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Abstract. Co-ordinated campaigns have been conducted
from Gadanki (13.5◦ N, 79.2◦ E, dip lat 6.4◦ N) by operating
simultaneously the Indian MST radar in ionospheric coher-
ent backscatter mode and by monitoring thermosphere air-
glow line emissions (630.0 nm and 777.4 nm) using a narrow
band multi-wavelength scanning photometer during January-
March for the past five years (2003–2007) and also during
April 2006, as a special campaign. Simultaneous radar and
optical observations reveal optical signatures corresponding
to a variety of equatorial spread F (ESF) structures. The op-
tical signatures corresponding to ESF structures with wave-
like bottomside modulations with plasma plumes, confined
bottomside flat and wavelike structures, vertically extended
plume structure in the absence of bottomside structure apart
from the classical plasma depletions and enhancements are
obtained during these campaigns. The plasma depletions and
enhancements were identified using optical measurements.
In addition, estimations of zonal wavelength of the bottom-
side structures and the inference of shears in the zonal plasma
drift in the presence of confined structures, were carried out
using bi-directional airglow measurements. Furthermore, it
is found that the vertical columnar intensity of OI 630.0 nm
airglow exceeded the slanted columnar intensity in the pres-
ence of large bottomside structure. The need for the appro-
priate physical mechanisms for some of the ESF structures
and their characterizations with optical observations are dis-
cussed.
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1 Introduction

Equatorial spread F (ESF) is a generic term that refers to the
plasma irregularities in the F-region of the ionosphere with
scale sizes encompassing from a few hundreds of kilome-
ters to a few centimeters. Several techniques have been used
to investigate different spectral regimes of these irregulari-
ties. Comparative studies of this phenomenon with differ-
ent techniques enable to understand ESF more comprehen-
sively. The radars operating in HF, VHF and UHF frequen-
cies have been used to investigate this phenomenon (Kelley,
1989). Among these, VHF radars have been extensively used
to investigate the structures and dynamics of the plasma ir-
regularities that are present both in the bottomside and top-
side of the ionosphere. The ESF structures have been in-
vestigated using VHF radar at various longitudinal sectors
(Tsunoda, 1980; Patra et al., 1995; Fukao et al., 2004) ever
since Woodman and La Hoz (1976) reported various ESF
structures over Jicamarca. Comparison of the UHF radar
map with the results obtained from rocket borne (Rino et al.,
1981) and satellite borne probes (Tsunoda et al., 1982) re-
vealed that the plume structures as seen by the radars are
indeed associated with large scale plasma bubbles. A co-
ordinated TEC and VHF radar measurement (Tsunoda and
Towle, 1979) revealed that the plumes are found to be coin-
cident with TEC depletions. Similarly, the results obtained
using optical imagers was compared with VHF radar results
(Mendillo et al., 1992) and also with the digital ionograms
(Weber et al., 1996) to get a clue for the onset conditions for
the development of plasma depletions. Thus the comparative
studies with various techniques are useful in obtaining phys-
ical insight of ESF. In the recent past, comparison between
the narrow-band optical measurements of thermospheric air-
glow emissions and the VHF radar measurements revealed
the presence of plasma enhancement (Sekar et al., 2004) ex-
tending beyond 350 km and an evidence for fossil bubbles
turning active (Sekar et al., 2007) was obtained. In addition,
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Fig. 1. (a) Range-Time-Intensity (RTI) map of equatorial spread
F structures observed over Gadanki on 11 February 2004 revealing
wave-like bottomside structure with large altitude extents,(b) the
corresponding Range-Time-Velocity (RTV) map,(c) temporal vari-
ations of OI 630.0 nm airglow intensity over zenith (red) and 45◦

eastern (blue) directions,(d) temporal variations of OI 777.4 nm
airglow intensity over zenith (red) and 45◦ eastern (blue) directions.

simultaneous triggering of ESF at two zonally separated lo-
cations during storm time was identified (Chakrabarty et al.,
2006; Sekar and Chakrabarty , 2008) using bi-directional air-
glow and VHF radar observations. Results obtained with par-
ticular ESF structures were discussed in those studies. In the
present paper, optical signatures at 630.0 nm and 777.4 nm
corresponding to a variety of ESF structures revealed by the
VHF radar maps are presented and discussed.

2 Experimental details

The mesosphere-stratosphere-troposphere (MST) radar at
Gadanki is a high power coherent pulsed radar which op-
erates at 53 MHz with a maximum peak-power-aperture-
product of 3×1010 W m2. The detailed descriptions of the
radar subsystems are discussed by Rao et al. (1995). The ob-
servations reported in this communication are obtained us-
ing the 3◦ wide beam oriented at 14.8◦ N from zenith, which
makes the beam normal to Earth’s magnetic field at F-region
altitudes.

The details of the multi-wavelength scanning photometer
for airglow studies during nighttime have been discussed in a
previous communication (Sekar et al., 2004). Temperature-
tuned, narrow band (band width∼0.3 nm) interference filters
are used in this photometer. Further, the field of view (∼3◦)
of the photometer is chosen to be similar to the VHF radar
beamwidth. The photometer was operated in a bidirectional
mode using a computer-controlled mirror scanning arrange-
ment fitted on top of the photometer. Coordinated airglow
and radar measurements have been conducted in campaign
modes during January–March 2003–2007 and in April 2006
as a special campaign mode. Note that the integration time
is 10 s for most of the airglow observations except during
March 2003 campaign when it is 1 s.

3 Observations

Although ESF structures are known to have enormous vari-
abilities from one event to another, the basic structural char-
acteristics observed by VHF radar, however, are found to fall
in a few broad categories. Accordingly, observations made
during last 5 years have been thoroughly scrutinized and clas-
sified. The following examples elicit fairly well that simul-
taneous VHF radar and airglow observations can be used ef-
fectively to characterize different features of ESF. In order to
appraise the solar flux and geomagnetic activity conditions,
theF10.7 andAP indices are provided in the text as well as
in figures.

3.1 Wave-like bottomside ESF structure with large altitude
extents

Figure 1 depicts the results obtained from both the VHF radar
and airglow photometer on 11 February 2004 which happens
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to be a magnetically disturbed day (AP =28,F10.7=100). The
time in IST (Indian Standard Time, IST = Universal Time,
UT+5.5 h) is plotted along abscissa which is common for all
the subplots. The Range-Time-Intensity (RTI) and Range-
Time-Velocity (RTV) maps of the radar echoes are shown in
subplots 1a and 1b, respectively. The colour codes in them
correspond to SNR (in dB) of return echoes in panel (a) and
line-of-sight Doppler velocities in panel (b). The vertical
and slant (along east 45◦) columnar intensities of 630.0 nm
and 777.4 nm airglow emissions are depicted in panels (c)
and (d), respectively, in Fig. 1. Similar panels are used in
all the remaining figures. Note that there are gaps in radar
data (in Fig. 1) during 20:50–21:20 IST and in photometer
data during 19:50–20:30 IST due to technical reasons. The
RTI map in Fig. 1a reveals a wave like bottomside undula-
tion along with vertically erect and slant plume structures.
The bottomside undulation encompassed from∼225 km to
as high as∼350 km altitude region. The temporal variations
of 630.0 nm airglow intensities observed from zenith (con-
tinuous curve) and east (dotted) reveal monotonic decrease
during post-sunset hours followed by large (period>1.0 h)
and small scale (period∼30 min–1.0 h) variations. The small
scale variations are not prominent in slant columnar intensity
while large scale variations are prominent in both directions.
It is interesting to note that the integrated slant columnar in-
tensity is less than vertical columnar intensity on occasions.
The temporal variations of 630.0 nm along zenith direction
depicted in Fig. 1c, reveal a large scale enhancement between
21:15 to 22:00 IST. Corresponding to this time interval, the
integrated intensity over slant columnar intensity is found to
be less. An enhancement is observed at a displaced time in-
terval for the slant columnar intensity variation depicted as
dotted profile in Fig. 1c. Comparing Fig. 1c and d, it is clear
that 777.4 nm intensity variations over zenith during 21:15–
23:00 IST are anti-correlated with the intensity variations of
630.0 nm over zenith. During the same time interval, the in-
tensity variation of 777.4 nm over east is found to be cor-
related with the intensity variation of 630.0 nm over zenith.
A similar correlation is also observed between the intensity
variations of 777.4 nm over zenith with 630.0 nm over east.

Figure 2 depicts another example of large altitude ex-
tent of bottomside structure associated with ESF observed
on another magnetically disturbed day (7 February 2005;
AP =30, F10.7=90). During 20:00 to 20:30 IST, both bot-
tomside structures and a plume event are seen in the radar
map. Correspondingly, over zenith, the airglow intensities
in 630.0 nm reveal a slight increase around 20:30 and and a
decrease in 777.4 emission centered around 20:15 IST. Af-
ter 20:30 IST, the bottomside structures moved well beyond
the 630.0 nm emission layer encompassing the altitude re-
gion around 400 km. Correspondingly, the zenith emission
intensities in 630.0 nm and 777.4 nm reveal flat and oscilla-
tory features, respectively. However, the slant columnar in-
tensity in 630.0 nm emission revealed a slight enhancement
corresponding to this bottomside structure as the lower alti-

Fig. 2. Similar to Fig. 1 but for 7 February 2005 revealing wave-like
bottomside structure with large altitude extents.

tude structures at an earlier time are tracked by the photome-
ter. Around 23:30 IST, a plume structure with corresponding
decreases in 630.0 nm and 777.4 nm is observed.
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Fig. 3. Similar to Fig. 2 but for 25 March 2003 revealing wave-
like bottomside structure with large altitude extents. Note that the
integration time for airglow observations is 1 s.

Figure 3 depicts yet another example of ESF structure on
25 March 2003 having a spectacularly sinusoidal bottomside
structure with large altitude extent. It is noted that, unlike the

previous two cases, this day was magnetically quiet (AP =3,
F10.7=97). The detailed description of this structure in com-
parison with the observation on non ESF night along with
the corresponding airglow signatures in the vertical direc-
tion have been discussed in a previous communication (Sekar
etal., 2004). Some of the plume structures were shown to be
plasma enhancements (Sekar et al., 2004). However, the air-
glow observations in the eastward (45◦ elevation) direction
were not considered earlier and are included in Fig. 3c and d,
respectively. The bi-directional airglow observations are also
used in determining the zonal plasma drift and in decipher-
ing the zonal wavelength (discussed later) of the bottomside
structure.

3.2 Bottomside confinement of ESF structures and associ-
ated airglow intensity variations

Figure 4 depicts an ESF event where only bottomside ESF
structure is observed without any plasma plume. This obser-
vation is on 19 March 2004 (AP =7, F10.7=100) which hap-
pens to be magnetically quiet day preceded by quiet condi-
tions for a few days. In Fig. 4a, the RTI map reveals that ESF
structures are confined around 250–300 km. The RTV map
in Fig. 4b brings out the upward moving region flanked by
downward moving regions in that confined structure. Corre-
sponding to this structure, a weak response is seen only in
630.0 nm airglow intensity variations as depicted in Fig. 4c.
It is interesting to note that the vertical columnar intensity
during 19:45 to 20:15 IST is more than the slant columnar in-
tensity. A steep rise in 630.0 nm intensity is observed in both
vertical and slant columnar intensities at around 20:45 IST
and at 20:15 IST respectively. The turning points in the tem-
poral variations of 630.0 nm intensities over eastern direc-
tion are preceding the zenith observations indicating that the
structures are moving westward. In the absence of high al-
titude structures (like plumes), no significant intensity varia-
tion is observed in 777.4 nm (Fig. 4d) except a few spikes for
which the reasons are not understood.

Figure 5 depicts a similar set of subplots for another
case of ESF that occurred on 21 March 2004 (AP =11,
F10.7=99). Figure 5a reveals a wavelike bottomside structure
confined between 250–300 km during time interval of 20:00
to 21:30 IST. A trough in the bottomside structure with a very
slanted plume is seen around 20:45 to 21:00 IST. However,
a couple of vertically erect plume structures extending upto
380 km are also noticed around 22:00 IST. The RTV plot in
Fig. 5b reveals downward velocity in the vertically elongated
plume structures as well as in the slanted plume. An increase
in 630.0 nm emission intensity is noticed in zenith observa-
tion corresponding to the trough in the bottomside structure
around 20:45 IST which is evident in Fig. 5c. Depletion and
enhancement in 630.0 nm zenith intensity around 21:45 IST
and 22:00 IST, respectively, are observed where there are
crest and trough in the bottomside structure, respectively.
The turning points in the temporal variations of 630.0 nm
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Fig. 4. Similar to Fig. 3 but for 19 March 2004 revealing bottom-
side confinement of ESF structures and associated airglow intensity
variations.

intensity over zenith and eastward directions around 20:45
and 21:00 IST suggest that the zonal drift is eastward around
250–300 km altitude region. Unlike the previous case, the
shears in the zonal drift could not be directly inferred for

Fig. 5. Similar to Fig. 4 but for 21 March 2004 revealing bottom-
side confinement of ESF structures and associated airglow intensity
variations.

this case. No discernible response is observed in 777.4 nm
intensity variation (barring a spike similar to Fig. 4d) corre-
sponding to ESF structures (Fig. 5d).
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Fig. 6. Similar to Fig. 5 but for 28 March 2003 revealing bottomside
ESF structure descending to E-region. Note that the integration time
for airglow observations is 1 s.

3.3 Bottomside ESF structure descending to E-region

Figure 6 depicts another case of ESF event on 28 March
2003 (AP =27, F10.7=131). A large scale bottomside struc-
ture with a flat crest region just before 20:00 IST is observed
in Fig. 6a. The bottomside structure is found to descend to
lower altitudes similar to the previous observation reported
by Patra et al. (1997). A couple of plume structures are
also seen to override the bottomside structure during 20:00–
20:20 IST. Figure 6b reveals predominantly downward ve-
locity in the bottomside as well as in the plume structures.
A steep increase in intensity is observed in the temporal
variation of 630.0 nm intensity (Fig. 6c) particularly in the
eastward direction. However, signatures of plume structures
are recorded only in 777.4 nm zenith intensity variations
∼20:00 IST. Corresponding to small patches between 22:00
to 23:00 IST, irregular variations are observed in 630.0 nm
zenith intensities.

3.4 Isolated plasma plume structure

Figure 7 depicts an ESF event on 12 February 2005 (AP =4,
F10.7=102) wherein a vertically erect structure extending
from ∼200 km to∼425 km is observed in RTI map which
is somewhat separated from the adjoining structure. Radar
data are not available after 22:00 IST on this night. It is in-
teresting to note that the velocities inside the first structure
are predominantly downward barring a small region wherein
the velocities are upward. The vertical airglow emission cor-
responding to this structure clearly reveals an enhancement
in 630.0 nm and possibly so in 777.4 nm observation over
zenith. This serves as a clear example for a plasma enhance-
ment structure extending upto 450 km. The second struc-
ture was broader and the velocities were predominantly up-
ward with corresponding decrease in 630.0 nm intensity over
zenith. The signature for the second structure in 777.4 nm
is not clear. The fluctuations observed in 630.0 nm intensity
after∼22:15 IST could not be characterized as the radar ob-
servation was not available.

Figure 8 depicts isolated, tower-like ESF structures and
a small patch which are observed around 22:00 IST on 20
March 2004 (AP =12, F10.7=101) along with correspond-
ing airglow observations. Barring a small narrow channel
in the tower-like structure, the velocities are predominantly
downward. The narrow channel seems to be depleted re-
gion of plasma that does not have corresponding signature
in optical emissions. This is probably due to weak structure
with smaller spatial extent. Enhancements are observed in
630.0 nm and 777.4 nm during the period around 22:00 IST
when these ESF structures seemingly advect across the radar
field-of-view.
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Fig. 7. Similar to Fig. 6 but for 12 February 2005 revealing isolated
plasma plume structure. Please note that radar data are available
during 21:00–22:00 IST only.

3.5 Closely-spaced multiple plume structures

Figure 9 depicts another special event of ESF observed on
6 February 2005 (AP =10, F10.7=84). The plasma struc-

Fig. 8. Similar to Fig. 7 but for 20 March 2004 revealing isolated
plasma plume structure.

tures are closely-spaced with peak altitudes not extending
above 360 km. The velocities inside these structures are pre-
dominantly downward. Comparison of these structures with
630.0 nm airglow intensity variations reveals that most of
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Fig. 9. Similar to Fig. 8 but for 6 February 2005 revealing closely-
spaced multiple plume structures.

those structures are plasma enhancements except a structure
just after 22:00 IST. Most of the decreases in 630.0 nm inten-
sity are found to be associated with the absence of plasma en-
hancement structures associated with ESF. The 777.4 nm in-

tensity does not register any variations corresponding to these
ESF structures. However, a broad enhancement observed in
777.4 nm intensity variation around 21:30 IST over zenith di-
rection. Similar closely-spaced plasma structures (not shown
in diagram) during ESF event along with oscillatory features
in 630.0 nm airglow intensities were also recorded on 29 Jan-
uary 2006 (AP =2,F10.7=69).

3.6 Plasma bubble structure

Another ESF event obtained on 6 March 2005 (AP =37,
F10.7=74) is depicted in Fig. 10. A bottomside undula-
tion during 20:40–22:30 and a plume structure at around
23:00 IST were observed on this night. The velocities inside
this plume structure are predominantly upward. The airglow
intensity variations in 630.0 nm and 777.4 nm emissions over
zenith record unambiguous signatures of plasma depletion
around 23:00 IST. The slant columnar intensity variations do
not record signatures corresponding to vertically erect deple-
tions. Interestingly, the slant columnar intensity of 777.4 nm
depicted in Fig. 10d is found to be less in comparison with
the zenith intensity throughout the period till 23:00 IST.

4 Discussion

As mentioned earlier, VHF radar in coherent mode is an
important and powerful technique to understand the phe-
nomenon of ESF. This technique is useful to investigate the
electron density irregularities present in bottom and topside
of the ionosphere. However, using this technique alone, iden-
tification of the depleted or enhanced plasma regions un-
equivocally is not possible, as the return echo strength is
proportional to square of electron density fluctuations. It
is well known that, in general, the plasma depleted regions
move upward and plasma enhancement regions move down-
ward (Ossakow and Chaturvedi, 1978). Thus an indication
on the nature of relative plasma densities inside the ESF
structures with respect to the background can be obtained
from the polarity of the Doppler velocities depicted in RTV
maps. However, these indications, on occasions, can mislead
as the depleted structures in a decaying phase of ESF evo-
lution were shown (Sekar et al., 2007) to move downward.
Thus the velocities inside the ESF structures cannot be used
to characterize them unambiguously. As the thermospheric
airglow intensity variations are directly proportional to fluc-
tuations in electron densities, co-ordinated airglow measure-
ments are used to identify plasma depletions and enhance-
ments. The signatures provided by the airglow measure-
ments are, thus, complementary with VHF radar measure-
ments making it possible to completely characterize the ESF
structures. The present observations reveal upward moving
depletions and downward moving enhancements extending
even beyond 350 km altitudes. Earlier simulation analysis
(Sekar et al., 2001) brought out the importance of more than
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one wavelength mode as seed perturbations for the genera-
tion of plasma enhancement beyond 350 km. The structures
depicted in Figs. 1 and 3 indicate in support of this simula-
tion as the plume structures ride over a large scale bottomside
structures. Moreover, the phase relation between the inten-
sities of 630.0 nm observed over east and the intensities of
777.4 nm over zenith (see Fig. 1) supports the possible phase
correlation between the two seeding wavelength modes em-
ployed in those simulations (Sekar et al., 2001). On the other
hand, the isolated structures without the connection to the
bottomside reported in Figs. 7 and 8 require further investi-
gation.

In the absence of steering facility of the existing MST
radar at Gadanki, the bi-directional airglow measurements
over zenith and eastward directions are used to infer zonal
plasma drifts. Identifiable crests and/or troughs in the tem-
poral variations of airglow intensities having mutual corre-
spondences are chosen to infer the trace velocities. By as-
suming the peak of the emission altitude of 630.0 nm to be
∼250 km during nighttime, the zonal separation between the
mutually corresponding points is 250 km for the present set
of measurements where the elevation angle is 45◦. The trace
drift velocities in the zonal direction are estimated using the
zonal separation and the temporal delay between the corre-
sponding points. It is noticed that the trace velocities on most
of the occasions are in eastward direction. The eastward
drift velocities were∼116 m s−1 and 139 m s−1 at ∼20:20
and 21:30 IST on 25 March 2003 while the velocities de-
crease from 87 m s−1 to 69 m s−1 from ∼21:30 to 22:20 IST
on 21 March 2004. The eastward drift velocities on 11
February 2004, 7 and 12 February 2005, were 126, 86 and
116 m s−1 respectively at∼20:30 IST. These values are in
the range of the measured zonal drift over Jicamarca (Fe-
jer, 1981). However, these observations are not adequate to
provide systematic temporal variations over Gadanki. It is in-
teresting to note that the trace velocity inferred on 19 March
2004 at 22:00 IST was westward (∼−116 m s−1) around the
emission altitude (i.e.∼250 km) region as the correspond-
ing points in the temporal variations of 630.0 nm intensities
over eastern direction are preceding the zenith observations
(see Fig. 4). However, the reason for the high value of the
westward drift is not clear and needs further investigation.
Similar such westward velocity on 7 January 2005 was also
inferred by Chakrabarty et al. (2006) using similar set of ob-
servations, when the plasma structures were confined to a
limited altitude region around 250–300 km. However, above
∼250 km, the zonal plasma drift is essentially governed by
F-region dynamo during nighttime which drives the plasma
in the eastward direction. This is mainly due to the east-
ward wind determined by the thermal gradient in the ther-
mosphere. Thus the inference of westward drift around the
altitude emission of 630.0 nm clearly indicates a strong ver-
tical shear in the zonal plasma drift. These observations are
consistent with the earlier numerical simulation of Sekar and
Kelley (1998) wherein it was shown that the strong shears

Fig. 10. Similar to Fig. 9 but for 6 March 2005 including the
777.4 nm observations in the bottom panel. The observations reveal
the plasma bubble structure.

in the zonal plasma drift is important to confine the ESF
structures in a limited altitude region. However, the confine-
ment structure obtained on 21 March 2004 (Fig. 5) did not
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accompany with the polarity change in zonal plasma drift.
Note this does not preclude that there are altitude variations
in the eastward plasma drift. Based on the simulation of Za-
lesak et al. (1982), it can be inferred that the slanted plume
structure around 21:00 IST is a clear indication of altitude
variation in the eastward plasma drift.

In the absence of steerable radar, it is difficult to decipher
whether the ESF structures observed in RTI maps are due
to temporal variations or spatially varying structures mov-
ing into the radar field of view by the background zonal
drift (Woodman and La Hoz, 1976). Using the scanning ca-
pability of the Equatorial Atmosphere Radar, Fukao et al.
(2004) have shown that while the ESF structures are advect-
ing horizontally into the radar beam, the structures are also
evolving with time. While the uncertainty remain with the
finer scale structures, the large scale structures localized in
the zonal direction could be taken to represent zonal scale
sizes of the ESF structurs. The coordinated airglow and radar
measurements provide a way in some cases to determine the
spatial scale structures in zonal direction. For example, the
zonal wavelength of the bottomside structure observed on 25
March 2003 and depicted in Fig. 3, is∼626 km consider-
ing a trace velocity of∼116 m s−1. Similarity in the patterns
of zonal and zenith airglow intensity variations confirms the
presence of zonal structures. Such a large wave-like bottom-
side ESF structures with large altitude extents, similar to the
observations over Jicamarca (Kelley et al., 1981), have been
observed even over Gadanki where dip angle is 15◦ N at F-
region altitudes. Simultaneous measurements from the dip
equator and off-equatorial region are required to conclude
that such large scale structures are indeed mapped along the
magnetic field lines. Some of these wave-like structures en-
compass both airglow emitting altitude regions where shears
alone in the zonal plasma flow with respect to neutrals can-
not be a seed. Thus, these structures are in support of that
the gravity waves are the seed (Kelley et al., 1981) for such
bottomside structures. Further, the presence of such large
scale seed perturbations observed on both magnetically quiet
and disturbed conditions (refer Figs. 1 to 3) indicates that
the auroral activities need not be the source. However, the
bottomside large wave-like structures (Figs. 1 and 2) are
conspicuously more irregular (presence of fine structures)
during the disturbed period compared to quiet time struc-
ture (Fig. 3). The role of disturbance electric field to form
fine structures within the large bottomside structure needs
to be investigated further. In contrast to the large scale
wave-like structures, comb-like structures shown in Fig. 9 re-
quire much smaller seed wavelengths. Nearly three plumes
are observed within an hour in RTI map (see Fig. 9) at a
lower altitude region of∼220 km. The trace velocity in the
zonal direction is only∼60 m s−1 on this night (6 February
2005). Assuming each plume evolved from the trough re-
gion of each wave, the zonal wavelength is estimated to be
∼72 km. Spatial structures in the electric field generated by
E-region gravity waves and mapped from the off-equatorial

region are suggested (Huang and Kelley, 1996) to be the pos-
sible seed for such plumes. This possibility of off-equatorial
E-region electric field structures seeding the ESF structures
with smaller wavelength needs to be explored in future. Fur-
ther, the connection between the upper E-region and the F-
region plasma structure particularly the large scale bottom-
side structure needs further investigations. Earlier investiga-
tion (Sekar et al., 2001) revealed that the electric field gener-
ated by the interaction between the large and small scale size
perturbations with suitable amplitude can lead to descending
structure (Fig. 6) to upper E-region.

The interesting point emerges using bi-directional airglow
measurements that the slant columnar airglow intensities, in
spite of geometrical advantages, on occasions, are found to
be less than the corresponding zenith observations. Many
such examples are provided in the results section. This is
in contrast to the Van-Rhijn advantage principle based on
which the slant columnar intensities are generally expected
to be more than the zenith intensities. This can happen in
the presence of depleted ESF structures in off-zenith direc-
tions and/or enhancement structures over zenith when these
structures nearly fill the field of view at the emission altitude
region. This is clearly evident in the narrow-beam photom-
etry employed in the present investigation. Photometry with
a large field of view (broad-beam) may average out the air-
glow intensity fluctuations associated with ESF (occupying
less spatial region) compared to the background airglow in-
tensity (occupying more spatial region). This makes the slant
columnar intensity to exceed the zenith intensity in case of
broad-beam photometry. On the otherhand, the narrow beam
photometer operated in 45◦ eastern direction, on occasion,
can underestimate the degree of depletion (see Fig. 10) of
a vertically erect plasma depleted structure in the presence
of neighbouring plasma enhancement structures owing to
the relatively larger contributions of the large background in
comparison with the plume structure in the airglow intensity
along the slant path. Finally, since the signal to noise ratio
for 777.4 nm airglow intensity is not as high as in 630.0 nm,
the signatures in 777.4 nm are clearly evident only when the
777.4 nm signal intensities are significant.

Therefore, it is apparent that coordinated optical and radar
observation of ESF is a powerful tool to probe the finer fea-
tures of ESF and to infer many dynamical conditions that
govern the evolution of ESF. More such observations are
planned to investigate ESF in a comprehensive manner.

5 Summary

Based on simultaneous VHF radar measurements with bi-
directional scanning, narrow band and narrow beam pho-
tometric observations of thermospheric airglow during ESF
events, potential science applications in addition to the iden-
tifications of plasma depletion (bubble) and enhancement
structures are discussed. The wavelengths of large scale
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bottomside structures are estimated using bi-directional air-
glow observations. Further, the possible shear in the zonal
plasma drift is inferred when the ESF structure is confined
to limited altitude region. It is found that on occasions, the
vertical columnar intensity of OI 630.0 nm airglow obtained
using narrow band photometry exceeded the slant columnar
intensity in the presence of large bottomside structures. The
need for the physical mechanisms for the development of
plasma enhancement structures without the bottomside struc-
tures and the seeding of ESF by E-region electric field struc-
tures are discussed. The importance of simultaneous mea-
surements from the dip and off-equatorial region for mapping
of wavelike bottomside ESF structure with large altitude ex-
tents is emphasized.
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