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Abstract, In this paper certain correspondences have been shown am vari
formulations of coupled-cluster theories for many electron closc:d-sh(e;ﬁg sy?te?nl;s:
Specifically it is shown that (i) the energy functional using unitary ansatz of the
form exp (T'—T) is exactly same order by order in T with the size-consistent energy
functional (¢|H\|$)/($\¢) recently obtained by us in coupled-cluster framework -
(if) in the framework of unitary ansatz of the form exp (T—T%), both non-variational
and variational approaches lead to identical equations upto any given order in T
and T*in T~ T, approximation; (iii) variational procedure using our size-consistent
energy functional or using the functional obtained in the framework of unitary ansatz
(as envisaged by Kutzelnigg) leads to energy in both cases, in T’ ~ T, approximation,
for a total of quadratic powers in T and T*, same as Cizek’s linearised coupled pair
many electron theory energy; (iv)in caseof practical calculation of the energy through
the variational procedures using our size-consistent energy functional and the funce
tional in unitary ansatz framework, there is a loss of upper bound.

Keywords. Coupled-cluster theories; many body theory; size-consistency; atoms;
molecules..

1. Introduction

The variational principle has, for a long time, been a key method for finding the
approximate solutions to the eigenfunctions for a many-electron system. In its simp-
lest application, for a form of the single-determinantal trial wavefunction, we get the
Hartree-Fock (H-F) wavefunction. The B-F function, as is well-known, does not
describe the electronic correlation. There have been many independent develop-
ments, either in the variational or other frameworks, of various post H-F methods to
take account of the correlation effects. Configuration interaction (c1) procedure in
the variational approach is one of the simplest methods to achieve this goal. An
approximate cI function, however, lacks ‘size-consistency’—an important desirable
property of the wavefunction which shows additivity of energy for non-interacting
fragments. A very appealing approach preserving size-consistency for even an
approximate function is the coupled-cluster (c-c) formalism, first adapted in nuclear
physics by Coester and Kummel (Coester 1958; Coester and Kummel 1960; Kummel
1962) and then in atomic and molecular physics by Cizek (1966, 1969) in which the
correlated wavefunction |,,> is described as an action of an exponential operator
exp (T) on the Hartree-Fock function | gz ),
N "
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for an N-electron system. T acting on the Hartree-Fock wavefunction generates
i-fold linked excitations. Taking cue from ‘the dominance of pair-correlation’ idea

of the ‘many electron theory’ of Sinanoélu (Sinano?;lu 1962, 1964) T is approximated
as T, and the quadruple excitation amplitudes are simulated as T3 |¢gpy. The
cluster components of Ty were obtained first by Cizek in the atomic and molecular
physics for closed-shell systems in the non-variational framework using the method of
moments (Cizek 1966, 1969). This has been known as the coupled pair many electron
theory (ceMeT). This non-variational theory yields a size-consistent energy expres-
sion automatically for truncation of the energy series in 7.

For a variational adaptation of the c-C ansatz involving the energy functional
Ce|HY> [ |4 ), size-consistency is not automatically guaranteed for a trun-
cation of the series in . Only certain specific ways of handling the functional pre-
serve the size-consistency. The crux of the problem lies in the proper treatment of
the norm ( ¢ |¢ ). Unless the full expansion exp (T) is used both for the numerator
and denominator, the energy functional, just as in a ‘less than full’ c1 approach,
would lack size-consistency. Following Primas (Primas 1961) and Van Vleck
(Van Vieck 1929), Kutzelnigg cast the c-c theory in a variational framework using
a unitary exponential wave operator €xp (o), where ¢ is anti-hermitian (Kutzelnigg
1977) satisfying size-consistency. In this case the norm (¢ |¢ ) is unity. A parallel
non-variational treatment using unitary ansatz to the theory of Cizek (Cizek 1966,
1969) has also been envisaged (Westhaus 1973 ; Mukherjee et al 1975, 1977).

Recently we have attempted to develop an alternative rigorous treatment for the
closed-shell system using the original non-unitary c-C ansatz exp (T) which also pre-
serves size-consistency (Pal ef al 1982). Unlike that in a unitary ansatz, the denomi-
nator in this case is not identically equal to unity and as such in a general coupled-
cluster framework the denominator has to be explicitly cancelled to give the functional
Cy|H|E ) [ (4 |# ) a linked and size-consistent property. We have been able
to show the cancellation of such a denominator and thus give the energy functional
the desirable linked property. Thus we could establish a rigorous treatment of the
coupled-cluster ansatz in the variational form. |

The purpose of this paper is to lay down certain correspondences we have noted
during the development of the above theory among the following energy functionals
for closed-shell systems. They are (a) the energy functional obtained in the unitary
ansatz framework (b) the energy functional obtained by us and (c) energy obtained by
Cizek in the non-variational framework. Specifically, we want to show the following
interesting features obtained as a result of our studies:

(i) The energy functional using a unitary ansatz of the form exp (T'—T*) is exactly
same order by order in T with the size-consistent energy functional obtained
by us, with T chosen as hole-particle excitation operators.

(i) In the framework of unitary coupled-cluster ansatz of the form exp (T’ — T+)
with T approximated as Ty, if a non-variational procedure is used to solve the
T-matrix elements upto any total power in 7" and T+,* the equations are identi-
cal to the equations upto the same order obtained by the Euler variation of
the energy functional and hence as such the energies obtained by both these

*From now on, we shall, for brevity, write ‘mth power in 7” when we want to mean mth fotql
power of T'and T+, , '
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procedures in the unitary cluster framework are the same upto any given
order in T. '

(iii) In a variational procedure for the solution of T-matrix elements from the size-
consistent energy functional (using a non-unitary C-C ansatz) in T ~ T, ap-
proximation, truncated to a quadratic power in T, (Pal et al 1982), the energy
calculated upto quadratic approximation is the same as the linearised cPMET
(L-CcPMET) energy of Cizek (Cizek 1966, 1969). Hence such an energy has a

. lower bound property, as proved recently (Mukherjee 1981). Similarly if a
variation is done on the functional in the unitary ansatz (Kutzelnigg 1977),
truncated to quadratic power in 7}, the energy obtained is again the same as
the L-CPMET energy of Cizek and hence possesses a lower-bound property.

(iv) For practical calculation of T-matrix elements in the variational procedure
using either a unitary ansatz or a general non-unitary ansatz, truncation of the

, linked functional is necessary and the energy thus calculated in either of these
P - frameworks lacks a strict upper bound property. This is known as the ‘Emery
’ difficulty’ (Emery 1958 ; Bell and Squires 1962) in nuclear physics literature.

In § 2 we briefly review the three kinds of coupled-cluster approaches we want to
see correspondence between. In § 3, we show the explicit correspondences as men-
tioned in (j) to (iii) above.

a 2. Brief review of the C-C approaches

The most widely known solution of the coupled-cluster matrix elements was done by
N Cizek using method of moments in the non-variational procedure (Cizek 1966, 1969).
4 The ground state of the closed-shell wavefunction is written as

' ¢gr> == ?Xp (1) I ¢'HF>’ 2

with T involving hole-particle excitations only. The solution of the T-matrix
elements were obtained by projecting exp (— T) H exp (T) | éur) on to the various
excited states reached by T In T ~ T, approximation only the doubly excited
states are sufficient for projection to get the necessary equations. Energy can then be
written as

E={$ur|exp (— T) H exp (T) | due. | 3)

In the approximation T ~ T, if the energy is solved upto linear approximation,
the energy thus obtained is L-CPMET energy.

The unitary coupled-cluster ansatz can be used to describe the exact correlated
wavefunction ' '

’ ¢gr> = ‘exp (G) ’ ¢}IF>s (4)
o being anti-hermitian. The idea of using a unitary ansatz was first conceived by Van

Vleck and then by Primas (Van Vleck 1929; Primas 1961). A special choice of o
may be of the form ¢ = T — T, One can adopt a non-variational procedure, akin
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to Cizek’s theory, to solve for the T-matrix elements (Westhaus 1973; Mukherjee et al
1977; Van Vleck 1929). We then get the following system of equations

By | exp (—0) H exp (0) | bux)
= (boy | ex0 (T+ — T) Hexp (T — T) dur) = O, (%)

i

for a set of ¢y which are generated by all possible excitations from the Hatrtree-Fock

determinant. In the T ~ T, approximation, we again need to consider projections
on to the doubly excited determinants only. Energy can then by found upto any given
order from the expression

E = {$urp | exp (T — T) H exp (T — T%) | dur)- ' (6)

On the other hand, a variational procedure using the unitary ansatz can also be applied
as suggested by Kutzelnigg (Kutzelnigg 1977). The Euler functional in this frame-

work is given by

E

_ (e | exp (= o) B exD () | -
{bur ‘ €Xp (" o) exp (o) | bur) ’ .

for the wavefunction described by (4). The denominator taken to all orders is identi-
cally equal to 1. Hence the denominator is automatically cancelled, leaving the

energy functional as just
E = {¢ur 1 exp (—o) H exp (o) l ‘}SHF)' (3

By Hausdorff’s expansion such a functional is automatically linked and hence size-
consistent. The linked cluster nature of the energy functional using the unitary
cluster ansatz has been indicated earlier (Westhaus 1973; da Providencia 1963, 1965;
Westhaus ef al 1975; Yaris 1964, 1965). Just as in the non-variational theory, one
can again choose o as o = T — T+ such that the energy functional (8) becomes

E = ($ur | exp (T — T) Hexp (T — T*) | ur)- ®)

Kutzelnigg suggested a variational procedure to solve the T-matrix elements by
invoking the Euler variation principle to the functional (9).

" Recently we established another form of the size-consistent energy functional in
the general coupled-cluster framework (not using an explicit unitary ansatz) which
can be used for Euler variation (Pal et al 1982). We used an exponential ansatz
such that

| Yoy = €xp (T) | bae)- (10)

T again involving hole-particle excitations of different ranks. Euler energy functional
can be written as

g (b | 3D (7%) H exp (T) | b an

 (Sur[lexp (TH) exp (T) [ bup

i S e RS i o
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Unlike in the case of unitary cluster the denominator cancellation is not automatic
here. The norm correction term in the denominator is not trivially equal to Unity,
Thus the linked cluster nature of the functional (11) has to be explicitly proved. Only
such a linked functional could then be usefyl, In what follows we shall show the
functional (11) to be linked leading to

E = {$up| N [exp (T H exp (T)] |bae)r o (12)

where L, ClI denotes linked and closed diagrams. N denotes normal ordering. The
proof is reminiscent of the proof of the linked cluster theorem of the many body per-
turbation theory (Goldstone 1957).  The linked nature of this kind of functional in a
perturbative framework has also been indicated by Thouless (1961). We now show
the linked nature of the energy functional (11). We first take the numerator and ex-
pand it using the generalised Wick’s theorem (GWT) so that the numerator becomes
the sum of all contractions between all possible powers of 7+ and T and H vertices.

™ ‘

11

Numerator = z o (Pur | N [T+ H T /¢HF>L, al s (13)
mn )

For choosing all possible contractions for any terms corresponding'to m number of
T+ — vertices and » number of T-vertices we first take out k-number of T+ vertices,
and /- number of T vertices in all possible manner and contract them with the hamil-
tonian vertex. T operators cannot contract among themselves as they are all of
hole-particle excitation types. Similarly T+'s cannot contract among themselves,

- The rest of the (m— k) number of T+ vertices and (n—1) number of T vertices are

contracted together so that the numerator becomes

n

1 1 . |
Z — ="y "Cy {urs| T+ H T MHF)Linked, X
- m! ni closed

I
{bup| THm~* T71 |gyp). (14)
This can be written as,

ool o0 m n
11 1 1 T T v
Numerator = Z z ' — (bug | T+ H T | bur) L 4
k! Il (m—k)! (n—1)! ‘ mked,
‘ m=0 n=0 k=0 [=0 (m—k)! (n=1) closed
| [
X {fup | THm* T | b, (15)
Since,
__.1..._.=O fork >m, (16)
(m— B! | |
and,
1 =0 forl!/>n, an

(n—DN!

i
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We can rewrite the series as

w 28 o0 0 ] l
1111 I
Numerator = z 2 Z 2 2] I sl <(i)I*IF l THHT |¢HF>Linked,
s=0 k=0 1[=0 AEARAN closed

r=0

X < ld’HF] T-,;_:]?'S I¢HF>’ ) (18)

[defining (m — k) as r and (n — /) as s.]

0 [e]
11
The factor z z ey (Pur
r=0 s=0 .
denominator is similarly expanded using GWT. Hence the denominator is cancelled
leaving the energy functional as that in (12).

.
| T+ T*| ¢ygy is the same as the denominator if the

3. Correspondences

First we show that our size-consistent energy functional (12) is exactly same order by
order in T as the energy functional (6) or (9). The functional (12) when expanded
is merely

s (19

closed

0]
1 1 i
z m! nl (Pue ‘T+m H T" ) Linked,
0 n=0

INGE

Each term in the series expansion gives contribution for (m + n) th power of T.
The functional (8) in the unitary ansatz when expanded by Hausdorff’s formulae
gives .

E = {bue | H| ey + e | [H, o [ b

+21!<¢HFI [[H, o], o] | $pey + - , (20)

If we substitute ¢ as T — T+ in (20) we get the corresponding expansion for
the functional (6) or (9). We note that because of (20) the energy functional
(6) or (9), as in the case of (12), leads only to linked, closed contribution of
T+, H, Tvertices. Because of the multicommutator expansion, for each term we must
evaluate the innermost commutator first and then the commutator of the resultant
operator with the next o and so on. Since T+ cannot contract with anything to its
left and T cannot contract with anything to its right each commutator would ensure
that there is no T vertex to the left of H and no T+ vertex to the right of H such
that when term by term we go on evaluating higher order commutator only linked

| ‘
terms of the nature of T*+™ H T" would survive for (m + n) number of ¢’s appearing
in a multicommutator term, Let us now investigate the factor for such an expression.
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As is evident in the Hausdorff’s formulae if we have a total of (m - n) number of
o’s or (m + n) total number of T and T+ vertices appearing in any term of the multi-
commutator expansion, the factor for the Housdorff’s formulae is 1/(m + n)!. Out
of these total of (m + ») number of T+ and T vertices if we choose m number of T+
vertices and » number of T vertices for contraction, the number of ways we can choose
is (m + n)C,,. Hence the total factor corresponding to such a term which can arise
out of contributions from linked terms of 7+m H T" is 1/m!n!. Hence order by
order in T the size-consistent energy functional (12) is identical to the functional 6)
or (9) in unitary ansatz framework.

We now go ahead to show the correspondence (ii) as mentioned in § 1. We have
already mentioned that in the framework of unitary ansatz the energy functional in
the non-variational procedure as given in (6) is identical to the Euler functional used
for variation as given in (). In the non-variational procedure the T-matrix elements
are obtained by the system of equations given by (5). In T ~ T, approximation
diagrams representing the non-variational equations which arise out of projection
of exp (T — T) H exp (T — T+) on to the doubly excited states, are linked and have .
two hole and two particle lines left open. On the other hand variation of the func-
tional (9) with respect to T, or T, matrix elements may be looked upon as a deletion
of T or T; vertex leading to diagrams with two-hole and two-particle lines left open
and the same factor arising out of the functional (9). We note here that since the
set of T, and T, matrix elements are hermitian conjugates to each other, the varia-
tion with respect to one set of elements (say T;’ ) is sufficient. Figure 1 shows a typical
term of the closed-linked functional (9) and figure 2 shows the effect of the variation
with respect to a T, vertex, If rank of Tis same, (i.e. say, if only T, vertices and Ty
vertices are used) there are no T+ vertices joined entirely to T vertices or vice-versa
in the functional (9). Otherwise we will have unlinked terms. Figure 1 shows a term
showing T vertices joined to T, vertices through the linkage of H. In such a case
asinT ~ T, approximation, variation or deletion of a T+ or T vertex leaves the rest
of the diagram open but still linked such that the total contribution through variation
of (9) upto any order in T is same as the non-variational eq. (5) upto the same order
in T. Hence the subsequent energies calculated by (6) and (9) upto a given order in T

(1) 2
Figure 1. A representative diagram of the energy functional (9). The two vertices
from left are T+ vertices, the open circle is V. The rest two shaded circles at the right
are T vertices. Arrows pointing to the left represent particle lines, arrows to the right
represent hole lines.

Figure 2. Effect of variation with respect to a T+ vertex to the diagram represented
by figure 1. This generates the corresponding term arising out of the variation of the
energy functional (9) with respect to a T+ vertex. The left vertex is T* vertex, the
open circle is V. The last two shaded vertices at the right are T-vertices. ~Again the
arrows pointing to the left represent particle lines, the arrows pointing to the right
represent hole lines,
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in the non-variational and variational procedures respectively in the framework of
unitary ansatz are same. This simple correspondence breaks down when 7y or T
terms also are brought in. If T3 or T, terms are used along with T, the rank of T'is
no longer same and hence the above arguments will not hold. N

Now we show an interesting correspondence of the size-consistent energy functional
(12) with L-CPMET energy of Cizek. If we truncate the functional upto a total of
quadratic powers in T+ in T ~ T, approximation and solve for the matrix elements
of T, by employing an Euler variation and then substitute the T,-matrix elements
in the functional, the energy thus obtained upto quadratic powers in T, is identically
equal to Cizek’s L-CPMET energy. For showing this, we write the expansion of E

in (12) upto quadratic powers in Tin T ~ T, approximation as
E=Eg+ THAW + AT, + T; 42T, @

where T, and Ty are matrices containing various hole-particle excitation amplitudes
like {pq| ta| o By and (af [ 15| pg) for psg particles, a, B holes.

and A™" is the matrix of coefficients associated with 7 number of T+ vertices and n
pumber of T-vertices when linked expectation value is evaluated. From the hermitian
nature of (11) it follows that (4mryt = A"" Differentiating E in (21) with respect to
T;’ matrix elements and equating it to zero we get the following system of equations,

OE
vl 0, .
2Bty | P> 22

for p, g particles and «, B holes.

4_1,0 4+ ./_1_1=1 T,=0 (23a)

The number of such equations is exactly equal to the total number of matrix elements
of T,. Similarly we get another set of equations by differentiating with respect to T,
matrix elements

A% 4 T A = 0. (23b)

The set (23a) is hermitian conjugate of (23b). Premultiplying (23a) by the matrix
TF, we get :

T AN+ T AT =0 24
Equation (24) can be used in (21) so that E in this approximation can be written as

E=Em+ 47Ty o @5)
Hence upto quadratic powers the correlation energy

Eé’] = io,l 7—’3‘: (26)
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This is essentially the result of the linearised coupled-cluster theory of Cizek in the
non-variational framework. No such simple correspondence exists when cubic terms
are brought in. Since the L-CPMET energy has been shown to possess a lower bound
nature (Mukherjee 1981), the energy obtained from variation of the size-consistent
energy functional (12) under approximations (truncations upto quadratic powers in
T,) also has a lower bound property.

Since the energy functional (9) in unitary ansatz framework is identical to the func-
tional (12) order by order in T, a similar variation of the functional (%) in unitary
ansatz framework truncated to quadratic powers in T in T~uT, approximation leads
to L-CPMET energy and hence has a lower bound property.

We now illuminate on the point (iv) mentioned in §1. For practical evaluation
of the T-matrix elements by Euler variation to the size-consistent energy functional
(12) in the framework of general non-unitary ansatz the truncation upto some finite
powers in T'and T has to be done. This kind of variation leads to the energy which
does not retain the upper bound property. This loss of upper bound property was
first observed in nuclear structure calculations using cluster expansion method using
Jastrow function and is known as the ‘Emery difficulty’ (Emery 1958 ; Bell and Squires
1962). The loss of the upper bound property is due to the fact that the truncated
power series for E, written as a simple power series, does not correspond to an expec-
tation-value like quantity having polynomials of some fixed finite degree appearing
both in the numerator and denominator. While the denominator has been can-
celled exactly with the implicit assumption of infinite degree expansion, the numerator,
as a result of truncation contains only upto finite degree in 7.  If however, the domi-
nant terms contributing to the energy are retained in the functional, the loss of the
upper bound is not very serious. This is quite akin to the Sinanoglu’s method
of ‘varied portion approach’ (Sinanoglu and Bruckner 1970).

The same loss in upper bound property can be expected if Euler variation is done
for the energy functional (9) in the framework of unitary coupled-cluster ansatz.
The denominator being automatically cancelled because it is equal to unity essentially
means that the denominator has been expanded upto infinite order in 7" while again
for practicable calculation, the numerator has to be truncated to some finite power
in T. Hence the functional (9) truncated to a finite power does -not correspond to an
expectation-value like quantity having some fixed finite degree appearing in the
numerator and denominator. But again with the inclusion of enough terms, effect
of this loss may be obviated.
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