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Abstract
Background: While standard reductionist approaches have provided some insights into specific gene
polymorphisms and molecular pathways involved in disease pathogenesis, our understanding of complex traits
such as atherosclerosis or type 2 diabetes remains incomplete. Gene expression profiling provides an
unprecedented opportunity to understand complex human diseases by providing a global view of the multiple
interactions across the genome that are likely to contribute to disease pathogenesis. Thus, the goal of gene
expression profiling is not to generate lists of differentially expressed genes, but to identify the physiologic or
pathogenic processes and structures represented in the expression profile.

Methods: RNA was separately extracted from peripheral blood neutrophils and mononuclear leukocytes,
labeled, and hybridized to genome level microarrays to generate expression profiles of children with polyarticular
juvenile idiopathic arthritis, juvenile dermatomyositis relative to childhood controls. Statistically significantly
differentially expressed genes were identified from samples of each disease relative to controls. Functional
network analysis identified interactions between products of these differentially expressed genes.

Results: In silico models of both diseases demonstrated similar features with properties of scale-free networks
previously described in physiologic systems. These networks were observable in both cells of the innate immune
system (neutrophils) and cells of the adaptive immune system (peripheral blood mononuclear cells).

Conclusion: Genome-level transcriptional profiling from childhood onset rheumatic diseases suggested complex
interactions in two arms of the immune system in both diseases. The disease associated networks showed scale-
free network patterns similar to those reported in normal physiology. We postulate that these features have
important implications for therapy as such networks are relatively resistant to perturbation.
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Background
Genome-based technologies provide us with an unprece-
dented capacity to understand complex biological systems
and their relationship to health and disease. This is espe-
cially true for complex biological traits (e.g., atherosclero-
sis, hypertension), which have largely eluded our
understanding using conventional, reductionist
approaches. Indeed, even single-gene traits have demon-
strated previously unsuspected levels of complexity when
scrutinized through the lens of whole-genome technolo-
gies [1-3]

Chronic inflammatory diseases such as rheumatoid
arthritis (RA) and juvenile dermatomyositis (JDM) are
examples of human diseases whose etiologies and patho-
genic mechanisms remain incompletely understood.
Once thought to be purely "autoimmune" diseases trig-
gered by a breakdown of the mechanisms that distinguish
"self" from "non-self," it is becoming increasingly clear
that these diseases involve complex interactions between
the adaptive immune system (where these distinctions are
made and immunologic memory is "stored") and the
innate immune system (the parts of the immune system
that do not require prior antigen exposure for optimal
function) [4,5]. We therefore had begun to investigate
these diseases from a systems biology approach, in which
multiple relevant biological/pathological pathways can
be queried simultaneously and their changes observed,
defined, and modeled [6,7].

Until recently, there were no biomedical tools available to
facilitate taking this approach. Advances in miniaturiza-
tion and robotics have made this approach feasible, pro-
viding the opportunity to address critical questions of
pediatric rheumatic disease pathogenesis, diagnosis, prog-
nosis, and identification of targets of therapy in this "glo-
bal" way. This understanding, in turn, is critical to our
understanding the disease and our translation of that
understanding into clinical practice. Of the available
genome-wide technologies, gene expression microarrays
are in the most mature phase of development, allow the
most rigorous level of independent corroboration, and
show the greatest promise for rapid translation into the
clinical sphere [8].

One of the potential strengths of the currently available
systems biology tools is the capacity to identify pathologic
networks that underlie disease phenomena. Specifically,
gene expression profiling has the capacity to do more than
generate lists of differentially expressed genes; it provides
an opportunity to observe gene regulation across the
genome for patterns associated with health and disease.
The current study was aimed at testing the feasibility of
using gene expression profiling as a first step in under-
standing the structure of pathogenic networks in a family

of illnesses collectively called childhood onset rheumatic dis-
eases, particularly those diseases that are unique to child-
hood: juvenile idiopathic arthritis and juvenile
dermatomyositis. Our findings have important implica-
tions to both our understanding of disease pathogenesis
and to development of new therapies for these perplexing
diseases.

Methods
Patient populations and control subjects
All human subject involvement in this study was reviewed
and approved by the University of Oklahoma Health Sci-
ence Center Institutional Review Board. As a proof-of-con-
cept for the use of gene expression profiling and in silico
modeling to identify pathologic and interconnecting
structures, we studied two pediatric inflammatory dis-
eases of diverse phenotype.

Juvenile idiopathic arthritis (JIA)
Children with this disease present with joint inflamma-
tion and synovial proliferation. Children in this study (12
females and 2 male; ages 3 – 13 years) were limited to
those who fit criteria for the polyarticular, rheumatoid fac-
tor-negative subtype as defined by the International
League Against Rheumatism [9]. All children had active
disease as defined by consensus criteria developed by Wal-
lace et al [10].

Juvenile dermatomyositis (JDM)
Children with juvenile dermatomyositis present with
insidious onset of weakness and display a characteristic
rash. Histopathology of affected muscle shows a distinct
vasculitis and perivascular infiltrate composed primarily
of lymphocytes and monocytes [11]. Children in this
study (9 females and 8 males; ages 7 – 18 years) all fit cri-
teria for diagnosis as established by Bohan and Peter [12]
and had active disease at the time of study.

Pediatric controls
Children undergoing elective surgery for non-inflamma-
tory conditions (e.g., removal of an orthopedic appliance,
cosmetic surgery for pectus excavatum, etc; 9 females and
2 males, ages 7 – 18 years) were used as controls for this
study. Screening questions excluded children with past
histories of arthritis and/or muscle inflammation and
children with first degree relatives with systemic lupus,
rheumatoid arthritis (adult or childhood onset) or
inflammatory muscle disease. Blood specimens from con-
trol children were handled in a manner identical to the
handling of patient specimens.

Specimens and processing
Following the execution of the informed consent process
as approved by the University of Oklahoma Health Sci-
ences Center (OUHSC) Institutional Review Board, 20 mL
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of whole blood was drawn into sterile sodium citrate
tubes containing a cell density gradient (BD Biosciences
Vacutainer® CPT™ Cell Preparation Tube, # 362761, San
Diego, CA, USA) and carried immediately to the Pediatric
Rheumatology Research laboratories on the OUHSC cam-
pus. Granulocytes were immediately separated from
mononuclear cells by density gradient centrifugation.
Centrifugation was performed at room temperature.
Mononuclear cells were removed from the density gradi-
ent interface and placed immediately in TRIZOL® Reagent
(Invitrogen, Carlsbad, CA, USA). Granulocytes and red
cells layered in the bottom of the tube were separately col-
lected. Red cells were removed from the granulocytes by
hypotonic cell lysis as recommended by the manufacturer,
and granulocytes were placed immediately in TRIZOL®

reagent for RNA purification. This method has been
shown to provide the least amount of artifact in neu-
trophils prepared for microarray analysis [13,14].

Microarray platform
Affymetrix human U133 Plus 2.0 GeneChip® microarrays
were used for all samples (Affymetrix, Inc., Santa Clara,
CA). This platform contains oligonucleotides representing
approximately 47,000 transcripts, including alternative
splice variants of selected mRNAs.

RNA purification, labeling, hybridization, and scanning
Total RNA extractions from Trizol® reagent were carried
out according to manufacturer's directions. RNA was fur-
ther purified by passage through RNeasy mini-columns
(QIAGEN, Valencia, CA) according to manufacturer's pro-
tocols for RNA clean-up. Final RNA preparations were sus-
pended in RNase-free water. RNA was quantified
spectrophotometrically. RNA integrity was assessed using
capillary gel electrophoresis (Agilent 2100 Bioanalyzer;
Agilent Technologies, Inc., Palo Alto, CA, USA) to deter-
mine the ratio of 28s:18s rRNA in each sample. A ratio
greater than 1.0 was used to define samples of sufficient
quality, and only samples above this limit were used for
microarray studies. Four samples from neutrophils
obtained from controls, 2 samples from PBMC obtained
from controls, 1 sample from PBMC obtained from
patients with JIA, and 1 sample from PBMC obtained
from a patient with JDM were excluded from the study for
this reason. No statistically significant differences in RNA
quality were found within cell types between patients and
controls. cDNA synthesis, hybridization and staining were
performed as specified by Affymetrix (Santa Clara, CA).
Briefly, 5 ug of total RNA was primed with T7-oligo-dT
and reverse transcribed with SuperScript II, followed by
production of double-stranded cDNA with E coli DNA
polymerase. cRNA was transcribed in vitro from the T7
promoter using a biotinylated ribonucleotide analog and
then fragmented to approximately 100 nt. cRNA was
hybridized to Affymetrix GeneChips described above, and

then washed and stained using an Affymetrix automated
GeneChip® 450 fluidics station. Microarrays were scanned
with an Affymetrix 3000 7G scanner.

Statistical analysis
Data pre-processing was performed in the R/Bioconductor
Package, "Affy". The raw Affymetrix perfect match probes
were normalized by the RMA method combined with
median-polish [15]. The marginal data distributions were
adjusted through quantile normalization. The resulting
normalized values were imported into BRB ArrayTools
(Biometric Research Branch, National Cancer Institute)
where they were then log transformed. Genes were filtered
using the "Log Expression Variation Filter" to screen out
genes that are not likely to be informative, based on the
variance of each gene across the arrays. In this case, the fil-
ter was set to exclude genes that fell below the 50th per-
centile of gene variance. We identified genes that were
differentially expressed between the two classes by using a
multivariate permutation test [16,17]. We used the multi-
variate permutation test to provide a p value < 0.001. The
test statistics used were random variance t-statistics for
each gene [18]. Although t-statistics were used, the multi-
variate permutation test is non-parametric and does not
require the assumption of Gaussian distributions. Data
were exported to Excel (Microsoft, Redmond, WA) where
averages of the classes were used to calculate expression
ratios. Genes that simultaneously were differentially
expressed (p < 0.001), a between class ratio of 1.8-fold or
larger, and minimum normalized average intensity > 64
units in at least one group were retained for further analy-
sis. Unsupervised hierarchical clustering of both samples
and genes was performed in Spotfire (Sommerville, MA)
after z-transformation of the data using Ward's minimum
variance method [19]. Differences between cluster groups
will be tested through a Chi-Square test. A p-value less
than 0.05 was considered statistically significant.

Reverse transcription – quantitative real-time PCR 
validation
Four differentially expressed genes in JIA patients relative
to controls were tested using quantitative real-time PCR,
namely prostrate acid phosphatase (ACPP), CUG triplet
repeat RNA binding protein 2 (CUGBP2), coagulation
factor XIII A1 polypeptide (F13A1), and cortactin (CTTN).
The human glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) gene was used as an internal control. For JDM,
myeloid cell leukemia sequence 1 (MCL1), proteasome
26S subunit, non-ATPase 7 (PSMD7), CD160, granzyme
K (GZMK), and v-myb myeloblastosis viral oncogene
homolog (avian)-like 1 (MYBL1) were tested. Total RNA
was isolated as described above. Primers were designed
with a 60°C melting temperature and a length of 9–40
nucleotides to produce PCR products with lengths
between 50–150 bp using Applied Biosystems' Primer
Page 3 of 14
(page number not for citation purposes)



BMC Medical Genomics 2009, 2:9 http://www.biomedcentral.com/1755-8794/2/9
Express 2.0 software (Applied Biosystems Inc., Foster City,
CA). First strand cDNA was generated from 1.8 ug of total
RNA per sample using OmniScript Reverse Transcriptase
according to manufacturer's directions (QIAGEN, Valen-
cia, CA). cDNA was diluted 1:20 in water. PCR was run
with 4 μl cDNA template in 20 μl reactions in duplicate on
an ABI SDS 7000 using the ABI SYBR Green I Master Mix
and gene specific primers at a concentration of 0.2 μM
each. The temperature profile consisted of an initial 95°C
step for 10 minutes, followed by 40 cycles of 95°C for 15
sec, 60°C for 1 min, and then a final melting curve analy-
sis with a ramp from 60°C to 95°C over 20 min. Gene-
specific amplification was confirmed by a single peak
using the ABI Dissociation Curve software. Average Ct val-
ues for GAPDH (run in parallel reactions to the genes of
interest) were used to normalize average Ct values of the
gene of interest. Relative ΔCt was used to calculate fold-
change values between groups.

Pathway analysis
Pathways were generated by placing only statistically sig-
nificantly differentially expressed genes with a minimum
1.8-fold difference between groups into Ingenuity Path-
ways Analysis (Ingenuity Systems®, Redwood City, CA).
Each Affymetrix gene identifier was mapped to its corre-
sponding gene object in the Ingenuity Knowledge Base.
These "focus" genes were overlaid onto a global molecular
network developed from information contained in the
Ingenuity Knowledge Base. The software then algorithmi-
cally developed networks around these focus genes based
"connectivity" derived from known interactions between
products of these genes. No additions of molecules to
these networks were made by authors. Network score val-
ues listed in figure legends are the -log10 (p-value) of find-
ing this number of focus genes in a group of randomly
selected genes the size of a given network.

Results
Gene expression differences in neutrophils and PBMC 
distinguish patients with juvenile onset rheumatic diseases 
from controls
Microarray data from isolated peripheral blood neu-
trophil RNA were obtained from 14 patients with active
polyarticular JIA and from 13 control subjects. All data are
available at NCBI's Gene Expression Omnibus (GEO
Series Record GSE11083). Sixty genes were statistically
significantly differentially expressed between these groups
(Additional File 1). Nine of these genes were over-
expressed in patients (1.8 – 3.0-fold different), and 51
were under-expressed in patients (1.8 – 2.5-fold differ-
ent). Analysis of data from neutrophil samples from 14
patients with JDM and 13 controls revealed fifteen differ-
entially expressed genes (Additional File 2), five that were
under-expressed in patients (1.8 – 2.3 fold) and ten that
were over-expressed in patients (1.8 – 2.4 fold different).

RNA isolated from PBMC from 15 patients with JIA, 13
patients with JDM, and 15 controls were used to obtain
PBMC microarray datasets. The number of differentially
expressed genes in PBMC was higher than in neutrophils
for either disease relative to controls. Specifically, 128
genes differed in expression patterns between PBMC of JIA
and controls (Additional File 3). 26 were under-expressed
(1.8 – 2.6 fold different) and 102 were over-expressed (1.8
– 5.0 fold different) in patients. Twenty-six genes were sta-
tistically different between the JDM and control PBMC
samples (Additional File 4). All of these were under-
expressed in patients (1.8 – 6.9 fold different) with the
exception of a 1.9-fold over-expression of mitochondrial
tumor suppressor 1 (MTUS1) in patients.

No genes were found that were differentially expressed in
both PBMC and neutrophils from JDM patients relative to
controls. For JIA, two genes were differentially expressed
in both PBMC and neutrophils relative to controls,
namely phosphatase and tensin homolog (PTEN, Gen-
bank accession AK021487, Affymetrix probe set id
233314_at) that was under-expressed 1.9-fold in JIA neu-
trophils and 2.6-fold in JIA PBMC, and ankyrin repeat
domain 10 (Genbank accession AW299775, Affymetrix
probe set id 235008_at) that was under-expressed 2.0-fold
in JIA neutrophils and 2.6-fold in JIA PBMC. Therefore,
the majority of differentially expressed genes identified
here are unique to particular types of leukocytes.

We also found a small number of genes that were differ-
entially expressed in both diseases relative to controls
within a given type of cell. Products of such genes with
similar expression patterns in both diseases may function
in overlapping inflammatory or autoimmune aspects of
these conditions. Two differentially expressed neutrophil
genes were found in both diseases, namely the transcript
encoding the CUG triplet repeat, RNA binding protein 2
(AA700631; 1565599_at) that was 2.2- and 2.4-fold over-
expressed in JIA and JDM respectively; and the transcript
encoding phosphatidylinositol binding clathrin assembly
protein (AW293296; 239102_s_at) that was 2.3- and 1.8-
fold under-expressed in JIA and JDM, respectively. For
PBMC, three genes were differentially expressed in both
diseases relative to controls, namely granzyme K (GZMK)
that was 1.9-fold under-expressed in both diseases, home-
odomain-only protein (HOP) under-expressed 1.8-fold in
both diseases, and v-myb myeloblsatosis viral oncogene
homolog (avian)-like 1 (MYBL1) under-expressed 1.9-
fold in both diseases. One other gene (225239_at) whose
product has not been functionally characterized was also
differentially under-expressed in PBMC from both dis-
eases relative to controls. Based on these findings, gene
expression patterns of these diseases are considerably dif-
ferent form one another.
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For both childhood-onset rheumatic diseases studied
here, patients could be distinguished from control chil-
dren by hierarchical cluster analysis of microarray data
obtained from peripheral blood cells. Figure 1 shows a
heat map of differentially expressed genes that were iden-
tified in neutrophils from patients with JIA and controls.
All control samples clustered to the right side of the heat
map while all patients clustered to the left. These results
demonstrate that gene expression profiling of neutrophils
distinguishes most children with JIA from a control pop-
ulation of children (X2 = 23.14; p = 1.5 × 10-6). Hierarchi-
cal clustering of differentially expressed neutrophil genes
also separated the majority of patients with JDM samples
from controls. The cluster on the right side of Figure 2 rep-
resents data obtained from 12 patients and 2 controls,
while the cluster on the left side contains data from 2
patients and 11 controls (X2 = 10.69, p = 1.1 × 10-3).

Differentially expressed genes in PBMC were also good at
discriminating either disease from controls using hierar-
chical clustering. For JIA, the left cluster in figure 3 con-
tains samples from 15 controls and five patients, while the
right cluster contains only samples from eight patients (X2

= 10.08, p = 1.5 × 10-3). For JDM, the left cluster in Figure
4 contains 12 patient samples, while right cluster contains
one patient and all control samples (X2 = 20.61; p = 5.6 ×
10-6). Patient 399 had active disease at the time the blood
sample was donated for this study.

Nine differentially expressed genes selected from both cell
types in both diseases were analyzed for differences using
quantitative real-time PCR (MCL1, PSMD7, CD160,
GZMK, MYBL1, ACPP, CUGBP2, F13A1 and CTTN). In
every case, those that were differentially over- or under-
expressed on microarrays were similarly over- or under-
expressed by quantitative PCR.

To better understand potential functional interactions
between products of genes that were differentially
expressed in these childhood-onset rheumatic diseases
relative to childhood controls, differentially expressed
genes were analyzed in silico using the Ingenuity Pathways
Analysis (IPA) software (Ingenuity® Systems, Inc., Red-
wood City, CA). For each disease and cell type, we
observed multiple interconnected networks between gene
products, a feature designated modularity that is character-
istic of normal metabolic networks. [20]. Within net-
works, certain gene products had numerous known
interactions with other products (high connectivity),
while other products had relatively few interactions. Fig-
ures 5, 6, 7, 8 contain representative examples. Of the 128
genes that were differentially expressed in PBMC from
patients with JIA relative to controls, seven networks were
identified that each contained twelve or more differen-
tially expressed genes. Figure 5 shows high connectivity

for tumor necrosis factor (TNF) and interferon gamma
(IFNG) and lower connectivity for most other genes (e.g.,
SMAD2). The score calculated by Ingenuity Pathway Anal-
ysis software for this network is 20, indicating the proba-
bility of finding this number of focus genes in a randomly
selected group of genes of this network's size is <10-20.
(Network scores for all networks shown are listed in the
figure legends.) Figure 6 shows results derived from gene
expression differences in neutrophils from JIA patients rel-
ative to controls. Of the 60 genes that were differentially
expressed, IPA identified 4 networks that each contained
at least 9 differentially expressed genes. Here, NFKb and
the kinases ERK, P38MAPK and MAPK14 show high con-
nectivity. These kinases have been linked to the genera-
tion of reactive oxygen species in rheumatoid arthritis
synovium [21]. In network theory, nodes with high con-
nectivity are defined as hubs [22]. These results demon-
strate that hubs may be represented by both non-
differentially expressed (e.g., Figure 5) and differentially
expressed genes (e.g., Figure 6). These transcriptional
hubs may be connected to nodes that represent differen-
tially expressed (shown in color) and similarly expressed
genes. All seven networks generated from the JIA PBMC
data and all 4 networks generated from the JIA neutrophil
data contain such hub and node structures.

Such networks are not restricted to disease-associated
transcriptional changes in JIA. Gene expression profiles in
PBMC obtained from comparing patients with JDM to
controls revealed TNF, nuclear factor kappa B (NFkB) and
interferon gamma (IFNG) hubs from similarly expressed
genes and a VIL2 hub from one of the differentially
expressed genes between these groups (Figure 7). The TNF
hub was also observed in a JDM neutrophil-derived net-
work (Figure 8). A type 1 interferon signature has already
been reported in JDM muscle [23] and peripheral blood
of both adults and children with inflammatory mypoathy
[24]. Polymorphisms in the TNFA gene are known to con-
fer disease risk and are associated with differences in clin-
ical course and disease outcome in JDM.

The functional modeling of differentially expressed genes
illustrated here has identified long-suspected pathologic
hubs centering on TNFα and IFNγ, and, in addition, a pre-
viously unknown (but biologically sensible) hub for pro-
teins such as VIL2. These results demonstrate that hub and
node structures, also known as scale-free networks [25] that
have been described for normal metabolic processes are
also observed in both neutrophils and PBMC gene expres-
sion signatures of these diseases.

Discussion
One important insight that has emerged from the
genomic era of biology and medicine has been the devel-
opment of deeper insights into the complexity of biologi-
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Hierarchical cluster analysis derived from gene expression profiling in neutrophils of children with active polyarticular JIA and neutrophils from control childrenFigure 1
Hierarchical cluster analysis derived from gene expression profiling in neutrophils of children with active pol-
yarticular JIA and neutrophils from control children. Clustering was performed using Ward's method which clustered 
on both the samples and the genes. Control samples are designated by the prefix "C", patient samples are designated "P". Each 
column represents patterns of genes from a separate sample, indicated by different numbers. Each row represents a separate 
gene. Red: genes that are over-expressed in disease; green: genes that are under-expressed in disease.
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cal structures and processes. Prior to this era, biologists
were able to work under the assumption that biological
processes were essentially linear and that different compo-
nents of inter-related metabolic systems functioned
according to classical network theory as articulated by
Erdos and Renyi [26]. This theory assumes that each pair

of constituents (nodes or vertices) in a network is con-
nected in a linear fashion to each other by edges. Further-
more, each node has generally the same number of links
with the others, and that the number of links follows a
Poisson distribution depending on the number of constit-
uents in the system. However, computer modeling of bio-

Hierarchical cluster analysis derived from gene expression profiling of neutrophils from JDM and control samplesFigure 2
Hierarchical cluster analysis derived from gene expression profiling of neutrophils from JDM and control sam-
ples. Columns and rows are as described in Figure 1.
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logical systems has challenged that concept [22]. Evidence
from genome sequencing and known biochemical func-
tions of specific proteins suggests that specific nodes
within biologic networks show high degrees of connectiv-

ity to other components ("hubs"), while most other
nodes show low degrees of connectivity [27]. This high
variability in degrees between nodes is a general feature of
scale-free networks, particularly when these degrees fol-

Hierarchical cluster analysis derived from gene expression profiling of PBMC from JIA and control samplesFigure 3
Hierarchical cluster analysis derived from gene expression profiling of PBMC from JIA and control samples. 
Columns and rows are as described in Figure 1.
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Hierarchical cluster analysis derived from gene expression profiling of PBMC from JDM and control samplesFigure 4
Hierarchical cluster analysis derived from gene expression profiling of PBMC from JDM and control samples. 
Columns and rows are as described in Figure 1.
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low a power law distribution [28]. Furthermore, groups of
metabolic networks can be grouped into larger elements
of related function [29].

This paper is the first to report in a systematic way that
pathologic networks carry many of the same features as
physiologic networks. A priori, there is no reason to
assume that disease states would imitate normal cellular
function in its display of scale-free properties with modu-
larity. It is possible, for example, that disease states might
result in perturbation of cell function(s) such that a loss of
scaling and increased linearity of metabolic networks is
seen. Implicit in these models is the notion that chronic
inflammatory diseases like JIA and JDM represent not the
breakdown of normal immune mechanisms (as is posited
in autoimmune theories of pathogenesis), but their adap-
tive functioning. This is a profoundly different pathogenic

model and underscores the potential of systems biology
thinking to transform our understanding of illnesses.

The fact that such scale-free networks exist among disease
states has interesting implications for the chronic inflam-
matory diseases studied here. One of the most important
features of scale-free networks is their relative resistance to
perturbation or attack when peripheral nodes are targeted
[30]. Only alterations in the hubs results in significant
alteration in the network. This fact has obvious therapeu-
tic implications for these diseases. It should be clear that
the most promising targets of therapy are going to be
those specifically directed at pathologic hubs. Even if a
gene shows strong differential expression between chil-
dren with disease and control children, that gene is
unlikely to be a promising therapeutic target if it is a more
peripheral node. Proof-of-concept for this idea comes

Interactions between products of genes that were differentially expressed in JIA patient PBMC samples relative to controlsFigure 5
Interactions between products of genes that were differentially expressed in JIA patient PBMC samples rela-
tive to controls. Differentially expressed genes are designated by color (red: up-regulated in disease; green: down-regulated 
in disease). Increased intensity reflects greater fold-change between groups. Additional genes that were not differentially 
expressed between groups (not colored) with known interactions to differentially expressed genes were added by IPA soft-
ware. Network score = 20.
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from our clinical experience with JIA. TNF inhibitors have
emerged in the past 20 years as the most highly successful
therapy for this disease [31], and we note that in our anal-
ysis, TNF is a prominent hub in a pathology-associated
metabolic network in both neutrophils and PBMC (Fig-
ures 6, 7, 8). Based on this model, we would predict that
targeting a gene such as JAM3 (Figure 5), although highly
differentially expressed between children with JIA and
controls, would be a less successful strategy.

These studies also have implications for our understand-
ing of the pathogenesis of rheumatic diseases in children.
In the diseases studied here, alterations in gene expression
profiles relative to control subjects occurred in cells of
both innate (neutrophils) and adaptive (PBMC) immu-
nity. These findings suggest that complex interactions
between innate and adaptive immunity occur in these dis-
eases, as we have previously proposed [8,32]. Thus, it is
perhaps an over-simplification to refer to these illnesses as
"autoimmune" disorders, and, indeed, little in the expres-

sion profiles or the in silico models supports the hypothe-
sis that these illnesses are driven primarily by a
breakdown in the mechanisms through which "self" and
"non-self" are recognized within the adaptive immune
system. Rather, the metabolic structures may be better
interpreted as an adaptation to an externally-applied force
or forces (a hypothesis that does not exclude the possibil-
ity that one of those elements is an altered or inappropri-
ately recognized self antigen).

There are some limitations on these data that must be
considered. The most important limitation concerns the
Ingenuity Pathway Analysis (IPA) program itself. The pro-
gram builds its models by querying the known literature.
This has several implications. First, the models reflect
what is already known about interactions between specific
genes. Unknown interactions could not be discovered
through this analysis, and thus it is likely that there are
highly relevant interactions that do not emerge in IPA. The
next limitation is the fact that, since IPA queries only

Interactions between products of genes that were differentially expressed in JIA patient neutrophil samples relative to controlsFigure 6
Interactions between products of genes that were differentially expressed in JIA patient neutrophil samples 
relative to controls. Network score = 17. Patterns are as described in the legend of Figure 5.
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known associations and interactions, genes about which
little or nothing is known about the function of their
products cannot be identified as hubs using this method.
Given these limitations, the models generated here must
be considered preliminary and incomplete. However,
despite these limitations, we believe that the models that
emerge from this analysis better explain the complexity
encountered in the clinic than the more limited, linear
models generated from purely reductionist approaches.

Conclusion
In conclusion, we demonstrate here that the pathology-
associated metabolic networks in leukocytes of children
with diverse inflammatory disorders show characteristics
of physiologic cell networks. The scale-free nature of the
hub-and-node structures of these networks provides new
opportunities to identify targets of therapy and test mod-

els of disease pathogenesis. While the specific models
reported here are likely to be altered as more is learned
about the function of specific elements within the net-
works, the emergence of known points of pathogenic con-
trol within these networks (e.g., TNF) support the validity
of the concepts reported here.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
MBF directed all aspects of microarray operations, per-
formed data analysis and interpretation, and wrote the
manuscript with JNJ; SW, AA, and TM assisted in patient
characterization and microarray analyses on the JDM pop-
ulation; SW and AA also assisted in data analysis and
interpretation; KJ and YC assisted cell separation and iso-

Interactions between products of genes that were differentially expressed in JDM PBMC relative to control PBMCFigure 7
Interactions between products of genes that were differentially expressed in JDM PBMC relative to control 
PBMC. Network score = 23. Patterns are as described in the legend of Figure 5.
Page 12 of 14
(page number not for citation purposes)



BMC Medical Genomics 2009, 2:9 http://www.biomedcentral.com/1755-8794/2/9
lating RNA, and performed rtPCR studies; NK performed
statistical analyses to identify differentially expressed
genes; RM and BC assisted in identifying clinical pheno-
types in the JIA population; JO performed RNA quality
control, labeling, hybridizations and scanning; JNJ was
the P.I. on this study and was responsible for the overall
study design, data analysis and interpretation.

Additional material

Acknowledgements
This project described was supported in part by grants from the National 
Institutes of Health (RR03145, RR16478, RR02143, RR15577, and 
AI062629) and an Innovate Research Grant from the Arthritis Foundation. 
The content is solely the responsibility of the authors and does not neces-
sarily represent the official views of the National Institutes of Health. Amita 
Aggarwal was supported by an overseas associateship award from Depart-
ment of Biotechnology, Government of India. Ryan McKee and Brad Chaser 
were supported by Medical Student Research Preceptorships from the 
American College of Rheumatology. Brad Chaser received additional sup-
port from the University of Oklahoma Native American Center of Excel-
lence. Timothy McGhee was supported by the University of Oklahoma 
Native American Research Center for Health (NARCH), 26-IHS-300014-
03.

References
1. MacLennan NK, Rahib L, Shin C, Fang Z, Horvath S, Dean J, Liao JC,

McCabe ER, Dipple KM: Targeted disruption of glycerol kinase
gene in mice: expression analysis in liver shows alterations in
network partners related to glycerol kinase activity.  Human
Mol Genet 2006, 15:405-415.

2. McCabe LL, McCabe ER: Complexity in genetic diseases: how
patients inform the science by ignoring the dogma.  Am J Med
Genet (Part A) 2006, 140:160-161.

Additional File 1
Table 1. Differentially expressed genes in jia v control neutrophils.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1755-
8794-2-9-S1.doc]

Additional File 2
Table 2. Differentially expressed genes in jdm v control neutrophils.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1755-
8794-2-9-S2.doc]

Additional File 3
Table 3. differentially expressed genes in jia v control pbmc.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1755-
8794-2-9-S3.doc]

Additional File 4
Table 4. Differentially expressed genes in jdm v control pbmc.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1755-
8794-2-9-S4.doc]

Interactions between products of genes that were differentially expressed in JDM neutrophils relative to control neutrophilsFigure 8
Interactions between products of genes that were differentially expressed in JDM neutrophils relative to con-
trol neutrophils. Network score = 25. Patterns are as described in the legend of Figure 5.
Page 13 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1755-8794-2-9-S1.doc
http://www.biomedcentral.com/content/supplementary/1755-8794-2-9-S2.doc
http://www.biomedcentral.com/content/supplementary/1755-8794-2-9-S3.doc
http://www.biomedcentral.com/content/supplementary/1755-8794-2-9-S4.doc


BMC Medical Genomics 2009, 2:9 http://www.biomedcentral.com/1755-8794/2/9
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

3. Dipple KM, McCabe ER: Phenotypes of patients with "simple"
Mendelian disorders are complex traits: thresholds, modifi-
ers, and systems dynamics.  Am J Human Genetic 2000,
66:1729-1735.

4. Fearon DT, Locksley RM: The instructive role of innate immu-
nity in the acquired immune response.  Science 1996, 72:50-53.

5. Warrington KJ, Seisuke T, Goronzy JJ, Weyand CM: CD4+, CD28-
T cells in rheumatoid arthritis patients combine features of
innate and adaptive immune systems.  Arthritis Rheum 2001,
44:13-20.

6. Ottino JM: Engineering complex systems.  Nature 2004, 427:399.
7. Kirschner MW: The meaning of systems biology.  Cell 2005,

121:503-504.
8. Jarvis JN: Gene expression arrays in juvenile rheumatoid

arthritis: will the blind men finally see the elephant?  Curr Prob
Pediatrics Adolesc Health Care 2006, 36:91-96.

9. Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg
J, et al.: International League of Associations for Rheumatol-
ogy classification of juvenile idiopathic arthritis: second revi-
sion, Edmonton, 2001.  J Rheumatol 2004, 31:390-392.

10. Wallace CA, Ruperto N, Giannini E, for the Childhood Arthritis and
Rheumatology Research Alliance; Pediatric Rheumatology Interna-
tional Trials Organization; Pediatric Rheumatology Collaborative
Study Group: Preliminary criteria for clinical remission for
select categories of juvenile idiopathic arthritis.  J Rheumatol
2004, 31:2290-2294.

11. Crowe WE, Bove KE, Levinson JE, Hilton PK: Clinical and patho-
genetic implications of histopathology in childhood polyder-
matomyositis.  Arthritis Rheum 1982, 25:126-139.

12. Bohan A, Peter JB: Polymyositis and dermatomyositis.  N Eng J
Med 1975, 292:344-347, 403-7.

13. Cobb JP, Mindrinos MN, Miller-Graziano C, Calvano SE, Baker HV,
Xiao W, Laudanski K, Brownstein BH, Elson CM, Hayden DL, Hern-
don DN, Lowry SF, Maier RV, Schoenfeld DA, Moldawer LL, Davis
RW, Tompkins RG, Baker HV, Bankey P, Billiar T, Brownstein BH,
Calvano SE, Camp D, Chaudry I, Davis RW, members of the Inflam-
mation and Host Response to Injury Large-Scale Collaborative
Research Program: Application of genome-wide expression
analysis to human health and disease.  Proc Nat'l Acad Sci USA
2005, 102:4801-4806.

14. Feezor RJ, Baker HV, Mindrinos M, Hayden D, Tannahill CL, Brown-
stein BH, Fay A, MacMillan S, Laramie J, Xiao W, Moldawer LL, Cobb
JP, Laudanski K, Miller-Graziano CL, Maier RV, Schoenfeld D, Davis
RW, Tompkins RG: Inflammation and Host Response to Injury,
Large-Scale Collaborative Research Program. Whole blood
and leukocyte RNA isolation for gene expression analyses.
Physiolol Genomics 2004, 19:247-254.

15. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ,
Scherf U, Speed TP: Exploration, normalization, and summa-
ries of high density oligonucleotide array probe level data.
Biostatistics 2003, 4:249-264.

16. Simon R, Korn E, McShane L, Radmacher M, Wright G, Zhao Y: Design
and Analysis of DNA Microarray Investigations New York: Springer-Ver-
lag; 2003. 

17. Korn EL, Troendle JF, McShane LM, Simon R: Controlling the
number of false discoveries: Application to high-dimensional
genomic data.  Journal of Statistical Planning and Inference 2004,
124:379-398.

18. Wright GW, Simon R: A random variance model for detection
of differential gene expression in small microarray experi-
ments.  Bioinformatics 2003, 19:2448-2455.

19. Ward JH: Hierarchical Grouping to Optimize an Objective
Function.  J Am Statist Assoc 1963, 58:236-244.

20. Ravasz E, Somera AL, Mongru DA, Oltval Z, Barbasi A-L: Hierarchi-
cal organization of modularity in metabolic networks.  Science
2002, 297:1551-1557.

21. Dang PM, Stensballe A, Boussetta T, Raad H, Dewas C, Kroviarski Y,
Havem Y, Jensen ON, Gougerot-Pocidala MA, El-Benna J: A specific
p47phox-serine phosphorylated by convergent MAPKs
mediates neutrophil NADPH oxidase priming at inflamma-
tory sites.  J Clin Invest 2006, 116:2033-43.

22. Barbasi A-L, Albert A: Emergence of scaling in networks.  Science
1999, 286:509-512.

23. Teaks Z, Hoffman EP, Lutz JL, Fedczyna TO, Stephan D, Bremer EG,
Krasnoselska-Ritz I, Kumar A, Pachman LM: Gene expression pro-
filing in DQA1*0501+ children with untreated dermatomy-

ositis: a novel model of pathogenesis.  J Immunol 2002,
168:4154-4163.

24. Baechler EC, Bauer JW, Slattery CA, Ortmann WA, Espe KJ,
Novitzke J, Ytterberg SR, Gregersen PK, Behrens TW, Reed AM: An
interferon signature in the peripheral blood of dermatomy-
ositis patients is associated with disease activity.  Molecular
Medicine 2007, 13:59-68.

25. Jeong H, Tombor B, Oltval ZN, Barabasi A-L: The large-scale
organization of metabolic networks.  Nature 2000, 407:651-654.

26. Erdos P, Renyi A: On the evolution of random graphs.  Publ Math
Inst Hung Acad Sci 1960, 5:17-61.

27. Barbasi A-L, Oltvai ZN: Network biology: understanding the
cell's functional organization.  Nat Rev Genet 2004, 5:101-113.

28. Li L, Alderson D, Tanaka R, Doyle JC, Willinger W: Towards a the-
ory of scale-free graphs: definitions, properties, and implica-
tions.  In Internet Mathematics A K Peters, Ltd; 2005. 

29. Dong J, Horvath S: Understanding network concepts in mod-
ules.  BMC Systems Biol 2007, 1:24.

30. Albert R, Jeong H, Barbasi A-L: Error and attack tolerance of
complex networks.  Nature 2000, 406:378-382.

31. Lovell DJ, Reiff A, Jones OY, Schneider R, Nocton J, Stein LD, Gedalia
A, Ilowite NT, Wallace CA, Whitmore JB, White B, Giannini EH:
Pediatric Rheumatology Collaborative Study Group. Long-
term safety and efficacy of etanercept in children with pol-
yarticular-course juvenile rheumatoid arthritis.  Arthritis
Rheum 2006, 54:1987-1994.

32. Jarvis JN: Mechanisms of pathogenesis and inflammation in
the pediatric rheumatic diseases.  Curr Opinion Rheumatol 1998,
10:459-467.

Pre-publication history
The pre-publication history for this paper can be accessed
here:

http://www.biomedcentral.com/1755-8794/2/9/prepub
Page 14 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11212151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11212151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11212151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14749808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15907462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14760812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14760812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14760812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15517647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15517647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7066042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7066042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7066042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1090839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12925520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12925520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668230
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668230
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668230
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12202830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12202830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16778989
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16778989
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16778989
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10521342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11937576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11937576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11937576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17515957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17515957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17515957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11034217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11034217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14735121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14735121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10935628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10935628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16732547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16732547
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16732547
http://www.biomedcentral.com/1755-8794/2/9/prepub
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Patient populations and control subjects
	Juvenile idiopathic arthritis (JIA)
	Juvenile dermatomyositis (JDM)
	Pediatric controls

	Specimens and processing
	Microarray platform
	RNA purification, labeling, hybridization, and scanning
	Statistical analysis
	Reverse transcription – quantitative real-time PCR validation
	Pathway analysis

	Results
	Gene expression differences in neutrophils and PBMC distinguish patients with juvenile onset rheumatic diseases from controls

	Discussion
	Conclusion
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References
	Pre-publication history

