservoirs vanishes. The Langevin equations of motion for the particles on
the wire are:

mẍl = −mω2
c (2xl − xl−1 − xl+1) − mω2

0xl − γẋl + ηl l = 1, 2...N , (90)

where the noise-noise correlation, from Eq. (62) and with Γ(ω) = γω for Ohmic
baths, is given by:

1

2
〈 ηl(ω)ηm(ω′) + ηl(ω

′)ηm(ω) 〉 =
γ~ω

2π
coth(

~ω

2kBTl
) δ(ω + ω′) δlm . (91)

From the equations of motion it is clear that the lth particle is connected to a bath
with a self energy matrix Σ̂+

l (ω) whose only non vanishing element is (Σ+
l )ll = iγω.

Generalizing Eq. (64) to the case of multiple baths, one finds that the heat current
from the lth reservoir into the wire is given by:

Jl =
N

∑

m=1

∫ ∞

−∞
dω Tlm

~ω

4π
[f(ω, Tl) − f(ω, Tm)] , (92)

where Tlm = 4 Tr[ Ĝ+(ω) Γ̂l(ω)Ĝ−(ω) Γ̂m(ω)]

and Ĝ+ = [ − ω2 M̂ + Φ̂ −
∑

l

Σ̂+
l (ω) ]−1 , Γ̂l = Im[Σ̂+

l ] .

Here Tlm is the transmission coefficient of phonons from the lth to the mth reservoir.



November 19, 2008 19:56 Advances in Physics reva

34

Using the form of Γ̂l one gets, in the linear response regime:

Jl = γ2

∫ ∞

−∞
dω

~ω3

π

∂f(ω, T )

∂T

N
∑

m=1

| [Ĝ+(ω)]lm |2 (Tl − Tm) . (93)

For a long wire (N >> 1), for points far from the boundaries of the wire (l = yN
where y = O(1), 1 − y = O(1)), one can explicitly evaluate the Green’s function
and show that:

G+
lm =

e−α|l−m|

2mω2
c sinhα

, (94)

where eα = z/2 ± [(z/2)2 − 1]1/2 with z = 2 + ω2
0/ω

2
c − ω2/ω2

c − iγω/(mωc)
2, and

we choose the root α such that Re[α] > 0. Using this form of G+
lm and assuming a

linear temperature profile given by

Tl = TL +
l − 1

N − 1
(TR − TL) , (95)

one can see at once that, for any point l in the bulk of the wire, the zero-current
condition Jl = 0 is satisfied since

∑∞
m=−∞(l−m)|e−α|l−m||2 = 0. For points which

are within distance O(1) from the boundaries the temperature profile deviates from
the linear form. Knowing the form of the temperature profile Tl and the form of
G+

lm, one can proceed to find the net current in the wire. It is easiest to evaluate the
following quantity giving current Jl,l+1 on the bond connecting sites l and (l + 1):

Jl, l+1 = mω2
c 〈xlẋl+1〉 = −mω2

cγ

π

∫ ∞

−∞
dω ω

(

~ω

2kBT

)2

cosech2(
~ω

2kBT
)

×
N

∑

m=1

kBTm Im{[Ĝ+(ω)]lm[Ĝ+(ω)]∗l+1 m} .

Using Eqs. (94,95) one finally gets the following expression for the thermal con-
ductivity κ = JN/∆T (obtained in the large N limit):

κ =
γkB

16mω2
cπi

∫ ∞

−∞
dω

ω

sinh2 αR

(

~ω

2kBT

)2

cosech2(
~ω

2kBT
)

(

1

sinh α
− 1

sinh α∗

)

, (96)

where αR(ω) = Re[α], αI(ω) = Im[α]. In the high temperature limit
(~ω/2kBT )2cosech2(~ω/2kBT ) → 1, this gives, after a change of variables from
ω to αI , the following result for the classical thermal conductivity:

κcl =
2kBmω2

c (2 + ν2)

γπ

∫ π/2

0
dαI

sin2 (αI)

(2 + ν2)2 − 4 cos2 (αI)

=
kBmω2

c

γ (2 + ν2 + [ν2(4 + ν2)]1/2)
, (97)

where ν = ω0/ωc. This agrees with the result obtained in refn. [67]. Another inter-
esting limiting case is the case of weak coupling to the reservoirs (γ → 0). In this
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case Eq. (96) gives:

κwc =

(

~ω2
c

kBT

)2
mkB

4γπ

∫ π

0
dαI sin2 αI cosech2(

~ωα

2kBT
) , (98)

where ω2
α = ω2

0 + 2ω2
c [1 − cos(αI)] .

This agrees with the result obtained in [66]. In the low temperature limit, Eq. (98)
gives κwc ∼ e−~ω0/kBT /T 1/2 for ω0 6= 0 and κwc ∼ T for ω0 = 0. As noted in [66]
the expression for thermal conductivity (in the weak scattering limit) is consistent
with a simple relaxation-time form for the thermal conductivity. The temperature
dependence of κwc then simply follows the temperature dependence of the specific
heat of the 1D chain.

In the general case where the coupling constant has a finite value, the low-
temperature behaviour again depends on whether or not there is an onsite poten-
tial. The form of the low-temperature behaviour is very different from the case of
weak coupling. For small T it is easy to pull out the temperature dependence of
the integral in Eq. (96) and one finds that κ ∼ T 3 for ν 6= 0 and κ ∼ T 1/2 for
ν = 0.

A nice extension of the above problem has been done by Roy [71] who considered
the case where the coupling of the bulk lattice points to reservoirs (γ′) was taken to
be different from that of the boundary points to the end reservoirs (γ). The quan-
tum mechanical case with Ohmic reservoirs and the linear response regime were
studied. For small values of γ′ the transition from ballistic to diffusive transport
could be seen with increasing system size. It was shown that the current, for any
system size, could be written in the form

J =
κ(T )∆T

N + ℓ
, (99)

where ℓ was an effective mean free path for phonons which depended on γ′. Thus for
N << ℓ one gets ballistic transport while for N >> ℓ one gets diffusive transport.
In Fig. (4) the temperature profiles for different system sizes is shown and one can
see the transition, from a relatively flat (in the ballistic regime), to a linear profile
(in the diffusive regime).

4. Interacting systems in one dimension

In the case of systems with interactions there are few analytic results, for one-
dimensional interacting particle systems, and these are all based on use of the
Green-Kubo formula. All these theories aim at calculating the equilibrium current-
current correlation function C(t) = 〈J (0)J (t)〉. Mainly there are three different
theoretical approaches: renormalization group theory of hydrodynamic equations,
mode coupling theory and the Peierls-Boltzmann kinetic theory approach. We will
discuss these in Sec. (4.1). We will also discuss some exact results, which have been
obtained for certain models for which the dynamics is not completely deterministic
but includes some stochastic component. All the analytic approaches predict that
momentum conserving systems in 1D exhibit anomalous transport with conductiv-
ity diverging as a power law κ ∼ Nα. However there is disagreement on the precise
value of α and the number of universality classes. We will present the results of
simulations for various momentum conserving models in Sec. (4.2.1). In general
one finds anomalous transport with κ ∼ Nα and again there is disagreement in



November 19, 2008 19:56 Advances in Physics reva

36

0 0.2 0.4 0.6 0.8 1
l/N

1

1.5

2

T
em

pe
ra

tu
re

N = 8
N = 16
N = 32
N = 64
N = 128
N = 256

Figure 4. Plot of the temperature profile {Tl} as a function of scaled length l/N for different N with
γ = 1.0 and γ′ = 0.1. Here mean free path ℓ ∼ 30 (from [71]).

the value of α obtained in simulations by different groups. However, the evidence
seems strong that there is a single universality class with α = 1/3.

For momentum non-conserving interacting systems the prediction of theory is
that Fourier’s law is valid. Simulations also show [Sec. (4.2.2)] that the presence
of interactions (nonintegrable) and an external substrate potential are sufficient
conditions to give rise to a finite thermal conductivity. Note that momentum non-
conserving models are a bit unphysical in the context of heat transport by molecular
motion except when one is considering wires and thin films attached to substrates.
In the case of electron transport the background ionic lattice naturally provides
an external potential for the electron and so momentum non-conservation makes
physical sense. We will also briefly discuss a class of rotor models that have been
studied in simulations which show Fourier behaviour inspite of absence of an ex-
ternal potential [135, 136]. These models are somewhat special, in the sense that it
is more natural to think of the phase space degrees of freedom as local angle vari-
ables and thus these models should probably be thought of as angular-momentum
conserving rather than linear-momentum conserving models.

4.1. Analytic results

4.1.1. Hydrodynamic equations and renormalization group theory

This approach was first proposed by Narayan and Ramaswamy [72]. Here one
first notes that a one dimensional (1D) system of interacting particles will, at
sufficiently large length scales, behave like a fluid. Suppose that the only conserved
quantities in the system are the total number of particles, the total momentum and
total energy. One can then write hydrodynamic equations to describe the variation,
in time and space, of the density fields corresponding to these conserved quantities.
Namely we have ρ(x, t), g(x, t) = ρ(x, t)v(x, t), and ǫ(x, t) for number, momentum
and energy densities respectively and where v(x, t) is the local average velocity
field. This basically gives the Navier-Stokes equations for a 1D fluid. After adding
noise terms to account for thermal fluctuations in the system the equations are
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given by [72, 73]:

∂tρ + ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv2) = −∂xp + ζ∂2
xv + ηv,

∂tǫ + ∂x[(ǫ + p)v] = κ∂2
xT + ζ[(∂xv)2 + v∂2

xv] + ηǫ , (100)

where the noise terms satisfy 〈ηv(x1, t1)ηv(x
′
1, t

′
1)〉 ∝ −kBTδ(x1 − x′

1)δ(t1 − t′1)
and similarly for ηǫ. The local temperature T (x, t) and pressure p(x, t) are im-
plicit functions of ρ and ǫ. There are two transport coefficients, the viscosity ζ
and the thermal conductivity κ. The above equations can be solved in the linear
approximation and this gives C(t) ∼ t−1/2 which in turn implies a divergence of
the conductivity. However this divergence also means that the linear approxima-
tion is not good and one needs to take into account the nonlinear terms in the
Navier-Stokes equations in order to get the correct long time behaviour of various
correlation functions. In general this would require a RG analysis but it is argued
in [72] that the exponents can be obtained from symmetry considerations. Using
the Galilean invariance of the system and the fact that equal time correlations obey
equilibrium statistical mechanics they finally obtain:

C(t) ∼ t−2/3 . (101)

For a finite size system, using the arguments in Sec. (2.1), one puts a upper cut-off
tN ∼ N in the Green-Kubo integral and this then gives κ ∼ N1/3. Thus α = 1/3.
Note that in this treatment, the details of the form of the Hamiltonian are unim-
portant. The only requirements are the presence of the three conservation laws and
also, the interactions should be such that the nonequilibrium state satisfies local
thermal equilibrium and should be describable by coarse grained hydrodynamic
equations. We note that the possibility of breakdown of hydrodynamic equations
in a one-dimensional fluid system has recently been pointed out [74].

An interesting question that arises in the context of the hydrodynamic theory
is the behaviour of the other transport coefficient in the equations, i.e. , the bulk
viscosity ζ. This has not been investigated much except in the work in refn. [75]
who, somewhat surprisingly, find that this transport coefficient is finite.

4.1.2. Mode coupling theory

This approach was first applied in the context of heat conduction by Lepri,
Livi and Politi [82] and has subsequently been used by several other authors [82,
83, 84, 85, 86, 87, 88, 89]. We will here outline the main steps as described in
refn. [87]. Mode coupling theory (MCT) again begins with the realization that
the divergence of conductivity is a result of the long time tails of the current-
current correlation function which in turn can be attributed to the slow relaxation
of spontaneous fluctuations of long-wavelength modes in low dimensional systems.
For a 1D oscillator chain with periodic boundary conditions one considers the
normal mode coordinates of the harmonic lattice which are given by:

Q(q) =
1√
N

N
∑

n=1

xn exp(−iqn) , (102)

where the wavenumber q = 2πk/N with k = −N/2 + 1,−N/2 + 2, ...N/2 (for even
N). The evolution of a fluctuation at wavenumber q excited at t = 0 is described
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by the following correlation function:

G(q, t) =
〈Q∗(q, t)Q(q, 0)〉

〈|Q(q)|2 〉 . (103)

The long time decay rate of this quantity at small q is the main object of interest
and MCT is one approach to obtain this. Basically one writes a set of approximate
equations for G(q, t) and this is then solved self-consistently. Formally one can in
fact write an exact equation for the time evolution of G(q, t). Using the Mori-
Zwanzig projection methods [90] one gets the following equation:

G̈(q, t) + ε

∫ t

0
Γ(q, t − s)Ġ(q, s) ds + ω2(q)G(q, t) = 0 , (104)

where the memory kernel Γ(q, t) is proportional to 〈F(q, t)F(q, 0)〉, with F(q) being
the nonlinear part of the fluctuating force between particles. The coupling constant
ǫ and the frequency ω(q) are temperature dependent input parameters which have
to be computed independently. Equations (104) must be solved with the initial
conditions G(q, 0) = 1 and Ġ(q, 0) = 0. The mode-coupling approach proceeds by
replacing the exact memory function Γ(q, t) with an approximate one, where higher
order correlators are written in terms of G(q, t). Consider now the FPU interaction
potential U(x) = k2x

2/2 + k3x
3/3 + k4x

4/4. In the generic case, in which k3 is
different from zero, the lowest-order mode coupling approximation of the memory
kernel gives:

Γ(q, t) = ω2(q)
2π

N

∑

p+p′−q=0,±π

G(p, t)G(p′, t) . (105)

On the other hand for the case k3 = 0, k4 6= 0, one gets:

Γ(q, t) = ω2(q)
(2π

N

)2 ∑

p+p′+p′′−q=0,±π

G(p, t)G(p′, t)G(p′′, t) . (106)

Here p , p′, p′′ range over the whole Brillouin zone (−π, π). Using either of Eq.(105)
or Eq. (106) in Eq. (104) gives a closed system of nonlinear integro-differential
equations. The coupling constant ε and the frequency ω(q) are taken as parameters
which can be obtained from the harmonic approximation. The solution of these
equations again involves making a number of other approximations and the final
result one obtains for G(q, t) at small values of q is the following form:

G(q, t) = A(q, t)eiω(q)t + c.c

where A(q, t) =

{

g(ε1/2tq3/2) for k3 6= 0

g(ε1/2tq2) for k3 = 0, k4 6= 0.
(107)

Finally one can relate the current-current correlation function C(t) to the correlator
G(q, t). Again making the same approximation of retaining only the lowest order
correlation functions one gets:

C(t) ∝
∑

q

G2(q, t) , (108)
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and plugging into this the result from Eq. (107), one finally obtains:

C(t) ∼
{

t−2/3 for k3 6= 0

t−1/2 for k3 = 0, k4 6= 0 .
(109)

Inserting this into the Green-Kubo formula (with a cut-off proportional to N) then
gives us κ ∼ N1/3 for the odd potential and κ ∼ N1/2 for the even potential.

Another recent MCT study is by Wang and Li [88, 89] who look at the effect of
transverse degrees of freedom on the value of α. They consider a one dimensional
chain where the particle positions are now two-dimensional vectors instead of being
scalar variables. The Hamiltonian they consider corresponds to a polymer with
bending rigidity and is given by:

H =
∑

l

p2
l

2m
+

Kr

2
(|rl+1 − rl| − a)2 + Kφ cos(φl) , (110)

where {rl,pl}, for l = 1, 2...N denote two dimensional vectors and cos(φl) =
−nl−1.nl with nl = ∆rl/|∆rl| and ∆rl = rl+1 − rl. Based on their MCT anal-
ysis they suggest that the generic effect of including transverse degrees is to give
α = 1/3, while for the purely longitudinal model one has α = 2/5.

For momentum non-conserving systems MCT predicts a finite conductivity.

4.1.3. Kinetic and Peierls-Boltzmann theory

In the kinetic theory picture, one thinks of a gas of weakly interacting particles,
which are the heat carriers. These heat carriers could be molcules in a gas, elec-
trons in a metal or phonons in a crystal. Using the idea that the heat carriers are
experiencing random collisions, and hence moving diffusively, one can do a simple
minded calculation. This gives us a simple expression for the thermal conductivity,
namely κ ∼ cvℓ, where c is the specific heat capacity per unit volume, v the typical
particle velocity and ℓ the mean free path of the particles between collisions.

The Boltzmann equation approach gives a more systematic derivation of the re-
sults of kinetic theory, and was first developed for the case of molecular gases. In
this theory, one writes an equation of motion for the distribution function f(x,p, t),
where f(x,p, t)d3xd3p (in 3D) gives the number of particles in the volume d3xd3p.
The presence of collisions makes the Boltzmann equation equation nonlinear, and
then one has to solve the equation under various approximations. The final result is
quite often in the form of the kinetic theory answer, with an explicit expression for
the mean free path ℓ. For phonons, the Boltzmann theory of conductivity was de-
veloped by Peierls [91]. He wrote the Boltzmann transport equation for the phonon
gas and pointed out the importance of lattice momentum non-conserving processes
(Umpklapp processes) in giving rise to finite conductivity. Solving the Boltzmann
equation in the relaxation time approximation gives a simple kinetic theory like
expression for the thermal conductivity, κ ∼

∫

dqcqv2
qτq, where τq is the time

between collisions, and q refers to different phonon modes of the crystal. The relax-
ation time τq can get contributions from various sources, such as phonon-phonon
interactions and impurity scattering, and its calculation from first principles is one
of the main tasks. In three dimensional solids, the Peierls-Boltzmann theory is
well-developed [92, 93] and probably quite accurate. One worry here is that the
meaning of the distribution f(x,q, t) for phonons is not really clear, since phonons
are extended objects. The recent work of Spohn [94] tries to give a rigorous basis
for the phonon Boltzmann equation for a crystal with a weakly anharmonic onsite
potential. We note that, as far as making definite predictions (starting from a given
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Hamiltonian) on the actual conductivity of a system and properties such as the
temperature dependence of the conductivity, the kinetic theory approach probably
has more chance of success than the other two approaches described before.

Let us now consider the application of the kinetic theory approach to the one
dimensional case. If we look at the result κ ∼

∫

dqcqv
2
qτq, we see that a divergence

with system size can arise because the relaxation time τq, and correspondingly the
mean free path ℓq = vqτq, becomes large at small q. Let us assume that cq, vq are
constants, and that τq has the power-law dependence τq ∼ q−a. Then all modes

with q < qm ∼ L−1/a travel ballistically and this immediately gives κ ∼ L1−1/a,
and for a > 1 one would get a diverging conductivity.

In a way the kinetic approach is similar to the MCT method. Here too, one tries
to calculate the rate of decay of long-wavelength fluctuations at small q, but now
using a different approximation scheme. The current-current correlation function is
then related to this decay constant. The Kinetic theory approach for the FPU chain
was first considered by Pereverzev [95] who studied the model with k3 = 0 and a
small non-zero value for k4. It was noted that the approximate time evolution of a
fluctuation in the average energy ǫq of a mode with wavenumber q is given by the
homogeneous classical linearized Peierls equation. This equation is then brought
to the following form, corresponding to the relaxation time approximation:

d〈ǫq(t)〉
dt

= − 1

τq
(〈ǫq〉 − kBT ) , (111)

where one has an explicit form for τq. For small q, making some more approxima-

tions enables one to evaluate τq and one finds τq ∼ q−5/3. Finally using the same
set of approximations and in the limit N → ∞ one can show that:

C(t) =
2k2

BT 2

π

∫ π

0
dqe−t/τq v2

q , (112)

where vq is the phonon group velocity. At small q the phonon velocity vq ∼ const
and the above equation gives:

C(t) ∼ t−3/5 . (113)

This then implies κ ∼ N2/5. In fact, the arguments given at the beginning of this
paragraph directly give this (putting a = 5/3), and one does not need to find C(t).

The kinetic theory approach has been made more rigorous by the work of Lukkari-
nen and Spohn [96]. They also work with the linearized collision operator and make
the relaxation time approximation, and for the quartic FPU chain they confirm the
result in [95], namely C(t) ∼ t−3/5. However they point out the possibility that
the kinetic theory approach may not be able to predict the correct long-time decay
of the correlation function. Another paper using the linearized Peierls-Boltzmann
equation for the quartic Hamiltonian also finds κ ∼ N2/5 [97]. Finally a quantum
calculation of the phonon relaxation rate at small q has been carried out in [98, 99].
They studied both the cubic and quartic FPU chain and obtained relaxation times
τq ∼ q−3/2, q−5/3 for the two cases respectively.

For the case of momentum non-conserving systems, Lefevere and Schenkel [130]
and later Aoki et al. [131] have used the kinetic theory approach for the case of
weak anharmonicity and obtained a finite conductivity.
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4.1.4. Exactly solvable model

A harmonic chain with a energy conserving stochastic dynamics was considered
by Kipnis et al. [76] who could prove exactly that the model satisfied Fourier’s law.
The dynamics was momentum non-conserving and completely stochastic so it is not
surprising that Fourier’s law was obtained. Models with self-consistent reservoirs
can also be viewed as stochastic models (but with Hamiltonian components in the
dynamics) where energy is conserved on average, while momentum is not and again
Fourier’s law is satisfied.

Recently a similar stochastic model, but in which total momentum conservation
was also enforced, was introduced by Basile et al. [77, 78]. In their lattice model
the dynamics consisted of two parts. Apart from a deterministic Hamiltonian dy-
namics the system was subjected to a stochastic dynamics which conserved both
total energy and momentum exactly. The stochastic dynamics consisted of a ran-
dom exchange of momentum between three neighboring particles (in 1D) while
conserving both energy and momentum. Thus a triplet of particles with momenta
(pl−1, pl, pl+1) is chosen and this set performs a diffusive motion on the curve given
by:

pl−1 + pl + pl+1 = const.

p2
l−1

2m
+

p2
l

2m
+

p2
l+1

2m
= const.

The Hamiltonian of the system was taken to be that of a harmonic system. A
Fokker-Planck equation for the probability density P (x,p, t) could be written,
which in 1D is given by:

∂P

∂t
= (L̂H + γŜ) P , (114)

where L̂H is the usual Liouville operator for the given Hamiltonian and Ŝ, the
generator of the stochastic perturbation of strength γ, has the form

Ŝ =
1

6

∑

l

Ŷ 2
l ,

with Ŷl = (pl − pl+1)∂pl−1
+ (pl+1 − pl−1)∂pl

+ (pl−1 − pl)∂pl+1
.

The authors were able to compute exactly an explicit form for the current-current
correlation function C(t), for system size N → ∞, and from this they found the
following asymptotic long-time behaviour:

C(t) ∼
{

t−1/2 for no pinning

t−3/2 with pinning.
(115)

Plugging this into the Green-Kubo formula one gets α = 1/2 in the unpinned case,
while for the pinned case a finite conductivity is obtained. One can argue that the
stochastic dynamics in a way mimics anharmonicity and the problem considered
corresponds to an even interaction potential. The latest prediction from MCT also
gives α = 1/2, which agrees with the result from this model. However all simulation
results of momentum conserving interacting Hamiltonian models give exponents
quite far from this value (between 0.3− 0.4). The exponent α = 1/2 then comes as
quite a surprise. One possibility is that the choice of a harmonic Hamiltonian makes
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the model special, and thus solvable, and at the same time makes it a non-generic
case.

Some simulations with a dynamics which is roughly similar to the above stochas-
tic dynamics were recently done with FPU type anharmonic terms included in the
Hamiltonian [79]. These are equilibrium simulations using the Green-Kubo for-
mula. The authors have argued that their results support the two-universality
class scenario. It will be interesting to understand in more details the role of the
Hamiltonian part of the dynamics in determining the exponent α in this model.

More recently, a similar one-dimensional stochastic model with random two par-
ticle momentum exchanges has been numerically [80] and analytically [81] studied,
for the nonequilibrium case with Langevin heat baths attached at the two ends.
Apart from confirming the exponent α = 1/2, these studies have also looked at
the temperature profiles. An analytic expression for the temperature profile was
obtained and it was noted that the profiles were very similar to those obtained for
FPU chains.

4.2. Results from simulation

4.2.1. Momentum conserving models

Gas of elastically colliding particles of two masses: One of the simplest
model of interacting particles that one can consider is a gas of elastically collid-
ing point particles where the boundary particles interact with thermal reservoirs,
usually modeled by Maxwell boundary conditions. If all the particles have equal
masses then this model, without reservoirs, is the so-called Jepsen model [100]. As
far as heat conduction properties are concerned the model is somewhat trivial. This
is because at each collision the particles simply exchange momentum and so the
net heat transfer can be calculated by considering a single particle that is bouncing
between the hot and a cold walls. One finds a system- size independent heat cur-

rent J = k
3/2
B (2m/π)1/2ρ(T 2

LTR−T 2
RTL)/(T

1/2
L TR +T

1/2
R TL), where ρ is the particle

density, and a flat temperature profile given by T = (TLTR)1/2. Thus this model is
somewhat like the ordered harmonic chain. However the model becomes interesting
and non-trivial if one considers a dimerized model where alternate particles have
different masses say m1 and m2. In this case one finds a current which decays with
system size, and a slowly varying temperature profile.

The diatomic hard particle gas model was first studied by Casati [101] but the
numerical results were not sufficient to draw any definite conclusions. This model,
along with the diatomic Toda lattice, were later studied by Hatano [102]. Us-
ing nonequilibrium simulations and system sizes upto N = 5000, an exponent
α ≈ 0.35 was obtained for both these models. The current-current correlation
function was also evaluated for a periodic closed system and it was found that
C(t) ∼ N−0.65 consistent with the nonequilibrium results. Subsequently, a num-
ber of further studies were made using both nonequilibrium simulations, and also
the Kubo formalism and using much larger system sizes. Unfortunately there is
not much agreement on the numerically obtained value of the exponent. The
various reported values include: Garrido et al. (α = 0 implying Fourier behav-
ior) [103, 104, 105], Dhar (α ≈ 0.2) [106], Grassberger et al. (α ≈ 0.33) [108],
Savin et al. (α ≈ 0.2) [107] and Casati et al. (α ≈ 0.25) [109]. However, based on
the theoretical predictions, there seems reason to believe that the value obtained
by Grassberger et al. is the correct one and here we will discuss their results in
some detail. We also mention here the work of Cipriani et al. [110] who performed
zero-temperature studies on diffusion of localized pulses and using a Levy walk
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Figure 5. (a): Log-log plot of J/(T2 − T1) versus N for four values of the mass ratio A. (b): Part of the
same data divided by Nα with α = 0.32, so the y-axis is much expanded (from [108]).

interpretation concluded that α = 0.333 ± 0.004.
We now present some of the results obtained by Grassberger et al. [108]. Apart

from looking at much larger system sizes (upto N = 16384), they made the obser-
vation that the asymptotic behaviour is easier to observe at some optimal value of
the mass ratio A = m2/m1. It was argued that A = 1 and A = ∞ were special
integrable limits where one would clearly get ballistic and non-typical behavior.
If the value of A was too close to 1 or too large then one would have to go to
very large system sizes to see the correct asymptotic form. However by choosing
an appropriate value of A, one can reach asymptotic behaviour much faster. This
feature can be seen in Fig. (5) where the system size dependence of the current for
different values of A is given. One can see that for A = 2.62, asymptotics is reached
faster than for A = 1.618 and A = 5.0. The value of the exponent obtained from
this data was α = 0.32+0.03

−0.01 . Equilibrium simulations were also performed and in
Fig. (6) results are shown for the current-current autocorrelation function obtained
for a periodic system. For large system sizes one can see a t−0.66 decay with a cutoff
at t ∝ N . This again gives α = 0.34 in agreement with the value obtained from
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the nonequilibrium simulation.
Some interesting features were seen in the temperature profiles also and we now

discuss these. Simple kinetic theory predicts that the thermal conductivity of a
hard particle gas should have a temperature dependence κ ∼ T 1/2 (this can also be
obtained from the Green-Kubo formula). Now if we plug this in Fourier’s law then,
with specified boundary temperatures, one easily obtains the following nonlinear
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temperature profile:

Tk(x) = [T
3/2
L (1 − x/N) + T

3/2
R x/N ]2/3. (116)

In refn. [106], it was noted that a convergence, of the actual nonequilibrium tem-
perature profile T (x), to the kinetic theory prediction Tk(x) given above, seemed to
take place. However the study in [108] found that this apparent convergence stops
as one looks at larger systems and in fact one finds T (x)−Tk(x) attains a non-zero
profile for N → ∞. This is shown in Fig. (7). This result indicates that there is a
problem in writing Fourier’s law in the form J = −κN∇T , with κN defined as a
length dependent conductivity. We will see similar problems with other 1D models.

Random collision model: In studies on heat conduction, one often finds that
a faster convergence to the asymptotic system size limit can be obtained by partic-
ular choices of model and parameter values. In this context one should mention a
stochastic model introduced by Deutsch and Narayan [111]. They consider a binary
mass gas of hard point particles where any particle’s motion is strictly confined to
one dimensions while its momentum is a two dimensional vector (px, py). During
a collision between two particles their momenta gets changed randomly while con-
serving total energy and both components of total momentum. Physically one can
think of this model as approximating a system of small particles with rough sur-
faces, moving in a narrow tube. The results of nonequilibrium simulations for two
different mass ratios is shown in Fig. (8). For the case m1/m2 = 2.62, at system
sizes as small as N ∼ 103, one already gets α = 0.335 ± 0.01, which is close to the
expected value α = 1/3.

Fermi-Pasta-Ulam chain: The Fermi-Pasta-Ulam (FPU) model consists of an
oscillator chain with harmonic as well as anharmonic nearest neighbour interparti-
cle interactions. This model was first studied by the authors in a landmark paper
[112] where they wanted to verify the common assumption of statistical mechan-
ics that anharmonic interactions should lead to equilibration and equipartition.
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Surprisingly the numerical experiments on the FPU chain gave a negative result,
i.e. the chain failed to equilibrate. Understanding the FPU results led to the de-
velopment of new areas and concepts in physics [113]. It is probably fair to state
that a complete understanding of the problem is still lacking. For example it is be-
lieved that for high enough energy densities and large system sizes one may achieve
equilibration but there are details which are not yet understood precisely [114].

What about heat transport across the FPU chain ? Clearly this is the simplest
model to study in order to see the effect of anharmonicity on heat transport.
One might suspect that the equilibration problem of the FPU chain is likely to
show up in some way when one looks at transport properties, especially so when
one thinks in terms of the Green-Kubo formula. It turns out that a FPU chain
connected to heat reservoirs is better-behaved. It can in fact be proved rigorously
that a FPU chain connected to equal temperature Langevin heat baths at its
two ends will always equilibrate. At long times it will converge uniquely to the
appropriate Boltzmann-Gibbs distribution. Also it can be shown that even with
unequal temperature baths (stochastic or Hamiltonian) the system reaches a unique
nonequilibrium steady state [115] and this is very reassuring when one begins to
consider heat transport studies in the FPU chain.

The first study of heat conduction in the FPU chain was by Lepri et al. [116]
who considered an interparticle potential of the form U(x) = k2x

2/2 + k4x
4/4 and

performed nonequilibrium simulations with Nose-Hoover baths. Looking at system
sizes upto N = 400 they obtained α = 0.55 ± 0.05. In a subsequent paper [82],
by studying systems upto N = 2048, they obtained α ≈ 0.37. They also found a
highly nonlinear and singular temperature profile and noted that this was true even
for relatively small temperature differences applied to the ends. We will comment
more on the temperature profile of the FPU chain later in this section.

Since the important work of [116], a large amount of numerical and analytical
work has been carried out on heat conduction in the FPU chain. We first summarize
the various analytic results discussed in Sec. (4.1). We assume that the interparticle
interaction is of the general FPU form U(x) = k2x

2/2 + k3x
3/3 + k4x

4/4. The
predictions from theory are then:

(i) Renormalization group theory of hydrodynamic equations: This predicts that
there is only one universality class with α = 1/3.

(ii) Mode-coupling theory: This predicts that there are two universality classes
depending on the parity of the leading nonlinearity in the Hamiltonian. For the
case where the leading nonlinearity is cubic, i.e. k3 6= 0, the prediction is α = 1/3
while for k3 = 0, k4 6= 0, the prediction is α = 1/2.

(iii) Kinetic theory and the Peierls-Boltzmann equation approach: This gives
α = 2/5 for the quartic case.

Results of simulations: As we have seen in the last section simulations of hard par-
ticle gases [108, 110, 111] seem to indicate a value α = 1/3 for the heat conduction
exponent, though even here the issue is not completely settled [107, 109]. On the
other hand, numerical simulations of oscillator chains, including FPU chains, give
various exponents [2, 82, 84, 88, 116] for different systems, often slightly higher than
1/3. This seems consistent with early results from mode-coupling theory (MCT),
which predicted α = 2/5 . The most recent MCT analysis [86, 87] predicts that
α = 1/2 for potentials U(x) with quartic leading nonlinearity while for potentials
with cubic nonlinearity, there seems to be agreement between different theories
about α = 1/3. Here we will focus on simulations for the even potential only. We
will discuss the results of the most recent simulations by Mai et al. [118] of the
even potential FPU model and another simulation by Dhar and Saito [157] of the
alternate mass FPU chain.
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An important aspect addressed in the simulations by Mai et al. was the effect of
boundary conditions. It is well known [2] that the of coupling of a system to thermal
reservoirs leads to so-called contact resistances. These show up, for example, in the
jumps that one observes in the temperature profile in such a system. It is only for
sufficiently large system sizes, when the resistance of the system is much larger than
the contact resistance, that one can neglect the contact resistance. In simulations
where one is interested in determining the precise dependence of current on system
size, it is important to ensure that one has reached the required system size where
contact resistances are negligible compared to the actual system resistance. This
point has been discussed in some detail by Aoki and Kusnezov [117]. The study by
Mai et al. ensured this by performing simulations with two different baths, namely,
stochastic white noise baths and the deterministic Nose-Hoover bath. Further they
did simulations for different coupling strengths of the system to reservoir. It was
found that for small system sizes the current values were significantly different
(for the same applied temperature difference). This is expected since the contact
resistance, which is different for the different boundary conditions, dominates the
transport current. However at large system sizes, the actual values of the currents
for all the different cases tend to converge. In this system-size regime one is thus
assured that boundary effects have been eliminated and one can then extract the
correct exponent.

The simulation in [118] was done for parameter values k2 = 1, k3 = 0, k4 = 1 and
m = 1. The temperature at the two ends were fixed at TL = 2.0 and TR = 0.5.
Both white noise baths with coupling parameter γ and Nose-Hoover baths, with
coupling parameter θ were studied. The white noise simulations were done using
a velocity-Verlet type algorithm [119], while the Nose-Hoover simulations were
implemented using a fourth order Runga-Kutta integrator. Time steps of order
dt = 0.0025 − 0.005 were used and, for the largest system size (N = 65536), upto
109 equilibration steps and an equal number of data-collecting steps were used.

The temperature profile for a chain of size N = 16384 is shown in Fig. (9).
The temperature is defined through the first three even moments of the velocity
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as Tl = 〈v2
l 〉, Tl = (〈v4

l 〉/3)1/2 and Tl = (〈v4
l 〉/2 − 〈v6

l 〉/30)1/3 respectively. Their
agreement indicates that local thermal equilibrium has been achieved and the local
velocity distribution is close to Gaussian. Also we notice that the boundary jumps
are almost absent for this system size. The inset shows smaller system sizes where
the boundary jumps, arising from the contact resistance, can be clearly seen. As
noted and discussed earlier by Lepri et al.[2] the temperature profile is nonlinear
and this feature seems to be present even for small temperature differences and is
another indication of anomalous transport. As for the hard particle case this also
indicates that one cannot find the temperature profile using a temperature (and
system size) dependent conductivity in Fourier’s law.

In Fig. (10) (upper figure), the conductivity defined as κ(N) = JN/∆T is plotted
against system size. This data gives

α = 0.333 ± 0.004 . (117)

The results of various simulation runs with Langevin baths with different damping
constants γ = 0.4, 2, and 10 as well as the deterministic Nose-Hoover thermostat
is shown (lower figure) in Fig.(10). This compares the RG prediction (α = 1/3)
and the old MCT prediction (α = 2/5) for systems with these different baths
and bath parameters. As can be seen in the figure, an asymptotic exponent of
1/3 is attained for all these systems, whereas the apparent exponents for smaller
N depend on system parameters. It is possible to understand the deviation of
the apparent exponent from 1/3 for small system sizes. As shown in refn. [2], if
the damping constant for the Langevin baths is very large or small, there is a
large ‘contact resistance’ at the boundaries of the chain. The current only depends
weakly on N , resulting in an apparent α > 1/3 (similar considerations apply to
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Figure 12. Plot of the heat current J versus system size in the alternate mass FPU chain for different
values of the mass ratio A = 1.0, 1.1, 1.22 and 1.5 (from [157]).

Nose-Hoover baths). This is confirmed by the plots in the figures: the plot for γ = 2
reaches the asymptotic limit fastest, whereas γ = 0.4, 10 have apparent exponents
closer to 0.4 for small N .

Thus the simulations of Mai et al. seem to give good evidence for α = 1/3 in the
quartic FPU model and hence gives support for the idea of a single universality
class. A discussion on these results is contained in refns. [120, 121]. We note that
the new prediction of α = 1/2 from MCT appears to be even harder to verify from
simulations.

Alternate mass FPU chain: Further support for the value α = 1/3 in the
FPU system and its universality comes from recent simulations of an alternate
mass FPU chain [157]. In this model one considers a chain with masses of particles
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at all even numbered sites being m1 and at odd numbered sites being m2 with their
ratio being A = m1/m2. This system was first studied in [118] where it was noticed
that the temperature profile showed peculiar oscillations whose amplitude seemed
to decay as N−1/2 with system size and scale linearly with the applied tempera-
ture difference. This can be seen in Fig. (11). At the hotter end the lighter particles
have a higher kinetic temperature, while at the colder end, the heavier particles
are hotter. It was pointed out in refn. [118] that the temperature oscillations make
it difficult to define a local equilibrium temperature even at a coarse grained level.
Temperature oscillations can in fact be seen even in an ordered binary mass har-
monic chain but there seem to be some significant differences. In the harmonic
case, there is a big difference between the case where N is even and that where
N is odd. This can be seen in Fig. (11) where we plot the temperature profiles for
chains of length N = 128 and N = 129 for both the FPU chain and the harmonic
chain with m1 = 0.8 and m2 = 1.2. For the harmonic case the oscillations for even
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Figure 14. Plot of the temperature profile in the double-well potential model for different system sizes.
The inset shows the system size dependence of the current and the straight line drawn has slope −2/3.

Error bars are much smaller than symbol sizes. The parameter values for the figure are
k2 = −1, k4 = 1, TL = 1.25, TR = 0.75 and bath coupling γ = 1.

N are large and do not decrease with system size while those for odd N decrease
with system size. In the FPU case there is not much difference between a chain
with odd or even number of particles. Also for the harmonic case, in the bulk, the
heavier particles are always hotter.

However, even though there appears to be a problem in defining a local tempera-
ture, one can still measure the system size dependence of the current in this system
and this was done in refn. [157]. They studied the size dependence of the current
for different values of the mass ratio A, keeping the average mass (m1 + m2)/2
constant. Remarkably it was found that at large enough system sizes the currents
for different A all tend to converge to the same value. This can be seen in Fig. (12)
where one can see that the exponent is again as that at A = 1, i.e. α ≈ 0.33. In
this paper the authors next took a fixed value of A = 1.5 and studied the effect of
changing the interparticle interaction strength (denoted as ν = k4 in the paper).
These results for current for different system sizes are shown in Fig. (13). For small
system sizes, one sees a flat region which is expected since for system sizes much
smaller than the phonon-phonon scattering length scale, the system will behave
like a harmonic chain. The scattering length should be larger for smaller ν and
this can be seen in the plot. At larger system sizes, all the curves tend to show the
same decay coefficient with α ≈ 0.33. A nice collapse of the data was obtained by
scaling the system size by a length factor ℓ(ν) and this is shown in Fig. (13b). The
ν-dependence of the length parameter seems to be given by ℓ(ν) = 1/ tanh(2ν). A
surprising point is that for any fixed system size, the value of the current saturates
to a constant non-zero value as ν → ∞.

Double-well potential: It is interesting to consider simulation results obtained
for the FPU interaction potential U(x) = k2x

2/2+k4x
4/4 with negative k2 in which

case we have a double-well potential. This case was first studied in [135] which had
initially reported a finite conductivity for this model but later it was found to
have a power law divergence [2]. Here we present some new simulation results for
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this model which in fact show that this model exhibits a fast convergence to the
asymptotic regime with exponent α = 1/3. The parameter values k2 = −1, k4 = 1
and TL = 1.25, TR = 0.75 were considered. The temperature profiles in this system
for different system sizes are shown in Fig. (14) and are similar to the FPU profiles
[Fig. (9)] except that the boundary jumps are smaller. The inset of the figure shows
a plot of J as a function of N . One can see that that by around N = 512 the curve
has reached the expected asymptotic slope corresponding to α = 1/3. Thus we
again see evidence for α = 1/3.

Discussion: In the absence of a rigorous proof it is fair to say that the question
of universality of the heat conduction exponent and its precise value, in momentum
conserving interacting systems in one dimensions, is still an open problem. This is
especially more so since all the analytic methods and the exact result discussed in
Sec.(4.1) rely on use of the Green-Kubo formula for a closed system. As pointed out
in sec (2.2) the use of this formula and interpretation in systems with anomalous
transport is not clear. The simulation results that we have presented in this review
strongly suggest a single universality class, with α = 1/3, for momentum conserving
interacting systems in 1D. However one should probably bear in mind that in
simulations, one can never really be sure that the asymptotic system size limit has
been reached. It is possible for exponents to change in unexpected ways when one
goes to larger system sizes.

4.2.2. Momentum non-conserving models

We will now look at heat conduction in one dimensional chains where the par-
ticles experience, in addition to interparticle interactions, also external potentials
which physically can be thought of as arising from interactions with a substrate.
One of the first verification of Fourier’s law in computer simulations was obtained
by Casati et al. in the so-called ding-a-ling model [101, 122]. In this model one
considers a system of equal mass hard point particles which interact through elastic
collisions and where alternate particles are pinned by harmonic springs placed at
fixed distances. The particles in between the pinned ones move freely. Clearly mo-
mentum is not conserved and the authors, by studying system sizes upto N = 20,
found evidence for diffusive behaviour. They calculated the thermal conductivity
using both nonequilibrium simulations as well as using the Kubo formula and found
good agreement between the two. We note that the system sizes studied in this
paper are clearly too small to arrive at definite conclusions. Larger system sizes
with the same parameter values were studied later by Mimnagh and Ballentine
[123]. They found that in fact the conductivity again started to increase as one
went to larger sizes. Finally though, at system sizes N ∼ 400, the conductivity
again saturated at a new value which is much higher than that obtained in [122].
This example nicely demonstrates the need for caution in drawing conclusions from
small size data (also see discussion in [2] on these results).

Since the work of Casati et al. , a number of papers have looked at heat conduc-
tion in various momentum non-conserving models in one dimension and have all
found evidence for the validity of Fourier’s law. A model similar to the ding-a-ling
is the ding-dong model and has all particles connected to fixed harmonic springs.
This was studied by Prosen and Robnik and also shows Fourier behaviour [124].
One of the first papers to recognize the fact that momentum non-conservation is
a necessary condition to get finite heat conductivity in one-dimensional systems is
that of Hu et al. [125]. From their simulations with various forms of Hamiltonians
including, both a harmonic interparticle potential U(x) and a periodic onsite poten-
tial of the Frenkel-Kontorva form [V (x) ∼ cos(ax)], they found that the presence
of an external potential typically led to a finite conductivity. The Frenkel-Kontorva
model was also studied in [126] who arrived at similar conclusions. A study of the
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Figure 15. The geometry of the momentum-nonconserving, alternate-mass hardcore model, studied in
[134]. The elementary cell (indicated by two dotted lines) has unit length l = 1. The bars have mass m1,

and the particles have mass m2. The two heat baths at temperatures TL and TR are indicated.

φ4 model [where U(x) = k2x
2/2, V (x) = λx4/4] by Hu et al. [128], again led to the

conclusion of a finite conductivity. This study also emphasized the following point.
Nonlinear integrable models usually give a flat temperature profile and making
them non-integrable leads to a temperature gradient. However this in itself is not
a sufficient condition to give a finite conductivity.

Another nice simulation demonstrating the role of an external potential in giving
rise to Fourier behaviour is that on the binary mass hard particle gas [134]. Mo-
mentum non-conservation is ensured by confining the motion of alternate particles
inside finite cells while allowing them to interact, through elastic collisions with
neighbors [shown in Fig. (15)]. The nonequilibrium simulations in this paper with
Maxwell heat baths (with N ∼ 512) convincingly shows the validity of Fourier’s
law and also the presence of local thermal equilibrium. Secondly, equilibrium simu-
lations were also performed to compute current-current correlation functions, and,
using the Green-Kubo formula a value of κ close to the nonequilibrium result was
obtained. It is worth noting that this model has zero Lyapunov exponent and thus
is non-chaotic. A related study is that in refn. [133] who studied heat conduction
in a gas of hard rods placed in a periodic potential.

Results for the φ4 model: We will describe in some more details work on the
φ4 model [U(x) = k2x

2/2, V (x) = λx4/4] which appears to be one of the most
well-studied of the momentum non-conserving models and where some analytic
results have also been obtained. Heat conduction in the φ4 model was first studied
by Aoki and Kusnezov [127, 129] who performed both nonequilibrium measure-
ments as well as Green-Kubo based equilibrium measurements. Studying system
sizes upto N = 8000 they concluded that this system had a finite conductivity
and Fourier’s law was valid. The value of κ obtained from the nonequilibrium
measurements and from the Green-Kubo formula were again shown to be in good
agreement. The authors also numerically obtained the temperature dependence of
κ and found κ(T ) ∼ T−1.35. A number of other papers have performed simulations
of the φ4 model and studied various aspects such as the spreading of localized dis-
turbances [128] and the dependence of thermal conductivity on temperature [132].
The model was studied analytically by Lefevere and Schenkel [130] and later by
Aoki et al. [131] using a Peierls-Boltzmann kind of approach for the case of weak
anharmonicity and they too obtained a finite conductivity. They however obtained
a temperature dependence κ ∼ 1/T 2 and this is probably the correct low tem-
perature (corresponding to weak anharmonicity) behaviour, since kinetic theory is
expected to be reliable in this regime. Direct nonequilibrium simulations in [131]
infact found reasonable agreement with the predictions from kinetic theory, at low
temperatures. The study in [132] however finds a somewhat different temperature
dependence at low temperatures (κ ∼ 1/T 1.56). We note that a scaling property of
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Figure 16. Plot of the temperature profile in the φ4 model for different system sizes. The inset shows the
system size dependence of the current and the straight line drawn has slope −1. Error bars are much
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and bath coupling γ = 1.

κ(T, λ), to be discussed later in Sec. (5), implies that κ = κ(λT ).
In Fig. (16) we show typical plots of the temperature profile in the φ4 chain. The

inset in the figure shows the 1/N dependence for the current. These simulations
were performed using white noise Langevin dynamics using the velocity-Verlet
algorithm and for the largest system size (N = 8192) required ∼ 2×109 time steps
with ∆t = 0.0025, to equilibrate.

Before concluding this section we mention the results on a class of rotor mod-
els studied by Giardina et al. [135] and Gendelmann et al. [136]. These models
were originally proposed as examples of momentum conserving systems which gave
Fourier behaviour. The interparticle potential is taken to be U(x) = 1− cos(x) and
the onsite term V (x) = 0. Nonequilibrium and equilibrium (Green-Kubo based)
simulations in [135, 136] both indicated that this model gave a finite conductivity.
The paper by [136] also reports a phase transition from infinite to finite conduc-
tivity as a function of temperature. Given that these simulations are restricted to
relatively small sizes (upto N = 2400), one suspects that this is probably a cross-
over effect. Simulations for larger systems in [137, 138, 158] indeed suggest that
there may not be any true transitions and that, at all temperatures the asymptotic
beaviour is Fourier-like. An analytic study of the rotor model using self-consistent
reservoirs ( with vanishingly small coupling to interior points ) has also claimed a
transition [139]. A similar claim of possible transitions from finite to diverging con-
ductivity in other momentum non-conserving models such as the Frenkel-Kontorva
and φ4 model has been made in [140].

The fact that a momentum conserving model gives finite conductivity is at first
surprising. However given the form of the interparticle potential in the rotor model
it is probably more physical to think of this model as an angular momentum
conserving model rather than linear momentum conserving one. Thus it seems
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more natural to think of the position variables xl as transverse angular degrees
of freedom. In this case one expects different hydrodynamic equations (see for
example [141]) and the Fourier behaviour observed is then not surprising. One can
also think of the rotor model as the classical limit (large spin) of quantum lattice
spin chain models which also are momentum-nonconserving.

Quantum mechanical models: The study of nonequilibrium steady states of
interacting quantum systems by simulations is an important and difficult problem.
There have been a few attempts at addressing this issue, and we will summarize
these. The first set of papers were by Saito et al. [143, 144], who used the master
equation approach to connect different temperature reservoirs to a quantum spin
chain. One interesting result was that a temperature gradient was formed for the
case where the model was non-integrable, while a flat profile was obtained for an
integrable model. A study of the current-curent correlator yielded a power law
decay C(t) ∼ t−1.5 implying a finite conductivity [144].

In another interesting work, Mej́ıa-Monasterio et al. [145] have devised what they
call a quantum stochastic reservoir. Using this they have performed nonequilib-
rium simulations, again of a quantum spin chain. They also observe a temperature
gradient for the non-integrable model and a flat profile for the integrable model.
Further they measured the nonequilibrium steady state current for different sytem
sizes and found a J ∼ N−1 dependence for the non-integrable case and J ∼ N0

for the integrable case.

5. Systems with disorder and interactions

As discussed in sec. (3.4) localization of eigenfunctions or of normal modes strongly
affects transport in materials containing random impurities. In electronic sys-
tems localization has its strongest effect in one dimensions where any finite dis-
order makes all eigenstates localized and one has an insulator. The presence of
inelastic scattering, such as is caused by electron-phonon interactions, leads to
hopping of electrons between localized states and gives rise to a finite conduc-
tivity. The question as to whether electron-electron interactions lead to a simi-
lar effect has attracted much attention recently but is still not fully understood
[146, 147, 148, 149, 150, 151, 152]. The main interest is to understand the transi-
tion, from an insulating state governed by the physics of Anderson localization, to
a conducting state as one increases interactions. One can ask the same question in
the context of heat conduction by phonons and consider the effect that phonon-
phonon interactions have on localization. Here we will mainly discuss the effect of
anharmonicities on the steady state transport of heat through a chain of oscillators
with random masses . The effect of interactions between phonons on localization
caused by disorder has also been investigated by looking at the spreading of wave
packets [151, 152, 159, 160] and we will briefly discuss these results at the end of
this section.

An early work on steady state heat conduction in disordered anharmonic systems
is that of Payton, Rich and Visscher [153] who studied mass-disordered lattices in
the presence of cubic and quartic interparticle anharmonicities. They performed
nonequilibrium simulations with stochastic baths in one and two dimensions. Their
main conclusion was that in most cases interactions (interparticle anharmonicity)
seemed to greatly enhance the conductivity of the system (except for the case of
very weak disorder). We note that, at that time simulations were restricted to small
sizes and it was wrongly assumed by the authors that the disordered harmonic
lattices in one and two dimensions, as well as the anharmonic ones, had finite
thermal conductivities. The system size dependence was not studied systematically.
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Similarly a study by Poetzsch and Bottger [154] for a two dimensional lattice
system found that, while quartic anharmonicity enhances the conductivity of the
disordered system, cubic anharmonicity reduces it. Again this study was restricted
to small system sizes and assumed that the conductivity is finite.

The first systematic study of the joint effects of anharmoncity and disorder on
the system-size dependence of heat current was by Li et al. [155]. They studied the
mass-disordered FPU chain using Nose-Hoover nonequilibrium simulations. Their
conclusion was that this model showed a transition, from a Fourier like scaling
J ∼ N−1 at low temperatures, to a pure FPU like behaviour with J ∼ N−0.57

at high temperatures. A more recent simulation of the same model by Dhar and
Saito [157] suggests that this conclusion may be incorrect. What Li et al.observe
is probably a cross-over effect and there is really no true transition in transport
properties. It appears that disorder becomes irrelevant as far as the value of the
exponent α is concerned. We will here present the latest simulation results of the
disordered FPU chain as well as results from the study of the disordered φ4 lattice,
where similar conclusions are reached [156]. Temperature driven phase transitions
in one dimensional heat conduction have also been reported in some other models.
However as has been pointed out in refn. [158] these are probably cross-over effects
and there is no true transition in these models.

The general form of the Hamiltonian that has been studied by various people is,
in the one-dimensional case, given by:

H =
∑

l=1,N

[
p2

l

2ml
+ ko

x2
l

2
+ λ

x4
l

4
]

+
∑

l=1,N+1

[ k
(xl − xl−1)

2

2
+ ν

(xl − xl−1)
4

4
] (118)

with fixed boundary conditions x0 = xN+1 = 0. The masses {ml} are chosen
independently from some distribution p(m), e.g. one uniform in the interval (m̄ −
∆, m̄ + ∆) or a binary distribution given by P (m) = δ[m − (m̄ − ∆)]/2 + δ[m −
(m̄ + ∆)]/2. The chain is connected at its ends to two heat baths at temperatures
TL and TR respectively. Here we will mostly consider white noise reservoirs, but
will also give some results with Nose-Hoover baths. The equations of motion of the
chain are then given by:

mlẍl = −koxl − lx3
l − k(2xl − xl−1 − xl+1)

− ν[(xl − xl−1)
3 + (xl − xl+1)

3] − γlẋl + ηl , (119)

with ηl = ηLδl,1 + ηRδl,N , γl = γ(δl,1 + δl,N ), and where the Gaussian noise
terms satisfy the fluctuation dissipation relations 〈ηL(t)ηL(t′)〉 = 2γkBTLδ(t − t′),
〈ηR(t)ηR(t′)〉 = 2γkBTRδ(t − t′).

Note that Eq.(119) is invariant under the transformation TL,R → sTL,R, {xl} →
{s1/2xl} and (l, ν) → (l, ν)/s. This implies the scaling relation J(sTL, sTR, l, ν)〉 =
sJ(TL, TR, sl, sν). For the conductivity κ this implies κ = κ(νT, lT ). Thus the effect
of changing temperatures can be equivalently studied by changing anharmonicity.
We will first discuss the unpinned (momentum conserving) case and then the pinned
(momentum non-conserving) case.

Disordered FPU chain: This corresponds to taking ko = λ = 0 in the Hamil-
tonian in Eq. (118), and is the case studied by [155] and in [157]. There are two
important parameters in the problem, namely the disorder strength given by ∆ and
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Figure 17. Plot of heat current versus system size, for the disordered FPU chain, for different values of
ν. The data in the inset corresponds to parameters as in [155], namely (TL, TR) = (0.001, 0.0005) with

Gaussian white noise bath for ν = 1 (WN) and ν = 0, and Nose-Hoover bath (NH) for ν = 1 (from [157]).

the anharmonicity given by ν. Let us consider the two limiting cases, of the disor-
dered harmonic chain (ν = 0,∆ 6= 0), and of the ordered FPU chain (ν 6= 0,∆ = 0).
For the former, with fixed boundary conditions it is expected that α = −1/2, while
for the ordered FPU chain one expects α = 1/3. In the presence of both disorder
and interactions a possible scenario is that for strong disorder one gets α = −1/2
while with strong interactions, one gets α = 1/3 and there is a phase transition
between the two behaviours as we change parameters. The numerical results that
we will discuss, suggest that there is no such transition. Note that in both the
limiting cases, the low frequency long wavelength modes are believed to play an
important role in transport.

The simulations in [157] looked at the case of binary mass distribution with m̄ =
1,∆ = 0.2 and different values of the interaction strength ν = 0.004, 0.02, 0.1, 2.0.
Averages were taken over 50 − 100 samples for N < 1024, 10 samples for N =
1024 − 16384, and 2 samples for N = 32768 and 65536. In Fig. (17) the results of
simulations for the disorder averaged current [J ] for ν = 0.004, 0.02 and ν = 0.0
are shown. For small values of ν one sees that, at small system sizes the current
value is close to the ν = 0 value. As expected one has to go to large system sizes to
see the effect of the weak anharmonicity. At sufficiently large N the same system
size dependence of J is obtained as that for the ordered FPU chain, namely with
α = 1/3. The authors in [157] then show that by scaling the current by appropriate
factors, the data for the disordered case can be made to collapse on to the binary-
mass ordered case. This is shown in Fig. (18) (for ν = 0.02, 0.1, 2.0). Thus these
results show that the asymptotic power law dependence of the current is always
dominated by anharmonicity and there seems to be no transition. Disorder only
decreases the overall conductance of a sample.

The authors of [157] have also investigated the parameter range studied in [155]
and explained the reasons which led to the erroneous conclusions in [155], of a
transition in conducting properties at low temperatures (or equivalently small an-
harmonicity). In fact this can be understood even from the data for [J ]N in Fig. (17)
for ν = 0.004. We see that at around N ∼ 1000 − 2000 the data seems to flatten
and if one had just looked at data in this range, as was done by [155], one would
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Figure 18. Plot of scaled heat current [J ]s for the disordered FPU chain and the current J for the
ordered chain, for different values of ν. The x−axis is scaled as in Fig. (13) (from [157]).

conclude that Fourier’s law is valid. However the behaviour changes drastically
when one looks at larger system sizes and one again gets the usual FPU behaviour.
The inset of Fig. (17) shows results for parameters as in [155] but for much larger
system sizes. This case corresponds to a much smaller value of ν and so it is ex-
pected that it will follow the ν = 0 curve till very long length scales and this is
clearly seen. However, at around N = 16384, there is a tendency for the curve to
turn up and it can be expected that the same asymptotic behaviour to eventually
show up. While a transition cannot be ruled out at even lower temperatures and
with stronger disorder, this seems unlikely. Also, if there is such a transition, it
should probably be to a disordered phase with [J ] ∼ N−3/2.

It is interesting to consider the temperature dependence of conductivity in the
disordered FPU chain. The scaling property of the current, mentioned earlier [after
Eq. (119)], implies that the thermal conductivity has the form κ = κ(νT ). For small
anharmonicity (ν << 1), the earlier results for the ordered alternate mass FPU
chain imply that at large system sizes κ ∼ N1/3/ν2/3 and from the scaling property
this immediately gives κ ∼ 1/T 2/3 at low temperatures. However at small system
sizes [N << ℓ(ν)], we expect the system to behave like a harmonic system with
κ ∼ T 0. At high temperatures the conductivity will saturate to a constant value.
Experimentally, the temperature dependence of the thermal conductivity may be
easier to measure and one can verify if this is unaffected by disorder [see, for
example sec. (8)].

Disordered φ4 chain: Let us now look at the case where the particles are
subjected to an external pinning potential in addition to nearest neighbor harmonic
interactions. We will consider the anharmonicity to be an onsite quartic term (thus
λ > 0, ν = 0, also ko, k > 0 ) in which case this corresponds to the discrete φ4 model.
Pinning greatly enhances the difference between heat transport in a random chain
with and without anharmonicity and thus is a good testing ground for the effect of
anharmonicity on localization. This model is also closer in spirit to charge transport
by hopping in random media. Again let us look at the two limiting cases. In the
case with a pinning potential at all sites the disordered case (λ = 0,∆ 6= 0) gives
J ∼ e−cN . For ∆ = 0 and λ 6= 0 we have seen from sec. (4.2.2) that one expects
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Fourier’s law to be valid and so α = 0.
The case with parameters k = ko = 1, λ > 0 and a uniform mass distribution

with m̄ = 1.0 and ∆ = 0.2 was studied in [156]. In Fig. (19) the result of simulations
for different values of anharmonicity λ = 0.004− 1.0 is given. As can be seen from
the data, there is a dramatic increase in the heat current on introduction of a small
amount of anharmonicity and the system-size dependence goes from exponential
decay to a 1/N dependence implying diffusive transport. For smaller λ the diffusive
regime sets in at larger length scales but as in the FPU case, here too one finds that
anharmonicity determines the system size scaling and no transition is observed. A
measure of the relative strengths of anharmonicity and disorder is obtained by
looking at the ratio of the energy scales Ea = l〈x4〉/4 and Ed = T∆/m. For the
given parameters one finds ǫ = Ea/Ed ≈ 0.008 for λ = 0.004. Unlike the FPU case,
in this model, it does not seem that any simple scaling of the data is possible.

Thus this study shows that introduction of a small amount of phonon-phonon
interactions in the disordered harmonic chain leads to diffusive energy transfer, i.e.,
the insulating chain becomes a normal heat conductor. How exactly this occurs is
not clear. It is possible that anharmonicity gives rise to extended states or leads
to hopping of energy between states which are now approximately localized (i.e
they are no longer exact normal modes, but have a small rate of energy leakage
to nearby modes) . There is no evidence of the existence of a finite critical value
of anharmonicity required for this transition. For small values of anharmonicity it
is necessary to go to larger system sizes to see the transition from insulating to
diffusive. As in the FPU case, a transition to a localized phase at a very small
value of anharmonicity is possible and would be difficult to observe in simulations,
because equilibration times increase rapidly with decreasing λ.

An interesting question in this model is the limiting behavior of κ(λT ) for
(λT ) → 0. It turns out that the temperature profiles for the disordered φ4 chain are
qualitatively different from the ordered chain and this means that the temperature
dependence of conductivity is different for the two cases. For the ordered case, from
kinetic theory one gets κ ∼ 1/(λ2T 2) for small λT [131], while for the disordered
case [156] found κ ≈ (λT )1/2. For the FPU chain on other hand, the ordered and
disordered cases give similar temperature profiles [157].

There have been a number of studies on disordered anharmonic chains which
have investigated the spreading of localized pulses of energy injected into a system
at zero temperature. The study by Bourbonnais and Maynard [159] looked at FPU
type of systems in one and two dimensions and observed that anharmonicity desta-
bilizes the localized modes and the diffusion of pulses was found to be anomalous.
This seems to be consistent with the heat conduction results on the disordered
FPU chain. A similar zero temperature study of the mass disordered FPU system
was carried out by Snyder and Kirkpatrick [160] who however found evidence for
diffusive transport at sufficiently strong anharmonicity. In the case of the φ4 and
related models there have been some extensive recent numerical studies and here
the conclusions are somewhat contradictory to the heat conduction results. The
spreading of localized energy pulses has been reported to be sub-diffusive in [151]
while [152] reports absence of diffusion. The study in refn. [152] offers a picture of
spreading of an initially localized energy wavepacket to a limiting profile as taking
place through nonlinearity induced coupling between the localized modes. All these
studies suggests that the behaviour of a heat pulse at zero temperature and that
at finite temperature can be very different. Indeed as pointed out nicely in [142], it
is necessary to look at appropriate spatiotemporal correlation functions of closed
systems at finite temperatures in order to understand diffusion in the open system.
This of course is also what one effectively does in the Green-Kubo approach.



November 19, 2008 19:56 Advances in Physics reva

60

100 1000
N

0.01

1

N
[J

] λ=1.0
λ=0.5
λ=0.3
λ=0.1
λ=0.02
λ=0.004
λ=0.0

100 1000
0.001

0.01

0.1

1

10

ν=0.1
ν=0.02
ν=0.0

Figure 19. Plot of [J ]N versus N for the disordered φ4 chain, for different values of λ. The inset shows
results obtained for the case with interparticle anharmonicity and onsite harmonic pinning (from [156]).

Finally we note an interesting related problem that was studied by Rich and
Visscher [65]. They considered heat conduction in a disordered Harmonic chain with
self-consistent reservoirs. Since self-consistent reservoirs can be roughly though of as
some sort of nonlinearity leading to incoherent scattering of phonons, this problem
has some similarity with that considered in this section. Based on exact numerical
calculations on small chains, their main conclusion was that the presence of self-
consistent reservoirs leads to a finite conductivity for chains with both free and
fixed boundary conditions (and no bulk pinning). The self-consistent reservoirs
makes the model momentum non-conserving so this is consistent with the results
of the disordered φ4 chain presented here. A very interesting conjecture made in
this paper is that a finite conductivity will be obtained if the limits N → ∞
first, and then coupling to self-consistent reservoirs → 0 are taken. A recent paper
[161] has studied heat conduction in a disordered harmonic chain with an energy
conserving stochastic dynamics and has obtained rigorous results which indicate a
finite thermal conductivity of the system.

6. Interacting systems in two dimensions

We have seen that, in the one-dimensional case, it is usually quite difficult to obtain
the asymptotic system size dependence of the current. In order to get the correct
exponent requires one to go to large system sizes and at some point the sizes
required are beyond current computational capabilities. Of course a combination
of simulations and results from analytic work gives one some confidence about
the results obtained so far. In the case of higher dimensional systems naturally
one can expect the same computational difficulties and in fact here they become
more pronounced since the number of particles is now Ld where L is the linear
size and d the dimensionality. The good news is that there is general agreement
on the system-size dependence of conductivity from different analytical methods.
Both MCT [2] and the hydrodynamics approach [72] predict that for a momentum
conserving system, the thermal conductivity diverges logarithmically with system
size in 2D and is finite in 3D. In the presence of pinning all theories predict a finite
conductivity in all dimensions.
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There are few simulation studies in higher dimensional systems and we summa-
rize the main results obtained so far. Early studies of heat conduction were mainly
interested in finding the temperature dependence of thermal conductivity and as-

sumed that this was finite [153, 162, 164]. One of the first paper to study system
size dependence was probably that by Jackson and Mistriotis [163]. They studied
the diatomic Toda lattice and concluded that the thermal conductivity was finite
for mass ratio greater than a critical value and diverged otherwise.

More extensive studies on the system size dependence were made by Lippi and
Livi [165] for an oscillator system in two dimensions with vector displacements
and interparticle interactions. They considered a Lx×Ly lattice with the following
Hamiltonian:

H =

Lx
∑

i=1

Ly
∑

j=1

|pij |2
2m

+ U(|xi+1,j − xij|) + U(|xi,j+1 − xij |) , (120)

where xij denotes the vector displacement (taken to be two-dimensional vectors)
of a particle at lattice site (i, j) where i = 1, 2..Lx and j = 1, 2...Ly and pij de-
notes the corresponding momentum vector. Two kinds of interparticle potentials
were studied, namely a FPU type potential given by U(x) = x2/2 + k4x

4/4 and a
Lennard-Jones potential given by U(x) = A/x12 −B/x6. Both models gave similar
results. Nonequilibrium simulations using Nose-Hoover baths, as well as equilib-
rium simulations based on the Kubo formula, were performed. Nonequilibrium
simulations were first performed on strips of width Ly with aspect ratio Ly/Lx < 1
and with heat conduction in the x-direction. It was observed that for fixed Lx,
as one increased Ly, the current seemed to saturate to a constant value for quite
small values of Ly/Lx. Subsequently, to save on computational time, the authors
considered the value Ly/Lx = 1/2 in all their simulations. Studying system sizes
upto Lx = 128 they obtained a logarithmic divergence, with system size, of the
conductivity i.e. κ ∼ ln(Lx). The equilibrium simulations, performed over similar
system sizes, and using a microcanonical ensemble gave a t−1 dependence for the
current-current correlation function. Using the Green-Kubo formula this implies
again a logarithmic divergence, with system size, of the conductivity.

The same Hamiltonian as in Eq. (120) with FPU interactions but with a scalar
displacement field was studied later by Yang and Grassberger [166]. This paper
looked at somewhat bigger system sizes than [165] but were unable to verify the
logarithmic divergence and instead obtained a power law dependence with an ex-
ponent α ≈ 0.22. A careful investigation of the value of r = Lx/Ly, at which a
dimensional cross-over from 1D to 2D behaviour occured was carried out. Their
conclusion was that at large values of r, the conductivity κ diverged as a power
law with α = 0.37 ± 0.01 while for small r they obtained α ≈ 0.2. The data for
conductivity versus system size for different values of r is shown in Fig. (20). The
conductivity plotted in the figure was defined as

κcenter =
J

(dT/dx)center
, (121)

where (dT/dx)center is the temperature gradient evaluated numerically at the cen-
ter. This definition was used to take care of the boundary temperature jumps that
are usually present for small system sizes [see Fig. (21)]. Based on the data in
Fig. (20) the authors also made the interesting suggestion that the cross-over from
1D to 2D behaviour takes place at r → ∞ in the limit Lx → ∞. This has obvious
implications for experimental tests on the dependence of conductivity on length,
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Figure 20. Plot of conductivity, defined by Eq. (121), versus system size Lx for 2D scalar FPU model.
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Figure 21. Temperature profiles for scalar 2D FPU lattices with Lx = 128 and Ly = 1, 3, and 32. The
temperatures of the heat baths at both ends were fixed at (TL, TR) = (10.0, 6.0) (data from [166]).

for systems such as nanotubes and nanowires. Another paper [167] again study-
ing the vector model for even larger system sizes (upto 64 × 65536) has claimed
observing a logarithmic divergence. However one of the authors of the paper has
expressed doubts about whether convergence has been attained at these sizes [168]
and this seems very likely to be the case.

The most recent simulations by Shiba and Ito [170] considered the same Hamil-
tonian as in Eq. (120) and used the same parameter set as [165], namely k4 =
0.1, TL = 20, TR = 10. They performed nonequilibrium Nose-Hoover simulations
and studied system sizes upto 384×768. Their data for conductivity versus system
size is plotted in Fig. (22). The exponent α ≈ 0.268 obtained by them appears to
be significantly different from logarithmic behaviour. We also show the tempera-
ture profiles for different system sizes [Fig. (23)] and it appears that the boundary
jumps are quite negligible.
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Figure 23. Temperature profiles for the 2D FPU lattice with Ly : Lx = 1 : 2. The sequences represent
the results for the sizes Lx = 192, 384, and 768. The temperatures of the heat baths at both ends were
fixed to (TL, TR) = (20.0, 10.0). The horizontal axis represents the position in the x-direction, scaled by

the system size Lx, and the vertical axis represents the local temperature (data from [170]).

Unlike in 1D, where the hard particle gas has been intensely studied, there have
been very few studies on hard disc systems. For a hard disk fluid system, Shimada et
al. [169] reported α to be less than 0.2. Thus for momentum-conserving systems in
2D it is fair to say that simulations have not been able to unambiguously establish
the logarithmic divergence of the conductivity predicted from theory. Further work
is clearly needed here.

As far as momentum non-conserving interacting systems are concerned one would
naturally expect Fourier behaviour, given that this is the case even in one dimen-
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sion. In the next section we will discuss a number of momentum non-conserving
models of non-interacting particle systems which can be shown (including some
rigorously) to satisfy Fourier’s law. In these models noninteracting particles are
scattered from fixed scatterers. These models however suffer from the drawback
that there is no mechanism for local thermal equilibration and so the meaning of
temperature and Fourier’s law is somewhat artificial. There have been a few papers
which have introduced particle interactions in these kind (hard particle scattering)
of models. Here we discuss two such models.

The first model, introduced by Mej́ıa-Monasterio et al. [171, 172], is one in
which noninteracting particles move among a periodic array of circular scatterers
[see Fig. (24)]. The dynamics is specified as follows. Consider dimensionless units
such that the mass of the moving particles is 1 and the moment of inertia of
the scatterers is η. Then, if (vn, vt) are the normal and tangential components of
velocity of the particle at the time of collision, and ω is the angular velocity of the
discs, then after the collision they are transformed to (v′n, v′t, ω

′) which are given
by the linear transformation:

v′n = −vn,

v′t = vt −
2η

1 + η
(vt − ω),

ω′ = ω +
2

1 + η
(vt − ω) . (122)

The dynamics conserves total energy v2
n/2+ v2

t /2+ ηω2/2 and angular momentum
and is time-reversal invariant (however, the transformation is non-syplectic). This
system was then connected to two reservoirs of both heat and particle and which
are specified by temperature and chemical potentials (TL, µL) and (TR, µR) respec-
tively. Thus both heat and particle currents were generated. Performing detailed
simulations on this system, some of the main conclusions of the paper were: (i) the
system satisfied local thermal equilibrium, (ii) both heat and particle currents sat-
isfied usual linear response relations with finite transport coefficients, (iii) Onsager
reciprocity relations were satisfied. The largest system studied had about 100 discs
in the conducting direction (and two discs in the vertical direction). Note that in
this model interactions between particles is introduced indirectly. Motivated by this
model, refn. [173] studied an idealized model with noninteracting tracer particles
moving between fixed energy storing centres and exchanging energy with these. Lo-
cal thermal equilibration and temperature profiles were analytically studied in this
work. Another model where an explicit verification, of linear response relations for
heat and particle transport were obtained, as well as Onsager reciprocity relations,
is a 1D electronic system with self-consistent reservoirs [70].

Another recent study by Gaspard and Gilbert [174, 175, 176] has considered a
system where hard disc particles are confined within periodic array of cells formed
by fixed scatterers. The model is explained in Fig. (25). The main idea of the
authors has been to introduce a three time-scale mechanism in generating the heat
conduction state: (i) a short time scale τwall corresponding to particles motion
within a cell with negligible energy transfers, (ii) an intermediate time scale τbinary

corresponding to binary collisions which lead to local equilibrium and (iii) a long
time scale τmacro of the macroscopic relaxation of Fourier modes. Based on a master
equation approach the authors are able to demonstrate the validity of Fourier’s law
and find an explicit expression for the thermal conductivity of the system. Note
the similarity of the model with the one dimensional model described in Fig. (15),
though the mechanism leading to Fourier behaviour there is possibly different.
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TR µR,TL µL,

Figure 24. Schematic illustration of the model studied in [171]. The scatterers are on a triangular array
arranged such as to avoid infinitely long trajectories. The scatterers can perform rotational motion after
collisions with the moving point particles. Periodic boundary conditions are used in the vertical direction

(from [171]).

Figure 25. Model studied in [174]. The small colored discs move among a periodic array of fixed black
discs. Each small disc is confined to move in a cell bounded by four fixed discs. Most of the time the

small disc moves with constant energy and undergoing elastic collisions with the fixed discs. Once in a
while there is a collision between particles in two neighboring cells and there is exchange of energy. The
solid lines show the trajectories of the centers of the moving particles about their respective cells. The

colors are coded according to the particles kinetic temperatures (from blue to red with increasing
temperature) (from [174]).

As far as simulations of oscillator systems is concerned, a two dimensional
momentum non-conserving lattice model was studied by Barik [177, 178] who
studied a scalar displacement model with harmonic interparticle interactions and
an onsite potential V (x). Several different forms of V (x) were studied. With
a Frenkel-Kontorva interaction given by Va(x) = cos(x) the author reports a
power law divergence of the conductivity [177]. For two other models, of the form
Vb(x) = − cos(x) − sin(2x)/2, a logarithmic divergence of the conductivity was
found [178]. However the reason why a finite conductivity has not been obtained
in these momentum non-conserving systems is probably because the system sizes
studied are too small (upto 240×240). This is evident from the quite large bound-
ary temperature jumps that can be seen in the temperature profiles reported in
these papers [177, 178]. This means that the contact resistances are contributing
significantly to the measured resistance. As we have discussed earlier in sec. (4.2.1)
this will give a higher apparent divergence of the conductivity than is actually the
case. In this case looking at κcenter, defined in Eq. (121), may be a good idea.
Another point is that specific forms of interaction strengths also might lead to a
faster convergence. Thus in [178] it can be seen that for the same applied temper-
ature difference and same system size, the potential Va(x) gives a flat temperature
profile while with Vb(x) one gets a significant gradient. This feature has also been
observed earlier in sec. (4.2.1) where we saw that the random collision model and
the 1D double-well potential gave fast convergence to the asymptotic limit.

It appears that the simulation results in two dimensions are quite inconclusive
for momentum conserving systems as regards the system size dependence of con-
ductivity. More extensive studies with larger system sizes and different forms of
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interaction potentials are needed to confirm the theoretical predictions. For mo-
mentum non-conserving lattice systems it is likely that simulations on larger system
sizes will verify validity of Fourier’s law.

7. Non-interacting non-integrable systems

Probably the first rigorous demonstration of Fourier-like dependence of the cur-
rent in a Hamiltonian system was by Lebowitz and Spohn [179] in the Lorenz
gas model. This model consists of a gas of classical point particles in dimension
d ≥ 2 which undergo elastic collisions with fixed randomly placed spherical scat-
terers. The authors studied this system with stochastic boundary conditions on
two bounding walls corresponding to temperatures TL and TR. They could prove
rigorously that in the Boltzmann-Grad limit of a large number of small scatterers,
one gets J ∼ (TL − TR)/L, where L is the length of the box.

A number of quasi-1D Lorenz-gas-like systems have been numerically investi-
gated recently and have provided some more insight. Alonso et al. [180] stud-
ied a channel with an array of periodically placed semicircular scatterers. From
their nonequilibrium simulations with Maxwell baths, they verified Fourier’s law
and showed that the nonlinear temperature profile could be understood by a
simple model of diffusing particles with an energy dependent diffusion constant
D(E) ∼ E1/2.

The particle dynamics of the Lorenz-gas model with convex scatterers is known
to be chaotic. Li et al.[181] explored the question as to whether a positive Lya-
punov exponent, i.e. , a chaotic dynamics, is a necessary condition in order to
get Fourier’s law. They considered a system of non-interacting particles moving
in a quasi 1D channel and suffering elastic collisions with fixed triangular shaped
scatterers placed throughout the channel. The cases of a regular, and a random,
array of scatterers was considered. It can be shown that in both these cases, the
dynamics has zero Lyapunov exponent unlike the case with convex scatterers. The
authors found from their nonequilibrium simulations that while the regular array
gave a diverging thermal conductivity, the random array gave a finite conductivity.
In both cases a temperature gradient was obtained, though they had very different
forms, highly nonlinear in the periodic case and linear in the random case. Thus
the random array of non-chaotic scatterers gave rise to normal Fourier heat trans-
port in the channel. Correspondingly it was shown that the particle motion was
superdiffusive for the periodic case and diffusive for the random case. Thus this
simulation shows that chaos is not a necessary condition for diffusive transport.
In other studies [182, 183] it has been seen that, even with a periodic array of
triangular scatterers, one gets Fourier transport whenever the internal angles are
irrational multiples of π. Finally Li and Wang [184] and Denisov et al. [185] have
given analytic arguments to relate the diffusion exponent of the heat carriers to
the conductivity exponent α. That chaos is not a necessary condition for normal
transport was also seen earlier in sec. (4). There we saw that the interacting hard
particle dimer gas (which is non-chaotic) gives normal transport in the presence of
an external potential.

The validity of Fourier’s law in Lorenz-gas models basically arises due to the
diffusive motion of the heat carriers. However the absence of interactions makes
these models somewhat ill-behaved from the thermodynamic point of view. As
pointed out in [186] these models lack local thermal equilibrium and so the mean-
ing of temperature and Fourier’s law in these systems is somewhat different from
that one usually has in nonequilibrium thermodynamics. The models studied in
[171, 172, 174], and discussed in sec. (6), are examples of similar momentum non-
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conserving models of particles with collisional dynamics where however the intro-
duction of interactions leads to local thermal equilibrium.

8. Experiments

The experimental measurement of thermal conductivity of a system is much more
difficult than, for example, its electrical conductivity. One realizes this from the
simple fact that it is easy to construct an ammeter to measure electrical current
but that is not so in the case for heat current. Thus measurements of thermal
conductivity require special methods and often the interpretation of experimental
data themselves require involved theoretical modeling. This is perhaps one reason
as to why there has, until recently, not been much experimental studies which have
addressed the precise question of the system size dependence of thermal conduc-
tivity and its expected divergence in low dimensional systems. The situation has
changed recently with the advent of nanophysics. Understanding heat transfer in
systems such as nanowires and nanotubes is not only a question of basic interest
but of technological importance too. With amazing advances in nano-technology
it has now become actually possible to measure the thermal conductivity of a nan-
otube suspended between two thermal reservoirs. Here we briefly discuss some of
the experiments on nanowires and nanotubes. We will try to explain the present
understanding and also try to emphasize the relevance, of the knowledge that has
been obtained from studies of simple models discussed in this review. In all the
experiments that we will describe here the heat current is believed to be mainly
due to phonons.

The most common approach to understanding experimental data on heat con-
duction is perhaps through simple kinetic theory picture which says that the con-
ductivity in a phonon system is proportional to cvℓ where c is the specific heat per
unit volume, v the sound speed and ℓ the phonon mean free path. For system sizes
smaller than ℓ, one expects ballistic transport and roughly one can replace ℓ by L
in the conductivity formula, and hence get κ ∼ L. On the other hand for ℓ >> L
it is normally expected that a finite conductivity will be obtained. However, from
the results presented in the previous sections, it is clear that this picture cannot
be correct. At sufficiently large length scales, for low dimensional systems such as
nanowires and nanotubes, we expect the conductivity to diverge as a power law
κ ∼ Lα.

In the ballistic limit (defined as one where anharmonicity can be neglected)
one can use the Landauer or NEGF formula and here there are examples where
good agreement between theory and experiments can be seen. For nanotubes and
nanowires with low impurity level it turns out that phonon mean free paths can
be quite long and so transport is ballistic over fairly long length scales.

Experiments on nanowires: One of the first measurements of phonon thermal
conductance of a nanosystem was that by Tighe et al. [187]. In a beautiful exper-
iment they measured the conductance of insulating GaAs wires of length ≈ 5.5µm
and cross-section ≈ 200nm×300nm. At low temperatures (1.5−5K) they obtained
conductances of order ∼ 10−9W/K. From their data and using kinetic theory argu-
ments they estimated the phonon mean free path to be of order ∼ 1µm. Now one
can ask the question: what is the thermal conductance of a perfectly transmitting
1D wire? This can be easily obtained from Eq. (65) by setting T (ω) = 1 and one
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gets:

G =
J

∆T
=

kB

2π

∫ ωm

0
dω

(

~ω

kBT

)2 e~ω/(kBT )

[e~ω/(kBT ) − 1]2
, (123)

where we assume a phonon dispersion between 0 − ωm. At temperatures T <<
~ω/kB this gives:

Gth = g0 = π2k2
BT/(3h) (124)

where g0 = (9.456 × 10−13W/K2)T has been proposed as the quantum of ther-
mal conductance [53, 188] and is the maximum value of energy transported per
phonon mode. In a wire that is not strictly 1D, as is the case of a wire of diameter
∼ 200nm, other modes would contribute also to the current. In another nice and
difficult experiment, Schwab et al. [188] were able to measure the quantum of ther-
mal conductance. They used a silicon nitride wire which had four lowest massless
modes and other massive modes corresponding to the finite width of the wire. By
going to sufficiently low temperatures (T < 1K) they were able to suppress trans-
port by the massive modes. Also one had to ensure very good contacts between
the wires and reservoirs. The authors were able to verify that the resulting conduc-
tance corresponded to the value g0. The agreement is in fact quite impressive. At
high temperatures all modes would contribute and so it will be difficult to verify
the classical 1D result with this system. Note that theoretically T (ω) = 1 can
probably be achieved only with Rubin baths. For other baths (for example Ohmic)
this cannot be obtained even for ordered chains and as a result, the temperature
dependence of conductivity can be quite different [for example see sec.(3.3.1)] from
the linear dependence in Eq. (124).

Another experiment [189] reported measurements of thermal conductivity of sin-
gle crystalline Si nanowires with wires several microns long and with varying di-
ameters between 22nm to 115nm. They found that the thermal conductivity in-
creased rapidly with diameter and was almost two orders of magnitude smaller
(∼ 20W/mK) than the bulk value. These results have not been clearly understood.
So far there has been no experiments measuring the dependence of conductivity
on length in nanowires.

Experiments on nanotubes: Apart from nanowires, there have also been a
number of measurements of heat current in nanotubes. One of the first measure-
ments of conductance in individual samples was by Kim et al. [190], on a 2.4µm
long and 14nm diameter multiwalled carbon nanotube (MWCNT). They found a
very high thermal conductivity of ≈ 3000W/mK (at room temperature) and noted
that this corresponded to a phonon mean free of ∼ 500nm. Somewhat surprisingly
this was close to a theoretically predicted value by Berber et al. [191] who had
performed classical molecular dynamics simulations (using the Green-Kubo for-
mula) for a (10, 10) carbon nanotube. Using realistic potentials they reported a
high thermal conductivity of ≈ 6000W/mK, at room temperature. From our ex-
pectations of diverging conductivity we expect that these reported values, both in
experiments and simulations, will increase with increasing length of the wire. In
fact simulations by Maruyama [192], Zhang and Li [193], and by Yao et al. [195],
again with realistic potentials, do find such a increase. A more recent simulation
[196] however finds a converging conductivity.

As far as theoretical work on heat conduction in carbon nanotubes is concerned,
we mention the insightful paper by Mingo and Broido [194], who point out that it is
necessary to perform quantum mechanical calculations in order to understand the
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experimental results and that classical calculations can be misleading. They mostly
consider the ballistic conductance using the Landauer formula [ Eq. (65)] and also
the Boltzmann-Peierls equation at longer lengths. However they do not comment on
the system size dependence of conductivity. It is likely that as far as the question of
system size dependence of conductivity is concerned, the answer should probably be
independent of whether one is doing a classical or a quantum calculation. Hence it
will be useful to settle this issue through classical molecular dynamics simulations.
From our experience with the difficulty in reaching asymptotic system sizes for
1D and 2D systems, it is clear that one has to be careful before coming to quick
conclusions.

The experimental results of Fujii et al. [197] on individual MWCNT give some
hints of anomalous behaviour. They also obtain large values of thermal conductivity
but find that it decreases with the diameter of the tubes. At room temperatures
the thermal conductivity of a 3.7µm long nanotube with diameter ≈ 10nm was
about 2500W/mK while that of a 3.6µm long, diameter ≈ 30nm nanotube was
about 500W/mK. Note that the dependence of κ on diameter is opposite to that
found for nanowires mentioned earlier.

Measurements on individual single-wall carbon nanotubes (SWCNT) also have
now been done. Yu et al. [198] observed that the thermal conductance of a 2.76µm
long suspended tube was very close to the calculated ballistic thermal conductance
(calculated using the Landauer formula) of a 1nm diameter tube. In the tem-
perature range of 100 − 300K they found increasing conductance and no signs of
significant phonon-phonon scattering. Another measurement on a single-walled car-
bon nanotube by Pop et al. [199] measured the conductance to temperatures upto
800K and they found a 1/T decay at large temperatures. They also report mea-
surements on various lengths, ranging from 0.5µm to 10µm and diameter 1.5nm,
and curiously, they found increasing conductance with length. This the authors ex-
plain can be understood to be a result of the large phonon mean free path ∼ 0.5µm
and phonon boundary scattering.

An experimental proof of the divergence of thermal conductivity with system
size is probably the dream of many theorists. There seems to be rapid progress in
the direction of making this possible. The first indication of length dependence was
reported by Wang et al. [200], for the case of a SWCNT placed on a silicon sub-
strate. They measured samples of lengths between 0.5−7µm at room temperature
and found a slow increase of the conductance. The most recent experiments by
Chang et al. [201] makes a detailed investigation of the length dependence of con-
ductivity in multiwalled nanotubes, of carbon and boron-nitride, and claim to have
found convincing evidence for violation of Fourier’s law. These room temperature
measurements were on suspended tubes of effective length between ≈ 3.7 − 7µm
and their estimate of phonon mean free path is ∼ 20 − 50nm. From their mea-
surements (over the rather limited length scale) the authors conclude that α ≈ 0.6
for the carbon nanotube α ≈ 0.5 for the boron nitride sample (which is isotopi-
cally disordered). It is interesting to note that the two samples in this experiment,
approximately correspond to the ordered and disordered FPU models.

Experiments on suspended single layer graphene sheets have also been made
recently [202] and so interesting experimental results from two dimensional systems
can also be expected in the near future. It is of course too early to make definite
conclusions from these experiments.

Finally we briefly discuss one other area, that of thermal rectifiers, where an
experiment was motivated by theoretical work on simple models of heat conduction.
In a paper by Terraneo et al. [203], an inhomogeneous nonlinear lattice model of
heat conduction was proposed. This model had the interesting property that by
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changing a single parameter on a part of the chain one could cause a transition from
insulating to conducting behaviour. A related observation was that the absolute
value of the heat current depended on the sign of ∆T = TL−TR. Thus one basically
had a model for a thermal rectifier. Note that it can be proved rigorously, for both
harmonic systems (with inhomogeneity but without self-consistent reservoirs) as
well as homogeneous anharmonic systems, that J(∆T ) = −J(−∆T ) and so these
systems cannot work as rectifiers. For harmonic systems this follows immediately
from the general expression for current given in sec. (3.2). Clearly one needs both
inhomogeneity as well as anharmonicity to get rectification and Terraneo et al. gave
a simple explicit demonstration of how this could be achieved. Physically their
results can be understood easily by thinking of the anharmonicity as giving rise
to effective phonon bands which can be moved up and down by increasing or
decreasing local temperatures. Phonon flow from the reservoirs into the system
can thus be controlled.

Since the work in [203], a number of papers have observed this effect in a number
of models [204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214]. Based on the model
of thermal recifier, Yang and Li have proposed a design of a thermal logic gate [215].
An experimental observation of thermal rectification was made recently by Chang
et al. [216, 217]. They made measurements of the heat current in a boron-nitride
nanotube which was mass-loaded externally in an inhomogeneous way, and were
able to obtain a small rectification.

We conclude this section with the note that the situation looks hopeful for vig-
orous interactions between theory and experiments.

9. Concluding remarks

The fact that Fourier’s law is not valid in 1D and 2D systems is a surprising result
and probably the most important knowledge gained from the large number of stud-
ies on heat conduction in low dimensional systems. Even in the limit of the system
length being much larger than typical scattering lengths in a system, one finds that
it is not possible to define a thermal conductivity as an intrinsic size-independent
property of the system. This discovery is not only of academic interest but also
important from the point of view of understanding real experiments. For example
this tells us that it does not make sense to talk about the thermal conductivity of
a carbon nanotube since this will keep changing with the length of the nanotube.

To summarize, the main conclusions of this review are:
(i) Fourier’s law is not valid in momentum-conserving systems in one and two

dimensions.
For disordered harmonic systems, κ ∼ Nα, where α depends on boundary con-

ditions and spectral properties of heat baths.
For nonlinearly interacting systems without disorder, simulation results on a

number of models indicate that in 1D, α = 1/3, and that there is only one univer-
sality class. There is disagreement between predictions from different theoretical
approaches. In 2D, the theoretical prediction of κ ∼ log(N) has not been verified
in the latest simulations.

(ii) Fourier’s law, as far as the scaling J ∼ 1/N is concerned, is valid in
momentum-non-conserving non-integrable systems in all dimensions. Both theory
and most simulations agree on this.

(iii) In 1D oscillator systems with both disorder and anharmonicity, the asymp-
totic system size dependence of current is determined by anharmonicity alone, and
localization becomes irrelevant.

(iii) Chaos is neither a necessary nor a sufficient condition for validity of Fourier’s
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law. This result follows from the observation that Fourier’s law is valid in billiard-
like systems with polygonal scatterers which have zero-Lyapunov coefficient and
hence are non-chaotic. On the other hand Fourier’s law is not valid for the FPU
system in any parameter regime even though it has positive Lyapunov exponents.

(iv) For momentum-conserving 1D systems, it is not possible to write Fourier’s
law in the form J = −κN∇T with κN defined as a size dependent conductivity.
This follows from the anomalous steady state temperature profiles that seem to be
invariably obtained in such systems.

(v) For harmonic lattice systems, the Langevin equation Green’s function
(LEGF) formalism provides a very useful theoretical framework for understand-
ing heat transport, in both classical and quantum systems.

Some interesting problems that need to be addressed in the future are the fol-
lowing:

(a) Exact determination of the exponent α in any one dimensional momentum
conserving model with purely Hamiltonian dynamics and without use of the usual
Green-Kubo formula.

(b) Simulations on nonlinearly interacting systems in 1D, 2D and 3D for larger
system sizes and different models, in order to establish the exponents convincingly.
It will be nice to have more results on systems such as hard discs and spheres.

We point out that the understanding of heat conduction even in three dimen-
sional macroscopic systems is incomplete. A nice example of this can be seen from
the discussion given in [218], in the context of understanding experimental results
on heat conductivity of a highly purified single crystal diamond. A related point:
in 3D it is a belief (see for example [93]) that at low temperatures, where Ump-
klapp processes become exponentially rare, normal processes along with impurity
scattering lead to a finite conductivity for the system. Can this be given some more
rigorous justification, or, verified in simulations ?

(c) Finding α for two and three dimensional disordered harmonic systems an-
alytically. Further simulations are also necessary here. What are the connections
with localization theory ?

(d) For disordered anharmonic systems, for disorder strength and anharmonicity
strengths denoted by ∆ and λ respectively, what is the phase diagram in the ∆−λ
plane ?

(e) For open systems there is a rigorous derivation of a linear response result
which is valid for finite systems. Is it possible to prove the equivalence of this
with the usual Green-Kubo formula for closed systems, in some example ? This is
probably true for systems with normal transport and probably not true for systems
with anomalous transport.

(f) Proof of non-existence (or existence) of phase transitions in one dimensional
models of heat conduction with short range interactions.

(g) One needs studies for quantum interacting systems since most experimental
work seems to be in this domain. We have seen that the Green’s function approach
has been successful in understanding harmonic systems (i.e. ballistic transport).
An extension of this approach to the anharmonic case would be very useful. Apart
from the Green’s function formalism, the approach used by Chen et al. [39] may
be a useful method for this problem.

(h) How valid is the hydrodynamic description for systems with anomalous trans-
port? If they are valid, what are the correct hydrodynamic equations? For example
we have seen that one cannot use the equation J = −κN (T )∇T to describe the
steady state.

(i) Non steady state properties: most of the studies on heat conduction have been
on measurement of current and temperature in the nonequilibrium steady state.
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In general of course one is interested also in time dependent properties. In fact the
diffusion equation following from Fourier’s law is itself a time-dependent equation.
Also many experiments make measurements in non-steady state conditions, such
as by studying heat pulses and frequency dependent studies. Thus it is necessary to
have more theoretical studies on heat flow in non steady state situations. Interesting
questions can be asked here, e.g., can one talk of a frequency dependent thermal
conductivity [219] ?

(j) Scalar versus vector models: for lattice models one question is whether the
dimensionality of the displacement vectors matters as far as exponents are con-
cerned. While it is usually assumed that dimensionality does not matter, it will be
nice to have a proof of this.

(k) Temperature dependence of conductivity or conductance: Apart from the
system size dependence it will be useful to get more results on the temperature
dependence of the linear response heat current, since this is one of the things that
experimentalists are interested in.
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