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1. INTRODUCTION

a-QUARTZ belongs to the trigonal enantiomorphous hemihedral class of
Symmetry, the space-group being represented by D;* (or the enantiomor-
phous D;%). The structure accordingly has a threefold screw axis. The
unit cell consists of thres SiO, triplets spaced at equal intervals along the
vertical axis, each turned through 120° with respect to its predecessor. [t
can scarcely be doubted that this scraw structure is responsible for the optical
rotatory power of quartz. Theories which sk to correlate the optical acti-
vity with the ultimate structure of the substancs exhibiting it have been put
forward by various authors In the past (vide the reviews by Condon, 1937;
Kauzmann es /., 1940).  Applications of these theories to evaluate the results
in particular crystals have been comparatively few. For the case of quartz,
there have been three attempts to calculate the rotatory power theoretically.
The first is by Hylleraas (1927), who has applied Born’s general theory of
coupled oscillators (1915). Hylleraas has deduced from the known data
for the double refraction and the rotatory power, the values of two lattice
constants, which agree well with the X-ray data. The second attempt is
by de Mallemann ( 1930) who has estimated the rotatory power in terms
of the refractivities of the atoms constituting the crystal. More recently,
Ramachandran (1951) has made detailed calculations of the first order terms
of the polarisability theory and obtains good values for the rotatory power
for the propagation of light both along and at right angles to the optic axis.
Though all these authors get a fairly good agreement with the observed
values, none of them has derived an explicit law of rotatory dispersion for

quartz, which is certainly a characteristic and noteworthy feature of the
phenomenon.

The rotatory power of quartz has been the subject of extensive experi-
mental study. Accurate data is available over a wide range of wavelengths,
Numerous attempts have been made to Tepresent these data by m:zans of
rotatory dispersion formulz (vide Servant 1939, 1941). Most of these formulz,
468




Theoretical Interpretation of the Optical Activity of Quartz 469

which generally involve a large number of terms, fail in the remote ultra-
violet and besides, they are open to objection from the theoretical stand-
point. For, as has been pointed out in an earlier paper (author, 1952 b),
the negative terms appearing in these formul® have been assigned arbitrary
strengths and do not conform to the summation rule of Kuhn (1927). It
has also been shown by the present author (1952 @) that the entire data from
the visible to the extreme ultraviolet is accurately represented by the formula
kA®

p= (R, 32 1
where k = 7-186 and 2, = 0-0926283 x. The rotatory dispersion at right
angles to the optic axis has been measured by Bruhat and Weil (1936), who
have summarised their results as follows. The ratio of the rotatory powers
normal to and along the optic axis of quariz is independent of the wave-
length between the range 5780 A.U. to 2540 A.U., the ratio being — 0-54,
to within an accuracy of 0-5 per cent. It is obvious, therefore, that the

rotatory dispersion formula normal to the optic axis would also be of the

same type as (1) with the value of A, unaltered, the constant k being re-
duced in the ratio of — 0-54.

In the present paper, a theoretical interpretation of the optical activity
of quartz, based on coupled oscillators, has been put forward, in which the
approach to the problem is quite different from the three previous attempts
to evaluate the rotatory power of this crystal. Briefly, the basis of the theory
is as follows. While the screw structure of quartz is responsible for its
optical activity, one may remark that it would not by itself suffice. For,
if we assume that each SiO, unit constituting such a structure is an optically
independent entity, it can readily be shown that the rotatory power would
vanish. It is necessary therefore, to consider the SiO, groups as forming
a connected system, if the observed optical behaviour of the crystal is to be
understood. The basic idea of this paper is that the screw-like structure
of the crystal iniiitences the spectroscopic behaviour of the constituent units
and it is this which ultimately gives rise to its rotatory power. It is shown,
from simple considerations of symmetry, that the characteristic frequency
of the individual units is split into two components which differ from each
other, as a result of the coupling between the neighbouring entities in the
crystal. It is further shown that this splitting affords a ready explanation
of the rotatory power of quartz both along and normal to the optic axis.
The principal merit of this treatment is that it leads directly to an expression
for the rotatory power of the same form as (1), which, as has already been
pointed out, agrees very well with the actual observed data for quartz.
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2. TuHE QUARTZ MODEL

Let us construct a simple model based on the screw structure of quartz.
We shall replace each SiO, triplet by a linear resonator located at its centre
of gravity and lying approximately along the line joining the oxygens. Let
the natural frequency of vibration of the charged particle in each resonator
when uncoupled be w,. Let us assume that there is a feeble coupling between
the neighbouring resonators. Since the successive resonators are exactly
identical, there would be a resonance interaction and the frequencies would
be affected. Thus, the question that comes up for consideration is that of
finding how the presence of a threefold axis in the structure influences the
modes and frequencies of vibration of these constituent units. We shall
proceed to examine this point. The characteristic feature of this model
is that by a translation of ¢/3 and a rotation of 120° about the c-axis, the
entire system is brought into coincidence with itself. We may, therefore,
assume that such an operation, which is a purely geometrical procedure,
would not alter the physical state and accordingly the modes and frequencies
of vibration of the system. This indicates that the effect of the symmetry
operation on a normal co-ordinate would be either to leave it unchanged
or transform it into its negative. Fixing our attention on any particular
normal mode, we notice that for this to be the case, the particles in the succes-
sive resonators should vibrate with equal amplitude and in directions differ-
ing by 120° as measured about the optic axis, and their phases should satisfy
one or other of the following conditions; (&) the phases identical in the
successive resonators or () the phases opposite in the successive resonators.*
It is evident that the frequency of vibration would be different in the two
cases, the magnitude of the difference being dependent on the strength of
the interaction between the neighbours. In other words, the natural frequency
w, of the individual units is split into two frequencies, w; and w,, as a result
of the coupling between the successive resonators. This simplified picture
is, of course, a purely classical one. We shall now see how the optical activity
of quartz could be accounted for, on the basis of these remarks.

3. Tue THEORY

It can easily be seen in the simplified model presented above, that the
dynamic or vibrational pattern of the entire crystal (including both modes
of vibration) can be completely reproduced by a unit consisting of a pair
of adjacent resonators. Let us call this unit the compound resonator. We

* It will be noticed that a similar result has been arrived at with regard to the atomic
vibrations in the successive cells of a crystal lattice by Sir C.V.Raman in his treatment of
crystal dynamics (1943).
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shall base our calculations on such a compound resonator and then extend
them to the whole crystal, remembering of course, that the successive com-
pound resonators are situated about a threefold screw axis.

Let the charge and mass of the particle in each resonator be ¢ and M
respectively. Let us, for convenience, put ¢ =fe and M = fim, where
e and m are respectively the charge and mass of the electron, and fis the
oscillator strength according to the usual definition. Let us choose a rect-
angular set of axes, the Z axis being parallel to the optic axis.

Propagation along the Optic Axis—When plane polarised light is incident
along the optic axis of quartz, it is split into two circular vibrations of
opposite senses, which travel with different velocities in the medium. Since
these two vibrations are coherent, they combine at every point to form a
plane polarised vibration which is rotated with respect to the plane of polar-
isation of the incident light, the rotation increasing directly as the thickness
traversed. If »; and n, be the refractive indices for left-handed and right-
handed circular light, then the rotation per unit length is given by

p = g (ﬂg — }1,). : (2)

We shall now proceed to calculate n; and #,.
Let right-circularly polarised light represented by
¢ = B, cos wt )
X 0 CO -(U } (3)
y = — E, sin wt
be incident along OZ. The force exerted by the light wave on the charged
particle of any resonator whose direction cosines are a, B, y, is
F, = feE, [a cos wt — B sin wi]. @
The force on the particle on the successive resonator which is rotated through
0 (= 120°) about the Z axis would be

Fy; = (a cos 8 — B sin ) feE, cos (wt — ¢)
— (o sin 8 + B cos 0) feE, sin (wt — ¢) )

where ¢ = ng\nd n being the mean refractive index and 4 is the distance

between the two resonators as measured along the optic axis. Since ¢ is
small, we may put cos$é =1 and sin¢ = ¢ in (5) and we get

Fy, = feE, [{a (cos 6 + ¢ sin ) — B (sin § — ¢ cos 6)} cos wt
+ {a (¢ cos § — sin 0) — B (cos 8 + ¢ sin )} sin wt]. (6)
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Let us confine our attention to the compound unit formed by these two
adjacent resonators. We have just seen that the compound resonator has
- two normal modes of vibration, one in which the two particles vibrate with
equal amplitude and in the same phase and the other i which the two
particles vibrate with equal amplitude but opposite in phase. Hence the
force exerted on these particles expressed in the two normal co-ordinates
are respectively

1
Re, = V3 (F, + F:a)_ | (7)
1
Ry = 25 (F, — Fy) ®)
Substituting for F; and F,, we get
E : .
R, :ff/i(’ [{o (1 + cos 6 + ¢ sin ) — B (sin 6 — 4 cos )} cos wt
+ {a(pcos & —sin ) — B(1 + cos 6 + ¢ sin 9)}sin wr] (9)
== (as,”) feE, cos (wt + o) (10)

where
(ag,)* = (a* + B2) (1 + cos 0 + ¢ sin 6),

neglecting higher powers' of ¢. Therefore, the equation of motion of the
particles would be of the form

B+ oé = (am’% cos (wt + a) (1)

— (. nJ€Eq cos (o + 0)
b= @) oo e (12)

Hence, the dipole moment induced

= () fej? o

M (o = &?)

= (a,")® f"’2 E,

m (E:K—cb 2)

(13)

putting M = fm. The dipole moment could be expressed as two componenis
at right angles to each other, say m, and m,,

where

= q2 (] ~ i 52 E,
m, a(lécosf)—;-qumQ)fm@?t_—wz;
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and
My = B2(1 4+ cos § -~ ¢ sin 6) f e _E-‘L
(wl — w?)’
These results are for a single compound resonator. Since the successive
compound resonators are situated about a threefold axis of symmetry, it
can easily be shown that the mean polarisability per unit volume for right
circular vibration

. N Umg £ my),
2E,

where N’ 18 the number of compound resonators per unit volume and is
equal to N/2, where N is the number of resonators per unit volume.

I

_ , (m,, -+ m3)
(n2 — 1), = 4n N ( .M,%E__-..,é;

AN @) S gL (16)

(12— g, = 7N (a2 & oo (17)

where
(@))% = (a®* + B% (1 — cos 6 — ¢ sin 8).
Let us write
n2—1)=n2— D, + (0,2 — 1), (18)
or left-circular light given by

x = B, cos wt )

y = Egsin wf f (19)
we have similarly, | |

i = g, = 7N (@,)* % ) (20)
and 1

(= Dy, = 7N (a4,)" '51 (w ézu'ey (21)
where

(ag)? = (a® + B2 (1 + cos § — ¢ sin 0)
(ag))? = (a® + B (1 — cos 6 + ¢ sin 6)
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and
(1 — 1) = (n2 — D, + (2 — 1)y, (22)

(P —n)=aN% s
7 m

S+
LR wy? — ot

[(_agx_lﬁ:_ﬂf)? ‘ (_faef_)f.:_(_fzga")?] (23)
where
(@)? — (@) = — 2 (a® + B2) $sin 0
(@))? — (a))? = 2 (a2 + B2) 4 sin 6.

It will be noticed that the numerators of the two terms of (23) are equal in
magnitude but opposite in sign, and this is in conformity with the summa-
tion rule of Kuhn’s which states that the sum of the numerators determining
the contributions of the different absorption frequencies to the rotatory
power should vanish. Putting (n; + n,) = 27 in (23), we get

, 2 5 9 . 1 1
2 (n; — n,) = 2aN ;’l S (a* 4+ B2) $sin 0 [wzz oy — wlz-:d)é]'
(26)
Let
w1 = wy? + 277:6 ) @
wg? = wy® — 2mte J

We shall assume that the resonators are feebly coupled, so that « is a small
quantity. Substituting ¢ = 27id/A and expressing in v's (= w/27), we

find that
Ne?dsin 0 fa2 - 2 fe
(Ill — 71,,) = ..____;.‘Xhm (wvz"‘“) (V(;Z V 2)2 (29)

neglecting €2/4 in the denominator.
Hence, the rotation per unit length

_m __w Ne?dsin 0 a2+ B2 fe
p=yl—n)=—" ( 5 (rof = v3)2 (30)
AN
(A2 — 29 Gl

where

mct

A, = mNe?d sin 6 A, (ai-;/ﬁ) fe.

If, more generally, we assign several resonators having different frequencies
of vibration to each SiO, unit, then, assuming that the resonance interaction
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between identical resonators in the successive units predominates, it can
casily be shown that

A N?
p= Z (AQ _"_'_ )lkz)z (32)

The ordinary refractive index along the optic axis is given by the relation

(”L02 - 1) == % [(’712 - 1) + (”rz — 1)]

— wN (a“ + B3 f [(L—}z_ioi,e - (L';ioif)]

ot 8

= 47“N
approximately, assuming that w, ~ w,. Thus, we notice that if the coupling
between the neighbours is feeble, the splitting of the frequency manifests

itself only in a second order effect like optical activity and not in a grosser
effect like refraction.

Propagation Normal to the Optic Axis.—The theory of propagation of
light in an optically active birefringent medium for directions inclined to
the optic axis has been dealt with by various workers (vide Pockels, 1906).
Along such directions, two similar elliptically polarised waves with opposite
senses of rotation and lying crossed to each other (i.e., the major axis of one
falling on the minor axis of the other) travel unchanged. The axes of the
ellipses coincide with the principal planes. If p is the rotatory power along
any direction and 3 the phase difference due to birefringence alone (if p = 0),
then the actual phase difference per unit length between the two elliptic waves
is given by

A = [8% - (2p)] (34)
and the ratio of the axes
2
= (5) es)

Proceeding in the same manner as before, approximate expressions for the
refractive indices of the two ellipses may be derived. We shall base our
arguments on the same compound resonator which was considered
previously.
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Let a right-rotating ellipse given by

x = B4 cos wr
(36)
z = —-(285) E,sin wi }
be incident along the Y axis.
. F, = feE, [a cos wi (‘-"gi v sin wz‘] @)

and
2
Fs = feE, [(a cos ¢ — Bsin 8) cos (wr — ) — (:88 v

sin (wr — a/:.y)] (38)
2k - . .. .
where ¢, = 17Tf\£?, where 77 is the mean refractive index and 2, the distance

between the resonators as measured along the Y axis.
Ry = ]—rf—%“ {a (1 4- cos ) — Bsind -+ b,y (%p)} cos wt
+ {zﬁy 5c0s § — i, Bsin 6 — 2 (%P)} sinwt].  (39)
Therefore the moment induced m,
=3 [a2 (1 + cos 6)* + B*sin% § — 2a8sin 0 (1 + cos 4)
+ 20, (‘%’) oy (1 — cost) + 2, (:233) By sin&]
T ertay @)

neglecting higher powers of 4, and (%’3) If, on the other hand, we consider
a similar ellipse given by

y = Eq4cos wt
= — (%E) E, sin wr } “0
propagated along the X direction, the moment
m, =1 [a2 sin* 6 + B82(1 + cos 0)* + 2¢ Bsin 8 (1 + cos 6)
2 . n 2 2
— %, (—3‘—’) ay sinf - 24 (‘SB) By (1 — cosﬁ)] f%
E
@2 ;Q_*Jé - (42)
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2znp.. . .
where , = -7—%-‘2%-, where p,. is the distance between the resonators as measured
along the X axis. Without any loss of generality, we may choose the axes
suitably so that 4, = i, = . Since the successive compound resonators.
are situated about a threefold axis of symmetry, the mean polarisability per
unit volume is
N Ong -=my) N, + m,),
2B, 4E,

where N and N’ have the same significance as before.

(n,* — 1), = 4=N’ Qf,’;’,xz‘g;i’f ) (43)
= N (@) m (02 — w?)’ (44)
where
@y = @+ 89 0+ eos )+ 0 (%) 1]
where

I = ay (1 — cos 6 — sin 0) + By (1 — cos & + sin 4}
In a similar manner,

(2= Dy =aNG@r s L 45)
where '

(a7 = [(2 4+ 89 (1 —cos &) — 4 (%) T].

For the crossed left-rotating ellipse given by

x(ory) = (%’3) E,cos wr }

. (46)
< LG Sin wt
we have
(- 1)g, = 7N (a,)? :;, (;1'1»"‘%;,?‘ “7)
and
(ot = D= 7N @) &, (o @)
where

@y = [0 =4 (%) T]

Al0
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and

() = ['# (}}f r ]

: 2 2 ; 2 2y, 40
(nlz - }17‘2) == (1[{“ o II"~.)§1 T (,11 . il;‘ v)‘:r, ( 1 J
. . o NG e A e .
—aN & p[@s)? = @) (an)® - ay)) ]. (50
=T m wlﬁ e ) 2 ' Wy o ¥
where LI ,
. o ¥ o> Qi e ;i LA i ! ' :
(aél")il — (a€17)3‘ =z [4'}/' ~~~~~ (a“ -y fl;'“) (—‘{ =t OO H) ' 214‘/‘ ( S )j j
and ‘ R _
2 T v (Y b v [P g
(@)t — (@) = [ T U cos )+ 2y ( s) 0
Now,
7 - - ey . @ * X
'»';—T (n? — 2 =2 A == 25 [8* (2p)*] trom (34
‘ - [o , 2p% . o
== 7n [é) 4= 5 llppl'OK!Ill;liCl}a (31
From (50), %g (n* — 1% may be written as (wo part.. say P and Q,
where
_2m et Tyt (et 4 B (L 4 cos )
P = '—X ZTN ;;1 f LA ,u). g ‘l,u‘z
1
(a® B*) (1 CUNEE Y
(U::z u;": ' (‘ﬂ }
and
27 e L[ 20N vl T ] I
=3 NG f[2 ()| [ e L s
NGB or o (o ey o
P could be approximately written as
2n e? L rdy? — 2 (a2 - 52)-
AN f[-l’w__ﬂ,ﬂ_.nﬁ,.(..,wj.g“{ ) (54
m Wy — w j

assuming that w, = Wy,

Now, in the above model, it can easily be seen that the expression tor the
extraordinary refractive index is

B4 i e
oY £t
G — l=daN< __JY 5
¢ m (wy? == w?) (353

while that for the ordinary index is (33).

Hence

2m y -
P= % (12 — n,%) = 25 6. (56}

R e ot s
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Thus from (51) and (56), we find that we may equate

= 25 (%"
Q=2 (T) | (57)
Comparing the values of Q from (53) and (57) and substituing for , we get,
4 Nep I'f 1 1
P = MA2 [wf Tt wf— wz]' (58)

Here again we notice that Kuhn’s summation rule is fulfilled. Substituting
(1% — wy?) = 4n%¢, and expressing in terms of v’s, we get

#Ne? p I fe B, A2

P= e G — 102~ (=X DF (59)

where
_ aNe2pAAl fe

B
0 mct

We thus arrive at the interesting result that the rotatory dispersion
formule normal to and along the optic axis are identical in form. This
is in conformity with the observations of Bruhat and Weil.

4. EVALUATION OF THE MAGNITUDE OF THE SPLITTING OF THE
CHARACTERISTIC FREQUENCY

It will be noticed that, throughout, in the derivation of the formule
for the rotatory power, the assumption has been made that the resonators
are feebly coupled, so that e is taken to be a small quantity. It would,
therefore, be of great interest to make an actual estimation of the extent
of the splitting of the characteristic frequency of each resonator. In fact,
from the known data for the refraction and the rotation, such an estimation
is possible.

It has been shown in an earlier paper by the present author, that the
ordinary dispersion of quartz along the optic axis can be fitted up fairly
well by a one-term formula of the Sellemeyer-Drude type involving the
characteristic wavelength appearing in (1). The formula is

2 1-35A2
o' — 1= 35 050926289

Now, in the model which we have just considered, the expressions for the
rotatory power and the refraction are respectively:

wNe?d sin 0 A* Fe A?
ST =3 Gla)

(60)

All
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where F =} (a? 4- g?) /i p is expressed in radians per cm. and A in cm.,

Ne2 A2 F A2 ‘ ‘
21 =2 % r A
and n,, 1 T (A _ (330)

It should be pointed out here that the constant occurring in the numerator
of formula (60) is independent of the units in which A is expressed. On =

the other hand, that appearing in the rotatory dispersion formula (1) is only
valid when A is expressed in microns. '

If we assume that the characteristic wavelength A, of each resonator
has the same value as that used in (1), then from (60) and (33 @) we obtain

the relation '
Ne? \? F o
f-»-mﬂé’2—— =1-35. o (61)

For a-quartz, the average volume occupied by a single SiO, triplet has been
calculated to be 37-4 x 102 cc. (Sosman, 1927).

<+ N=2-68 x 102 resonators per c.c.

We also have e = 4-8 X 10~ e,

=53 % l0es.u.

S

Ay = 0926283 x 10-5
¢ =3 x 10 cm./sec.
and hence from (61), we find that

F=6-5 (62)

From the X-ray data, the parameter ¢ of the unit cell of d-quartz is found

to be 5-393 AU. Therefore, .

d=c/3=1.8 x 10~ cm. -
Also,

sin 0 = sin 120° = /32
AO4 = 0'736 X 10_20

95

m?img = 3-027 x 105, for A = 5893 x 10-8 cm,
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For A= 5893 x 10*cm. p = 217° per em. = 217/57-3 radians per
cm. Hence, from (31 a),

e=6-36 x 102
= V12 —_— V22 - 2V0 SVO

2
— 2%3 &)y (numerically)

o 82, = 28 A.U.

We thus see that the characteristic wavelength A, of each resonator is split
into a close doublet, A; and A,, which differ by 28 A.U. as a result of the
coupling between the neighbouring resonators. It is gratifying to find that
the assumption that the coupling constant is small is supported by the above
calculation.

5. THE RATIO p,/o,,

We shall now proceed to evaluate the birefringence and the ratio of
the rotatory powers normal to and along the optic axis. The expressions
for the two refractive indices are given by (33) and (55) respectively, while

pr By _ play(1— cosd —sinf) + By (1 — cos + sin 0)]
Py AT A (& ysing
(62)

The value of the various constants occurring in these formule may be
obtained from the X-ray data for quartz. '

Assuming that the resonators be exactly along the line joining the
oxygens in each SiO, triplet, it is readily shown that they are inclined at an
angle of about 64° 46" to the vertical Z-axis. Fig. 1 (b) shows the projection
of a compound resonator formed by the two SiO, units A and B, on the X-Y
plane. The axes of X and Y have been chosen to be equally inclined to
AB, since in such a case, ¥, and 4, occurring in (40) and (42) would be equal.
As has already becn pointed out, the successive compound resonators are
situated about a threefold axis of symmetry and hence it is enough if we
just consider the unit AB for our calculations. The direction cosines of the
resonator A are found to be a = — 0-8738, 8 = 0-2342 and y = 0-4263.
When these values are substituted in the expressions for the refractive indices,
it is found that the birefringence is not exactly accounted for. Hence the
values have been altered to — 0-8, 0-1523 and 0-5812 respectively, in which
case the calculated birefringence agrees exactly with the experimental value,
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From the X-ray data, it is readily shown that p (= AB/+/2) and d are 2-8
A.U. and 1:8 A.U. respectively. We then obtain the result

Pr — 05,
Pi

which differs but 'slightly from the observations of Bruhat and Weil.

6. DISCUSSION OF RESULTS

We have seen how, by means of an elementary modesl, the rotatory
dispersion of quartz, both along and transverse to the optic axis, can be
explained in a simple manner. The model also accounts for the refractive
dispersion of quartz quite satisfactorily. For, quartz is a unique substance
in which the dispersion of p,,, p, *, n, and n, are all represented fairly well
by means of a single absorption wavelength at about 926 A.U. (Chandra-
sekhar, 1952 a; Ramdas, 1952). Thus, the approximation involved in
replacing each SiO, triplet by a single resonator is to a large extent
justified.

* In an earlier paper, the present author (1952 b) had fitted a formula for p; . This formula
is incorrect as it is based on the preliminary observations of Bruhat and Grivet, the later and
more accurate measurements of Bruhat and Weil having been inadvertently overlooked. The
data of the latter authors establish clearly the fact that 2 is the same for p, and py;.
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These are also certain general features about optical activity which
emerge from this theory. First of all, we notice from (31) that p 18 propor-
tional to sin 8. Hence, it follows that the sense of the rotation depends
on the sign of 6. This leads to the result that the two enantiomorphous
forms have opposite rotation. The refractive index, on the other hand,
is independent of 6, and therefore, is the same for right and left-rotating
quartz. Secondly we find that p is proportional to ¢, the coupling constant.
Thus, if the coupling vanishes, the rotation would be zero. This is in con-
formity with the well-known result of the coupled oscillator theory, that
only coupled electrons contribute to the rotatory power. Thirdly, the rota-
tion is proportional to the phase of the incident light wave. If the wave-
length of the incident radiation is made very large compared to the inter-
atomic dimensions, then the rotatory power would vanish. This also follows
indirectly from the rotatory dispersion formula itself. In refraction, how-
ever, the phase does not come into consideration.

In view of the remarkable agreement of the formula (1) with the observed
data for quartz, it appears that the idea that its optical activity arises as a
result of the splitting of the characteristic frequency in the crystal structure
is certainly justified. This is further supported by the fact that the magnitude
of the splitting, as estimated from the known data for refraction and rotation,
is very small, which is actually the assumption underlying the theor y. In
fact, such a model may be used, more generally, to give a simple explana-
tion of the optical activity of crystals which are not active in the state of
solution.

In conclusion, I record my sincere thanks to Prof. Sir C. V. Raman
for the discussions I had with him during the course of this work.

7. SUMMARY

As a result of the interaction between the successive entities constituting
the crystal, the spectroscopic behaviour of the individual units would be
altered and it is found that this affords a ready explanation of the optical
activity of quartz. Replacing each SiO, unit by a lincay resonator of natural
frequency wg, it is shown from simple considerations of symmetry, that w,
is split into two frequencies w, and w, By a classical discussion, it is
demonstrated that this splitting gives rise to optical activity both along and
transverse to the optic axis. The expression for the rotatory power is
found to be of the form

p = kA2J(A2 — Ag2)?
which fits remarkably well with the observed data for quartz. From the
known values of refraction and rotation, the magnitude of the splitting has

Al2




484 S. CHANDRASEKHAR

been estimated to be 28 A.U., which supports the assumption underlying
the theory that the resonators are feebly coupled. By assuming that the
resonators lie approximately, though not exactly, along the line joining the
oxygens in each SiO, triplet, it has been possible to quantitatively account
for the birefringence and the negative rotation transverse to the optic axis,
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