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In this part, rotational Brownian motion and
Brownian shape fluctuations of soft materials are
discussed. This is followed by an elementary in-
troduction to two of the hottest topics in this
contemporary area of interdisciplinary research,
namely, stochastic resonance and Brownian rat-
chet

1. Beyond Translation: Rotation and Shape Fluc-
tuations

In undergraduate mechanics courses in colleges (or uni-
versities), normally, a student first learns Newtonian me-
chanics of point particles which also describes the mo-
tion of the center of mass of extended objects. Then,
one learns to deal with the rotational motion of rigid
bodies. Finally, a student is exposed to the mechan-
ics of deformable bodies, i.e., elastic solids and fluids.
In the first part of this article, we considered only the
translational motion of the center of mass of the Brown-
ian particles. In this section we shall consider rotational
Brownian motion of rigid particles and the shape fluctu-
ations of soft materials caused by the Brownian motion
of these deformable bodies.

1.1 Rotational Brownian Motion of Rigid Bod-
ies

To the best of our knowledge, one of the earliest di-
rect experimental observations of the rotational Brown-
ian motion was made by Gerlach [1] using a tiny mirror
fixed on a very fine wire; some of the fundamental ques-
tions on this problem were addressed theoretically soon
thereafter by Uhlenbeck and Goudsmit [2]. This is a
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relatively simple problem because the rotation involves
only a single angle # which measures the angular de-
flection. The corresponding Langevin equation has the

form 20 W
(G ) = TemGo=a(G) <7 )

where I is the moment of inertia of the oscillator, «
is the friction coefficient, G is the torsional elastic con-
stant of the fiber, 7., is the external torque and 7, is
the Brownian (i.e., random) torque. Each term of this
Langevin equation is the rotational counterpart of the
corresponding term in the Langevin equation (7, Part
1) for translational Brownian motion.

Interestingly, three quarters of a century later the prob-
lem of rotational Brownian motion of a mirror was rein-
vestigated by replacing air by a fluidized granular med-
ium. In this novel experiment [3] the torsion oscillator
was immersed in a container filled with glass beads and
the noisy vertical vibration of the container took place
at frequencies much higher than the natural frequency
of the torsion oscillator.

The Langevin equation for the more general cases of
rotation of a rigid body in three dimensions has a more
complex form. Recall that the rotational motion of a
macroscopic asymmetrical object is given by the Euler
equation. The corresponding Euler-Langevin equation
for rotational Brownian motion has the general form
dL . -

—p T L =T = Tw + T (1), (2)
with L = I w, where I is the moment of inertia of the
body and w is its angular velocity; 7., is the externally
imposed torque while 7y, (¢) is the random noise torque.
For the sake of simplicity one often assumes a Gaussian
white noise torque 7, (t). The Fokker-Planck equation
corresponding to the Euler-Langevin equation (2) is a
deterministic equation that describes the time evolution
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The problem of
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motion of a sphere

was briefly
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paper published by
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of a probability density for the angular orientation (mea-
sured in terms of Euler angles) and the angular veloci-
ties of the body which executes the rotational Brownian
motion.

The problem of rotational Brownian motion of a sphere
was briefly mentioned in a paper published by Einstein
in 1906 [4]. Investigaton of the rotational Brownian mo-
tion in the context of dielectric relaxation was initiated
by Peter Debye and extended by many authors in the
second half of the twentieth century [5].

Another related problem is the relaxational dynamics of
large single-domain magnetic particles in rocks [6]. Each
of these particles consists of a large number of individual
moments all aligned parallel to each other such that the
particle posseses a giant magnetic moment. Since the
particle is embedded in a solid matrix, it cannot rotate
physically but the direction of the magnetic moment can
undergo Brownian rotation. A collection of such single-
domain particles will be aligned parallel to the externally
applied magnetic field. Then, after the field is switched
off, the remanent magnetization M, will vanish as

M, = M,e™ V", (3)

where M, is the magnetization of a non-relaxing particle,
t is the time elapsed after the field is switched off and

7 = 19eV /R8T (4)

is the relaxation time where V' is the volume of the par-
ticle and 79 ~ 107 sec. Therefore, varying V and/or T,
the relaxation time 7 can be made to vary from 1079 sec
to millions of years.

It was pointed out by Louis Néel that, at a given temper-
ature T', the particle magnetization will appear ‘blocked’
(i.e., frozen in time) in any dynamic experiment where
the frequency of the measurement w,, is such that 7 >

m
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Blocking of the magnetization of the super-paramagnetic
particles finds important applications in paleomagnetism
(geomagnetism), as the history of the earth’s magnetic
field remains frozen in the rocks. During the early stage
of the formation of the rock at a relatively higher tem-
perature, the magnetic particles exist in thermal equi-
librium with the earth’s magnetic field, but later, as
the rock cools, the magnetization of these particles get
blocked and they retain the memory of the direction of
the earth’s magnetic field.

1.2 Brownian Motion of Deformable Bodies:
Shape Fluctuations

A linear polymer is a simple example of a deformable
body which is, effectively, one dimensional. The Brown-
ian forces acting on such an object in aqueous medium
can give rise to random wiggling, i.e., random fluctua-
tions in its shape. The random Brownian forces tend
to induce wiggles in the polymer chain while the bend-
ing stiffness tends to restore its linear shape. These two
competing effects determine the overall conformation of
the polymer chain. One of the most important effects
of this Brownian wiggling is that, even in the absence of
any energy cost for creating such wiggles, the polymer
behaves, effectively, as a spring where its spring con-
stant is temperature-dependent and the corresponding
restoring force it exerts is of purely entropic origin [7].

Similarly, Brownian motion of a soft membrane, e.g., the
plasma membrane of a red-blood cell, manifests as ‘fick-
ering’ of the effectively two-dimensional elastic sheet.
The Brownian shape fluctuations of soft membranes have
many important consequences. For example, consider a
stack of such membranes which have a tendency to stick
to each other because of the ubiquitous Van der Waals
attractions. However, at all non-zero temperatures the
Brownian shape fluctuations cause the membranes to
bump against each other; the higher the temperature,
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the stronger the effectively repulsive entropic force. As a
consequence of this competition between the two forces,
an unbinding phase transition takes place in the system
at a characteristic temperature as the temperature is
raised from below.

2. Brownian Motion in External Static Potential

Translational Brownian motion of a particle under the
influence of an external linear potential of the form U(x)
= ax is relevant, for example, in the context of sedimen-
tation of colloidal particles under gravity [10, Part 1].
Brownian motion of a harmonically bound particle [§],
i.e., a particle subjected to a quadratic potential of the
form U(z) = ax?, is a reasonably good model for the
dynamics of a tiny spherical dielectric particle trapped
by an optical tweezer. In order to satisfy the law of
equipartition of energy in thermodynamic equilibrium,
< x* > approaches the value kgT/(mw?) in the limit
of extremely long times; Uhlenbeck and Ornstein [8] de-
rived the exact expression valid for all times and, hence,
showed how < z? > approaches the asymptotic value
with the passage of time.

The potential U(z) = —az? + bz* has two equally deep
minima which are separated from each other by an en-
ergy barrier; Brownian motion of a particle subjected
to such a potential leads to noise assisted transitions,
back and forth, from one well to the other. The average
waiting time Tk between two successive noise-induced
transitions increases exponentially with the increase of
the barrier height. Noise-induced transitions in bistable
systems have found applications in a wide variety of sys-
tems; we shall call Tk as the Kramers time in honor of
Hendrik Kramers who considered such problems first in
the context of chemical reaction rate theory in his clas-
sic paper entitled ‘Brownian motion in a field of force
and the diffusion model of chemical reactions’ [9,10].
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Kramers was not the first to consider noise-induced tran-
sitions from a potential well. In fact, in 1935, Becker
and Doring studied the problem of noise-assisted hop-
ping of a barrier to escape from a metastable state. The
problem of noise-induced transitions in systems with
metastable, bistable or multistable systems has a long
history with abundant examples of unintentional redis-
coveries and rederivation of results by experts from dif-
ferent disciplines, often using different terminologies [11].
Nevertheless, this shows the breadth of coverage of this
multidisciplinary umbrella and the wide range of ap-
plicability of the concepts and techniques.

3. Brownian Motion in Time-dependent Poten-
tial

In the preceeding section we have considered Brownian
motion in static (time-independent) external potential.
However, two of the hottest topics in the area of Brown-
ian motion which have kept many physicists busy for
the last quarter of a century, are related to Brownian
motion in time-dependent potentials. In the following
two subsections we briefly discuss these two phenomena,
namely, stochastic resonance and Brownian ratchet.

3.1 Stochastic Resonance and Applications

Let us begin with a Brownian particle subjected to a
bistable potential. Suppose a small amplitude periodic
forcing is added so that the left and the right wells pe-
riodically exchange their relative stability as shown in
Figure 1. Let T, = 27 /Q, be the time period of the
periodic forcing. Then, the potential U(z) is given by

a b
Uz, t) = §x2 — Zx‘l — Aoz cos(pt). (5)
Note that the periodic forcing is too weak to induce
transition in the position of the particle from one well
to the other without assistance from noise. However,
in the presence of noise, even in the absence of forcing,

Figure1. The back and forth
tilting of the bistable poten-
tial in one cycle of the peri-
odic forcing. (Copyright:
Indrani Chowdhury; repro-
duced with permission).
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noise-induced transition from one well to the other goes
on. Now, extending the concept of resonance, we intro-
duce the concept of stochastic resonance by the condi-
tion 27k (D) = T, where Tk is the Kramers time and it
depends on the strength D of the noise [12,13].

The phenomenon of stochastic resonance has been demon-
strated directly in laboratory experiments [14]. A micron-
size dielectric bead is used as the Brownian particle and

a bistable potential is created using two optical (laser)

traps. The most important quantity characterizing a

stochastic resonance is the signal-to-noise (SNR) ratio.

The signature of a stochastic resonance is that the SNR,

which vanishes in the absence of noise, rises with the in-

crease of noise intensity and exhibits a maximum at an

optimum level of noise intensity; on further increase of

noise intensity, SNR decreases because of the random-

ization caused by the noise. In other words, contrary

to naive expectations, noise can have a constructive ef-

fect in enhancing the signal over an appropriately cho-

sen window of noise intensity. Not surprisingly, it finds

applications in electrical engineering. Moreover, many

organisms seem to use stochatic resonance for sensory

perception; these include, for example, electro-receptors

of paddlefish, mechano-receptors of crayfish, etc.

Stochastic resonance has been evoked to explain the pe-
riodic occurrence of Ice age on earth; the period is es-
timated to be approximately 100,000 years. Suppose
the ice-covered and water-covered earth correspond to
the two local minima. Eccentricity of the earth’s orbit
(and, therefore, incoming solar radiation) varies period-
ically with a period of about 7, ~ 100, 000 years. But,
this variation is too weak to cause the transition from
ice-covered to water-covered earth and vice versa. It has
been suggested that random noise in the climatic con-
ditions can give rise to a stochastic resonance causing a
transition between the two local minima with a period
of about 100,000 years.
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3.2 Brownian Ratchet and Applications

Let us now consider a Brownian particle subjected to
a time-dependent potential, in addition to the viscous
drag (or, frictional force). The potential switches be-
tween the two forms (i) and (ii) shown in Figure 2. The
sawtooth form (i) is spatially periodic where each period
has an asymmetric shape. In contrast, the form (ii) is
flat so that the particle does not experience any external
force imposed on it when the potential has the form (ii).
Note that, in the left part of each well in (i) the par-
ticle experiences a rightward force whereas in the right
part of the same well it is subjected to a leftward force.
Moreover, the spatially averaged force experienced by
the particle in each well of length ¢ is
1 rt/oU

<F>=— [ (m)da: —UO)~U@®) =0  (6)
because of the spatially periodic form of the potential
(i). What makes this problem so interesting is that, in
spite of vanishing average force acting on it, the particle
can still exhibit directed, albeit noisy, rightward motion.

In order to understand the underlying physical princi-
ples, let us assume that initially the potential has the

Figure 2. The two forms of
the time-dependent poten-
tial used for implementing
the Brownian ratchet
mechanism. (Copyright:
Indrani Chowdhury; repro-
duced with permission).
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The concept of
Brownian ratchet
was popularized by
Feynman through
his lectures.

shape (i) and the particle is located at a point on the
line that corresponds to the bottom of a well. Now
the potential is switched off so that it makes a tran-
sition to the form (ii). Immediately, the free particle
begins to execute Brownian motion and the correspond-
ing Gaussian profile of the probability distribution be-
gins to spread with the passage of time. If the potential
is again switched on before the Gaussian profile gets
enough time for spreading beyond the original well, the
particle will return to its original initial position. But,
if the period during which the potential remains off is
sufficiently long, so that the Gaussian probability dis-
tribution has a non-vanishing tail overlapping with the
neighbouring well on the right side of the original well,
then there is a small non-vanishing probability that the
particle will move forward towards right by one period
when the potential is switched on.

In this mechanism, the particle moves forward not be-
cause of any force imposed on it but because of its
Brownian motion. The system is, however, not in ther-
mal equilibrium because energy is pumped into it during
every period in switching the potential between the two
forms. In other words, the system works as a rectifier
where the Brownian motion, in principle, could have
given rise to both forward and backward movements of
the particle in multiples of ¢. However the backward
motion of the particle is suppressed by a combination
of (a) the time dependence and (b) spatial asymmetry
(in form (i)) of the potential. In fact, the direction of
motion of the particle can be reversed by replacing the
potential (i) by the potential (iii) shown in Figure 3.

The mechanism of directional movement discussed above
is called a ‘Brownian ratchet’ [15] for reasons which we
shall now clarify. The concept of Brownian ratchet was
popularized by Feynman through his lectures [16] al-
though, historically, it was introduced by Smoluchowski
[17]. Consider the ratchet and pawl arrangement shown
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(i)
(ii)
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in Figure 4. The random bombardment of the vanes
by the air molecules gives rise to torques which fluc-
tuate randomly both in magnitude and direction. Be-
cause of the asymmetric shape of each of the teeth, it
may appear that the ratchet would move countercloclo-
wise more easily than clockwise (when viewed from the
left side) leading to its directed counterclockwise, albeit
noisy, rotation. In principle, it should then be possible
to exploit such directed rotation to perform mechani-
cal work. However, any such device, if it really existed,
would violate the second law of thermodynamics because
it would extract thermal energy from its environment,
by cooling the environment spontaneously, and convert
that energy into mechanical work. Feynman resolved the
apparent paradox by pointing out that both the clock-
wise and counterclockwise rotations are actually equally
likely because the pawl also executes random Brownian
motion because of the random extension and compres-
sion of the spring that keeps it pressed against the wheel

Figure 3. The direction of
the motion of the particle in
a Brownian ratchet is de-
termined by the form of the
asymmetry of the potential
in each period. (Copyright:
Indrani Chowdhury; repro-
duced with permission).

Figure 4. Feynman’s
ratchet and pawl! arrange-
ment; the wheel on the right
is the ratchet and its clock-
wise rotation is hindered
by the touching pawl.
(Copyright: Indrani Chow
dhury; reproduced with per-
mission).
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Figure 5. A linear ratchet
and pawl arrangement.
(Copyright: Indrani Chow-
dhury; reproduced with
permission).

A mechanism
based on the
Brownian-ratchet
has been proposed
for translocation of
proteins across
membranes.
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of the ratchet. A linear design of the Brownian ratchet
is shown in Figure 5.

The Brownian ratchet has its counterpart in the abstract
theory of games. In particular, Juan Parrondo [18] pro-
posed a game with two separate rules, say A and B,
of the game. Even in situations where both the rules
will ruin the gambler, Parrondo showed that the gam-
bler can win by using the rules A and B alternately. It
is not difficult to map this problem onto the Brownian
ratchet mechanism depicted in Figure 2 and the winning
of the gambler corresponds to the directed movement of
the Brownian particle in Figure 2.

The ratcheting via time-dependent potential discussed
above is not merely a theoretical possibility but nature
exploits this for driving a class of molecular motors in-
side cells of living organisms; this includes KIF1A, a
family of kinesin motor proteins [19]. Such molecular
motors move along microtubule filaments just as trains
move along their tracks.

A mechanism based on the Brownian-ratchet has been
proposed [20] for translocation of proteins across mem-
branes. This is easy to understand using a picture simi-
lar to the ratchet shown in Figure 5. Proteins are known
to unfold before translocation through a narrow pore in
the membrane. Once the tip of the protein successfully
penetrates the membrane, it can translocate through
Brownian motion provided there exists some mechanism
to rectify its backward movements. Several possible
mechanisms for such rectification have been proposed
including binding of chaperonins at designated binding
sites along the translocated part of the macromolecule
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ATP is the energy currency of almost all eukaryotic
cells and the cell synthesizes ATP from the raw ma-
terials using a machine, called ATP synthase, which is
bound to the mitochondrial (chloroplast) membrane of
animal (plant) cells. To my knowledge, this is the small-
est among all the natural and man-made rotary motors.
This complex motor actually consists of two reversible
parts, namely Fy and Fj, which are coupled to each
other. A Brownian-ratchet mechanism has been sug-
gested [21] for the rotary motor Fp. Detailed structure
and function of this natural nano-motor will be consid-
ered in a separate article [19)].

4. Summary and Conclusion

What started as a curiosity of microscopists, who were
baffled by the random movements of pollen grains in wa-
ter, turned out to be one of the most challenging scien-
tific problems that could not be solved by anybody till
the beginning of the twentieth century. It was Albert
Einstein who, in one of his three revolutionary papers of
1905, published the correct theory of Brownian motion.
His theoretical predictions were confirmed by a series of
experiments on colloidal dispersions by Jean Perrin and
his collaborators. These investigations of Brownian mo-
tion in collidal dispersions not only helped in silencing
the critics of the molecular kinetic theory of matter but
also laid down the foundation of nonequilibrium statis-
tical mechanics.

By the end of the first quarter of the twentieth cen-
tury, quantum theory became the darling of the ma-
jority of the physicists and the science of colloids lost
its appeal. Over the next quarter of a century progress
was rather slow but steady. However, in the second half
of the twentieth century, motivated partly by the in-
dustrial demand for novel materials, physicists and en-
gineers discovered the great potential of soft materials
[22], including colloids which gradually regained its past

What started as a
curiosity of
microscopists, who
were baffled by the
random
movements of the
pollen grains in
water, turned out
to be one of the
most challenging
scientific problems.

RESONANCE | November 2005 MAM

53



GENERAL | ARTICLE

Acknowledgements: | thank
Manoj Harbola, Ambarish
Kunwar and Dietrich Stauffer
for a critical reading of the
manuscript. | also thank an
anonymous referee for several
useful suggestions.

Address for Correspondence
Debashish Chowdhury
Department of Physics

Indian Institute of Technology
Kanpur 208016, India.
Email:debch@iitk.ac.in

glory [23]. Moreover, revolution in optical microscopy in
the last ten years has provided a glimpse of the cellular
interior, a wonderland dominated by Brownian motion.
Preliminary explorations in this new frontier of research
indicate that, instead of being a nuisance, the Brownian
motion is, perhaps, fully exploited by Nature to its ad-
vantage not merely to survive but to thrive. Brownian
motion of pollen grains does not arise from any process
of life but some of the least understood processes of life,
including the train-like motion of the biomolecular mo-
tors on the filamentary tracks, may not be possible with-
out Brownian motion!
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