B ———

s

g

Proc. Indian Acad. Sci. (Chem. Sci)), Vol. 106, No. 2, April 1994, pp. 569—-577.'
© Printed in India.

A Gaussian wave-packet propagation study of non-adiabatic dynamics
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Abstract. The Gaussian wave-packet propagation (GWP) approach in the coherent state
algebraic formalism has been applied to calculate the dynamics of a few model single-mode
systems and a model two-mode system. To circumvent the problems arising in defining the
initial conditions and the potential surface for such systems in this formalism, we have
constructed a new Hamiltonian which is derived by mapping the original Hamiltonian on
to a single electronic surface. Good agreement with exact results have been obtained.
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1. Introduction

Many exact and approximate methods exist in literature to calculate the dynamics
of a system. The Gaussian wave packet (GWP) dynamics (Heller 1975) approach is
an approximate method in which the wave function is parametrized as a travelling
Gaussian. The equations of motion for the centroid of the wave packet derived
from the time-dependent Schroedinger equation (TDSE) in the local harmonic
approximation turn out to be classical equations of motion. The consequential
computational simplicity and the pictorial interpretation it provides in terms of
classical trajectories are the attractions of this approach.

"The GWP has so far been applied to study various dynamical systems of chemical
interest such as atom—diatom collisions. (Heller 1975; Drolshagen and Heller 1983;
Skodje and Truhlar 1984; Jackson and Metiu 1985, 1986; Kluk et al 1986; Sawada
and Metiu 1986a, b), photodissociation dynamics (Kulander and Heller 1978; Brown
and Heller 1981), calculation of Franck—Condon spectra (Heller 1981; Coalson and
Kinsey 1986; Coalson 1987; Coalson and Karplus-1990), overtone widths (Heller and
Davis 1980) and others (Sawada et al 1985; Blanco and Heller 1983). It provides a
fairly accurate description of quantum dynamics, especially for short time intervals.
One class of applications for which such short time dynamics is sufficient is the
calculation of spectra of systems undergoing non-adiabatic dynamics. Although
various methods to calculate these dynamics have been reported (Schneider and
Domcke 1988, 1989; Jiang et al 1989; Manthe and Koppel 1990, 1991; Stock and
Domcke 1990; Durga Prasad 1992; Stock and Miller 1992), very few attempts have

" been made so far in this area applying GWP (Coalson 1987; Coalson and Kinsey

1986; Sawada and Metiu 1986). Even these approaches utilize the GWP primarily
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to calculate the dynamics on one surface while other methods such as perturbation
theory are used to account for the non-adiabatic coupling. Our own goal, in contrast,
is to use the GWP consistently to obtain the full non-adiabatic dynamics.

In this paper, we specifically study the non-adiabatic dynamics within the
framework of the linear coupling model (Koppel et al 1984). We assume that only
two electronic states, belonging to different irreducible representations of the
molecular point grbup and n vibrational modes, are relevant to the dynamics. The
resultant Hamiltonian can be written as (Koppel et al 1984)

H= Z|e DE; <e|+Za)a a, + Y |e>[V‘”’(a +a)]<e| (1)

ij.n

Here |e;)’s are the electronic states and 4" and a, are the usual Boson ladder operators
of the nth vibrational mode. This Hamiltonian has been extensively studied in the
past and is found to be adequate for a large number of systems. The wave function
for such systems is given by

V=Yl di(R.1) | @

where ¢, are the vibrational wave functions associated with the ith electronic state.
The essential drawback in using GWP to study the non-adiabatic dynamics lies in
choosing the initial conditions. This can be seen as follows. In matrix representation
the vibrational wave function ¢ can be written as

_($:(R) ‘
¢= (cbz(R))' ‘ G

The ¢,(R) are vibrational wave packets moving on different surfaces. They have
different momenta and centroids. To obtain the equations of motion by GWP the
potential is expanded as a Taylor series at the centroid of the wave packet. As both
the nuclear wave functions ¢, and ¢, corresponding to the two electronic states have
different centroids in general, choosing the point around which the potential is to be
expanded becomes a problem. Second, if any one of the ¢; is equal to zero, the
exponent in the Gaussian ansatz for ¢, should be equal to — co. Representing this
logarithmic singularity is difficult in practice. We have circumvented this problem
by mapping the Hamiltonian, (1), on to a purely vibrational Hamiltonian confined
to a single electronic surface. The details of the mapping are presented in §2. In §3,
we present the numerical calculations for some one- and two-dimensional model
systems. Section 4 contains a summary of our work and a few concluding remarks.

2. The Hamiltonian

In this section, we discuss the mapping of the multisurface Hamiltonian, (1), of a
system specifically consisting of two electronic surfaces belonging to different
irreducible representations of the molecular point group, on to a single surface
Hamiltonian. We first consider a situation where only one vibrational mode (the
coupling mode) is relevant-to the dynamics and describe the mapping. We then extend
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it to the n vibrational mode problem. The Hamiltonian for the single mode case is
given by

H=3 lepelel +wala+ Y le>[Via) +a)]1<el. 4)
i i#j

The subscript ¢ indicates (here and in the following) that the normal coordinate is a
coupling mode. Because the two states belong to different irreducible representations,
the coupling coordinate is always non-totally symmetric and hence cannot have
intrastate coupling. We take the zero of energy to be the midpoint of the two electronic
states such that, &, = — ¢ and ¢, = ¢ where 2¢ is the energy gap between the two states
at the equilibrium geometry of the ground state.

Let us now analyse the structure of the Hilbert space H, relevant to the dynamics
of this system. This Hilbert space is formed by the direct product of the Hilbert
spaces of the electronic and vibrational sub-systems.

H,=H,®H,, (52)
He = {lel‘>a Iez>}9 ‘ (Sb)

Here ¢, are the harmonic oscillator eigenfunctions. Let |e; ) and |e, ) belong to the
irreducible representations I'; and I', respectivély. Since the Hamiltonian must always
transform as the totally symmetric representation the coupling mode belongs to
[L=T,@®T,. Consequently, all the elements in H, belong to either the totally

‘symmetric representation (when n is even) or to the I, representation (when n is odd).

Thus, the elements in H, belong either to I'; (when the electronic state is |e; > and
the vibrational quantum number is even or when the electronic state is |e, ) and the
vibrational quantum number is odd since I, @T,=T,) or to I'; (in the opposite
cases). Symbolically, this can be written as

Hs':HlUHZa (63)

H, = {|e;>$,; i=1and n even or i=2 and n odd}, (6b)
H,={|e;>¢n; i=1and n odd or i=2 and n even}. (6¢c)

Since the Hamiltonian cannot couple elements belonging to different symmetries, a
wave packet initially started in one of the two subspaces (H, or H,) would continue
to evolve within that subspace. Thus, for such initial conditions it is sufficient to
expand the wave packet in terms of the basis functions of either H, or H,. We now
note that the number of elements in H, (or H,) and H, is identical and hence it is
possible to define a one-to-one correspondence between these two subspaces.

H,~H,, (7a)
¢n(_’¢n,ei>"’ (7b)

The correspondence is completely defined when the electronic state index i is uniquely
defined for a given n. In case of H, the electronic state is e, (i = 1) whenever n is even
and e, whenever n is odd. The opposite holds in case of H,. With this ldentlﬁcatlon,
the mapping between H, and H, is complete.
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In the next step, we construct a model Hamiltonian H, whose matrix elements in
H, are identical to the matrix of H in H . For the first term in H(w,a; a ), the matrix
elements in H, are {¢,¢,|w.a  ae;$,5 =mwd, J,. The corresponding term in A,
is then simply w_a’ a,. For the second term (Z¢;|e, > {e;|) the matrix elements are

<e[¢"lzexlek><e}(“ej¢,,> 615115,,", (83)

Recalling that ¢; are F¢ depending upon whether m is even or odd we find that the
term in H, is —acos(na a,) since

{$,Icos(na a,)|9,> = <$,]|cos(nm)¢,>
=(=1"9,,. (8b)

Fmally, the last term in the Hamiltonian Zle, >V.(a} +a)<ej|) maps on to
V(a +a ) With this, the model Hamlltoman H can be written as

H1 =w,a} a,—ecos(nal a,) + Vc(ac‘“ +a,). (9a)
Similarly, for H, one can show that
H,=wa’a +ecos(nala)+Via} +a), (9b)

simulates the dynamics in H,,.
We now turn to the multlmodc problem. The most gencral Hamiltonian in this
case is

H= Z|e>e<e|+wa a.+ Y le>[Vi(a! +a,)1<e)

i#j
+Y wa’ a,+ Zi le,>(VP[a + a,j)(el.l. (10)
t t, .

Note that, the coupling modes cannot tune the electronic state energy and the tuning
modes cannot cause coupling between the states due to symmetry constraints (Koppel
et al 1984). Defining the auxiliary parameters

V, =05V + @), ~ (11a)
U,=05(V) — y@), (11b)

it can be shown that the model Hamiltonian

=Y wa'a +2V(a +a)—scos(7r2ac+ac)

n=t,c

=Y Ua} -i—'a‘)cos(nZac+ ac), (12

simulates the dynamics of H in H, and H,. Change of sign in front of ¢ generates
H, which simulates the dynamics in H,.

We now use the Gaussian wave packet propagation technique in the coherent state
operator algebra formalism to calculate the dynamics of this system (Gazdy and




Non-adiabatic dynamics. Gaussian wave-packet propagation study 573

Micha 1985; Benjamin 1986; Yuan and Gilmore 1987). In this mwethod, we parameterize
the evolution operator as a product of exponentials generated by the elements of the
n-dimensional harmonic oscillator algebra,
. . . ,
L ={l,a],a;aq a; ,al.aj,ai*aj}. : (13)
Since we are particularly interested in the dynamics of the vacuum state, it is
convenient to parametrize the evolution operator as

U =exp [21: Stat + ;,:j Sia}a} :Iexp [2‘: T\ a+ ;Z',- T‘zjaiaj] x exp[S,]-
(19

For computational simplicity, we have included only diagonal terms in S, and T5.
This corresponds to the thawed Gaussian approximation (Heller 1975). We have
dropped the diagonal operators from the ansatz (14) since the phases they contribute
do not effect the evolution of the vibrational vacuum state. Substituting the above
ansatz in the TDSE, we obtain the following equations of motion for the case of one
coupling and one tuning mode. The equations of motion for the case of only the
coupling mode are obtained by putting V,= U, = w,=0.

iS5 = 20,55 — 2¢(e — u)S2, ‘ (15a)
iS5 = 4c(e — WS T + 0 S + V,+2V,55 + 2(e — u)cS;, (15b)
iTS = — 2, TS + 2c(e — u)(S7 — 455 T5 T9), ‘ (15¢c)
iT\=—w, T‘l--—Vc—2cT°1(—a+u.)—-8c(—ta+u)S‘1 % (15d)
ish, =2w,5%, ‘ , (15¢)
iS' = w, S + V,+2V,S; + cU,(1+283), (15f)
iT, = — 2w, T, (15g)
iT, = —w, T —V,—cU, (15h)
iS, = V.85 + V.S +(— &+ u)c[287 TP — 45 Ty + 257 T11,
+c[—e+U,S] (15i)
where, '
c =exp[4T5 S Jexp[ — 2T S5, o (16a) -
and : : :
u=y U(S.+ T, +28,T,). . (16b)
“hlis |

Here the subscripts ¢ and t refer to the coupling and the tuning modes respectively.

3. Results and discussion

We have.applied the formalism to evaluate the Franck-Condon spectra of some
model one-dimensional systems containing only a coupling mode and a two-mode
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Figure 1. Franck-Condon spectra of model one-dimensional systems for different values
of ¢ at V,=0-318 and &= 0-091: £¢=0'5 (a), 0-4 (b) and 0-2eV (). The solid line indicates
the exact spectrum and the dashed line indicates the spectrum obtained by algebraic
calculations.

system. The Franck—Condon spectrum is obtained by Fourier-transforming the
autocorrelation function C(f) which is given by

C()=<0|U|0>
= exp(So)- : (17)

We first discuss the model single-mode systems. The spectra for ¢ = 02, 04, 0-5eV
and V,=0-318eV are shown in figures 1a—c. For ¢ = 0-2, the spectrum corresponding
to the lower surface has been reproduced fairly well compared to the exact one. In
contrast, the upper surface is not well reproduced. Instead of a single peak as seen
in the exact spectrum, the GWP produces a harmonic-like progression. As the energy
gap ¢ is increased to 0-4 and 0-5 eV, the agreement between the GWP and the exact
spectrum increases. This implies that as the energy gap increases, the validity of GWP
improves. The reason for this behaviour can be explained as follows. Consider the
case when ¢ is equal to zero. The adiabatic Hamiltonians associated with the
Hamiltonian, (2), on both surfaces are essentially that of a displaced harmonic
oscillator. This property is retained for small ¢ values and hence a harmonic
progression for the upper surface for ¢ =0-2¢V is seen (the lower surface anyway
shows a harmonic-like progression). For large energy gaps ie., & =04 and 0-5¢V this

Wﬁ
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progression is not seen since the deformations in the potential are small and the
spectra by GWP are in good agreement with the exact spectra.
Increasing the coupling constant has an effect equivalent to decreasing the energy

gap since the stabilization energy is proportional to the square of the coupling -
constant. As can be seen in figure 2, the quality of the spectra deteriorates when

V.=0-718¢V even for e =0-5¢V.

INTENSITY

~1.0-0.6-0.2 0.2 0.8
()

Figure 2. Franck—Condon spectra of mode one-dimensional systems for different values
of ¥, at e=0091 and w,=0091: V,=0-718 (a) and 0-318¢V (b) (figure conventions as in
figure 1).
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Figure 3. Photoelectron spectrum of energy gap-doubled butatriene by GWP. The band
at 0-15eV is the mystery band.
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As a last example we have calculated the photoelectron spectrum of a model system
that is identical to the butatriene cation in all aspects except that the energy gap at
the origin is taken as 0-8eV (double the value of butatriene). This energy gap-doubled
butatriene is an example of a two-mode system (Koppel, et al 1984). It consists of
one coupling mode and one tuning mode. Calculations have been performed by
rearranging the term [U ™" cos(na) a)UJin U~ LHU as [eX*" e¥*cos(na™ a)] where
X and Y are constants. An interesting feature of this system and the original butatriene

_system is that the spectrum shows three distinct bands while there are only two
electronic states. The middle band in the PES of butatriene was named the mystery
band by Brogli and coworkers (Brogli et al 1974) for this reason. That this band
appears due to vibronic coupling was shown by Cederbaum and co-workers (Koppel
et al 1984). As can be seen, the spectrum obtained from GWP is in good agreement
with the exact spectrum and even the mystery band is generated in it. Less than five
vibrational periods were required to obtain the spectrum. We note in passing that
the working equations of GWP are quite stiff and required careful handling. In most
cases, we have not been able to integrate them beyond about five vibrational periods.

4. Conclusions

In this work we have applied GWP in the coherent state algebraic formalism to
calculate the dynamics of non-adiabatic systems, specifically consisting of two
electronic states belonging to different symmetries. In GWP the potential is expanded
as a Taylor series around the centroid of the wave packet. The difficulty in chosing
the centroid of the wave packet which comprises two nuclear wave functions
corresponding to two electronic functions having two different centroids and
momenta, has led us to construct a new Hamiltonian which is explicitly independent
of the involved electronic states. This has been done by mapping the original
Hamiltonian on to a Hamiltonian associated with a singie electronic surface.

Using the new Hamiltonian we have calculated the spectra for a few model systems
comprising two electronic states and one vibrational (coupling) mode. We have also
performed calculations for a model system (butatriene) which comprises two
vibrational modes. It has been found that for the single vibrational mode case the
accuracy of GWP increases as the energy gap between the two surfaces increases.
For a small ¢, the spectrum associated with the lower surface is well reproduced, but
the upper surface dynamics are quite inaccurate. Energy gap-doubled butatriene
which is an example of a two-mode system gave a good overall spectrum in spite of
minor shifts of the peaks in the spectrum. The central mystery band in butatriene is
also well reproduced. -
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