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Abstract. A theory is developed of the anomalous magnetic and electric birefringence

in the isotropic phase of nematic liquid crystals taking into account orientational
corrclations between neighbouring molecules. Use is made of 2 modification of Bethe’s
method due to Krieger and James, and the properties of the system are derived in terms
of a single parameter, viz., the two-particle interaction constant. The expressions for the
magnetic and electric birefringence are similar in form to those given by the phenomeno-
logical model of de Gennes. Theoretical curves for p-azoxyanisole reproduce the trends
in the observed data. A calculation of the nematic-isotropic transition point confirms

that this treatment is an improvement over the mean field approximation in describing
pre-transition phenomena in the isotropic phase.
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1. Introduction

It is well established that short range order effects in the isotropic phase of nematie
liquid crystals can be described in terms of the phenomenological model of de Gennes
(1971) according to which certain properties like the magnetic birefringence, intensity
of light scattering and flow birefringence may be expected to vary approximately as
(T—T*1, where T* is a temperature slightly below the nematic-isotropic transition
point 7,. These predictions are in agreement with observations (Stinson and Litster
1970; Martinoty et al 1971). It is natural to suppose that the electric birefringence
should also conform to this simple description, but measurements on a number of
compounds have proved that this is not the case (Tsvetkov and Ryumtsev 1968;
Filippini 1972; Schadt and Helfrich 1972). The most striking example is that of
t-azoxyanisole (hereafter referred to as PAA) which exhibits an actual reversal of sign
of the Kerr constant at about 7,4+5K (Tsvetkov and Ryumtsev 1968). However,
recent calculations have shown (Madhusudana and Chandrasekhar 1973a) that the
behaviour of PAA is in fact consistent with the phenomenological model when proper
allowance is made for the contributions of the polarizability and the permanent dipole
moment to the free energy.

A molecular interpretation of these pre-transition effects is evidently of much in-
terest. The influence of short range orientational order on the thermodynamic pro-
perties of the nematic and isotropic phases has been discussed on the basis of a very



T
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simple model (Chandrasekhar and Shashidhar 1972), but the conclusions drawn are
only of qualitative significance. The molecular mean field method (Maier and Saupe
1960; Chandrasekhar and Madhusudana 1971, 1972a; Chandrasekhar, ¢t al 1971)
does provide a quantitative description of long range orientational order and the
related properties of the nematic phase, but fails to explain short range order effects.
(Stinson 1971; Madhusudana and Chandrasekhar 1973b).

In this paper, we present a theory of the anomalous magnetic and electric bire-
fringence in the isotropic phase of nematic liquid crystals which takes into account
near neighbour correlations by a method similar to that developed by Chang (1937)
and by Krieger and James (1954) in discussing orientational transitions in crystals.
Application of the theory to PAA shows that it is an improvement over the molecular
mean field treatment. A brief account of the theory for the magnetic case has been
reported previously (Chandrasekhar and Madhusudana 1972b; Madhusudana and
Chandrasekhar 1973b).

2. The Consistency Relation

We consider the isotropic phase of a nematic liquid crystal in which a weak long range
orientational order has been induced by an external field (magnetic or electric)
acting along the £ axis of the space-fixed cartesian coordinate system X7.Z. It is
assumed that every molecule is surrounded by z mnearest neigbours, and that no two
of the z nearest neighbours are nearest ncighbours of each other. Let E(8;;) be the
orientational energy of interaction between the central molecule i and one of its
nearest neighbours, and V{(#;) that between j and the remaining molecules of the
uniaxial medium. Let W(#;) be the orientational contribution of the potential energy
of the molecule due to the external field.

The relative weight for a given configuration of the cluster of (z-41) molecules is
given by

'H1 S(8:;)8(6,)R(8;)k(6;) (1)
. J=
where S(8;) = exp[—E(8;)/[kT])
g(8) = exp[—V(8)/kT]
b(Bz) = CXp[——W(BJ/kT], etc.,
and 9ij 1s a function of the usual spherical coordinates ;, ¢;,. 9J- and ¢j' The relative

probability that the central molecule and one of its nearest neighbours, say 1, are
oriented along (8;, ¢;) and (6;, ¢,) is then

(0ix bis 01, by) =F(0:)R(6;) (81 YR(8y)
x 1 I+ [ 718268 h(8)d(cos 6)deh; (2)
-

Since this probability should be the same irrespective of which molecule is regarded
as the central one,

$(0is bis 01, h1) =(61, by 05, &), (3)

which represents the consistency relation.

It is assumed that V{(#6;) is given by a function of the form
V(6))=(—B/V*)Py(cos §;) (4)
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where Py(cos 6;) is the Legendre polynomial of the second order, V the molar volume?

and B an interaction parameter which is a function of the long range order. Similarly
the near neighbour interaction is taken to be

E(6;) =(—B*[V*)Py(cos ). (3)
We now expand f(0;;) as

[co}
F8y) = 3D (2k-+1)qPy(cos 6;) (6)
k=0
where
_ [P, (cos 0;;) f(0;;)d(cos ) (7)
ff(eij)d(cos 9ij)
is a measure of the short range order in the absence of an external field, and D the

denominator of Eq. (7). In view of the form of the interaction given by Eq. (5), k
takes only even values in Eq. (6). Similarly we write

n

0
2(6)h(8;) = ZakPk(cos 6). (8)
k=0
From Eq. (6), (8) and (2), it can be shown that
=] 0
2 ag Py, (cos 6;) 2 Py (cos 8y)
k=0 k=0

— —_ 9
= = = p (say)  (9)
h(0:}[ 2 aeiPy (cos 815 h(8,)[ Z ac;P; (cos 6;)]2 71
=0 1=0

where p is a constant, and [ takes only even values. The consistency relation can
then be reduced to the form

E a Py (cos 0) = ph(6)[ ;Jo Ap Py (cos )] (10)
k=0 m=0

, co
where A = (mi}) j Pp(cosb) [ Z ap,P; (cos8)]*t d(cos §).
=0

From Egs. (8) and (10), it follows that for the weakly ordered isotropic phase

1 4 (BIETVY) Py(cos ) = p [Ay Py (cos 6) +4, P, (cos 6)] (11)

Remembering that Py(cos 8) =1, we may equate the coefficients of P, (cos8) and
P, (cos B), so that

BIkTVi=Ay A =(z—1)ay,

(12)

which is the solution of the consistency relation in the limit 4, < 1.
The long range order parameter Q is given by

o J - J Paleos 8308, i3 6y, 1) (cos 63)dg i (cos 6,)dd,

Jo-J 08 835 85, 811 (cos 8;)dgrd(cos B,)dd,y

Applying the consistency relation (3) and using Egs. (7) and (8),

Q=1 ay(1+¢,) + (13)
Therefore, B=5kTQV*(z—1)c,/(1+c,) (14)

T Recent studies (McColl and Shih 1972, Chandrasekhar and Madhusudana 1973) on the effect of

pressure on the orientational order in p-azoxyanisole indicate a V-4 dependence of the potential. We
shall therefore assume such a volume dependence throughout this discussion.
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Since ¢, depends only on B* all the properties of the system can be deduced in terms
of a single parameter.

3. Magnetic birefringence

If the externally applied field is magnetic,

W(0)==—4AnH? Py (cos 0) (15)
where A7 is the anisotropy of diamagnetic susceptibility of the molecule.
Hence, from Eq. (8),

ay=B[kTV 4+ AnH¥3kT, (16)
Using Eqgs. (12) and (14),

o~ AT in (17)
15T 1—(z—1)cy
Further, Q=(X,—X;)/AX where X,, X; are the principal optical polarizabilities of the
medium given by X,=3(n,—1)/4mv(n;+2), etc., and v is the number of molecules
per cm3.  Since the magnetic birefringence An=n,—ny ~ 1077,

(2422 14c,
_K 18
An TV 1—(z—1)g (18)
where K = (2nN/1358) AxAnH? (19)

and VN is the Avogadro number.

Expressing ¢, given by Eq. (7) as a series, and substituting in the denominator of
Eq. (18), we get

(n?4-2)% (14-cy)
An =K (20)
v T-T*
(z——l)B*{ 1 B* 1 (BME ]
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Figure 1. Reciprocal of magnetic birefringence of p-azoxyanisole versus temperature. Full
line represents theoretical variation and circles the experimental data of Zadoc- Kahn
(1936). The theoretical (An)=! is throughout higher by a nearly constant factor as can
be seen from the dashed curve which is obtained by multiplying the theoretical values
by 0-65.
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Eq. (20) is formally similar to de Gennes’s expression; T * is now governed by short
range correlations and exhibits a slight temperature dependence.

From Eqs. (18) and (20) it is clear that when T=T%*, ¢,=1/(z—1), which at once
determines the value of B*. The temperature at which ¢;=1/(z—1) has been called
the ‘ branching ’ temperature by Krieger and James (1954) and in analogy with the
phenomenological model it may be identified as the hypothetical second order transi-
tion point T *,

Taking z=8 for an imbricated nematic arrangement (Bernal and Crowfoot 1933)
we get ¢, =1/7 at T,—1 (which is the value of 7 * indicated by experiment). For PAA
this gives B*=0-9621 x 107* erg cm!?% Evaluating ¢, at different temperatures from
Eq. (7) and substituting Ay =25-9 X107 cm? (Saupe and Maier 1961), An=1042 X
1073 cm?® (Gasparoux et al 1971) and H=33,900 G (Zadoc-Kahn 1936) in Eq. (19),
An~* has been calculated from Eq. (18). The full line in figure 1 shows the theoretical
variation of An~1, and the circles the experimental data of Zadoc-Kahn (1936). Itis
found that the calculated An™ is throughout higher by a nearly constant factor. This
discrepancy may be partly due to the uncertainties in the experimental values of
Ay, An and H? which have been substituted in Eq. (19). Taking a different value

of z, say 6 or 12, alters the value of B* but has little influence on the temperature
variation of An.

4. Electric birefringence

Under the action of an applied electric field, the orientational potential energy of the
molecule arises from (i) the anisotropy of low frequency polarizability Ae and (ii)
the net permanent dipole moment p. Moreover, the effect of the cavity field and the

reaction field produced in the medium cannot be ignored as in the diamagnetic case

(see, e.g., Bottcher 1952). Applying the Onsager theory, Maier and Meier (1961a)
have worked out these various contributions to the dielectric properties of the nematic
phase. The orientational potential energy due to the induced dipole moment is given
by
W (8) =—2%Fh? Ao E*Py(cos )

where h=3¢/(2¢+1) is the cavity field factor, ¢ is the average dielectric constant,
F=1/(1—af) is the reaction field factor, a is the average polarizability, f = 47Np
(2¢—2)[/3M(2¢+1), pis the density and M the molecular weight. (The effect of the
anisotropy of the dielectric constant may be neglected since we are concerned with the
very weakly ordered isotropic phase.) @ is the angle which the long molecular axis,
assumed to be the direction of maximum molecular polarizability, makes with the
applied field E.

To evaluate the potential energy due to the permanent dipole moment, we choose
XYZ as the space-fixed coordinate system and & 7 { as the molecule-fixed coordinate
system, { coinciding with the long axis of the molecule and ¢ being in the plane
containing { and p. If the electric field E acts along the £ axis and y is the Eulerian

angle between the §-axis and the line of intersection of the X7 and ¢x planes, the
orientational potential energy

W,(0) = —Fhu (cos B cos §+sin B sin ¥ sin 6)E
where f is the angle between p and the {-axis.
Putting W(8) =W, (6)+ W,(), we obtain from Eq. (8)
o — BQ  FRr2E? Fu?
2 = At T [ a—m_(l——S coszﬁ)]




Meagnetic and electric birefringence in the isotropic phase of nematic liquid crystals 17

where we have averaged over all values of ¥ since the medium has uniaxial symmetry,
Proceeding as before

FI2ER[ P 14,
. LI _ 2
= 15k [A“ gk (13 cos B)] T[1—(z—1)c,]
[o 1 T 1 T T T )
onxi0° | o © ° g
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Figure 2. Electric birefringence of p-azoxyanisole versus temperature. Full line
represents theoretical variation and circles the experimental data of Tsvetkov and
Ryumtsev (1968).

and the electric birefringence
2 2 2.1 9\2
=2LN__A_&_E_th [Aa-—F_'U‘_ (1—3 coszﬂ)] (' +2) L+e
135k 2T TnV [1—(z2—1)e,)]

The form of this expression is similar to that given by the phenomenological model
(Madhusudana and Chandrasekhai 1973a). Clearly, the birefringence can be posi-
tive or negative depending on the sign of [Aa—(Fu2/2kT") (1—3 cos? B)]. For the
clongated molecules of nematogenic compounds Aa is always positive, but the sign
of the permanent dipole contribution depends on the angle 8. If B is small, the two
terms add to give rise to a strong positive An, whereas if B is sufficiently large An
may be negative. Further, since the second term is proportional to 71, there can
occur, in principle, a reversal of sign of An with temperature, as has indeed been
observed in PAA.

We shall now calculate An for PAA according to Eq. (21) by substituting the known
values of the molecular parameters. The relevant data reported by Maier and Meier
(1961b) are: u=2-22D; B 2 64° from dielectric anisotropy measurements in the ne-
matic phase and 61° from the Kerr constant in dilute solutions (we shall use the mean
value of B=62-5° in the present calculations); Aa, the anisotropy of low frequency
polarizability extrapolated from the value in the optical region, =230 x 10™2 cm?,
€=565 at T,+5 K. Putting E=1-2x 10* volt cm™ and using the same value of B*
as in the magnetic birefringence calculation, An derived from Eq. (21) has been
plotted in figure 2 as a function of temperature along with the experimental points of
Tsvetkov and Ryumstev (1968). It may be emphasized that since there is a competi-
tion between the polarizability and the permanent dipole contributions, even a small
error in B will cause an appreciable shift in the temperature at which Ar=0. Never-
theless, it is clear that the theoretical curve agrees fairly well with the trend in the
observed data.

An (21)

2
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5. Evaluation of T ,—T*

In order to determine the first order nematic-isotropic transition point T, we have
to solve the consistency relation in the ordered phase. As described earlier, Krieger
and James (1954) expanded the relevant distribution function as a series in Legendre
polynomials to obtain solutions in the infinitesimal approximation. This procedure
is not suitable for the ordered phase in which Q takes large values. We therefore
rewrite the consistency relation in the form

exp [(B/ET V%) P, (cos 8;)]
[ j j exp {(B*/KTV*) P, (cos 0;) + (BJETV*) P, (cos 6;) }d(cos 6)) d¢>j]

7= = constant (22)

This relation has to be satisfied for all values of Py(cos 8;). Here B* is a constant al-
ready determined, but B has to be evaluated at each temperature. Those pairs of
values of B*[kTV* and B[kTV* which give a constant ratio (22) for every Py(cos 6;)
represent the solutions of the consistency relation at that temperature. The integrals
were evaluated numerically for ranges of values of B*/kTV* and B/kTV* and for vari-
ous Py(cos ;). Pairs of values have been found that fulfil Eq. (22) to a very good

approximation for Py(cos §;) lying between 1 and 0. Using these pairs, the internal
energy

- B B
f .. f exp [k_-TV- =D (cos Hy) + W{Pz(cos 8;) -+ Py(cos QJ)}]

U= — Nz B* X Py (cos 0;5)d(cos 0;)d;d(cos 6;)dg;
2 V¢ B* B
f . f cxp[ 1:']’7’41)2 (cosby) + /Zr—[ﬁ{P?(COS 0;)+ Py (cos GJ)}]
X d(cos 6;)deid(cos 6;)dg; (23)
A
0.62 . 0.[64 : 0.‘66 ‘
]
014 dl'spohrg:e,ed 1 .
N 2nd order
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1st order
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Figure 3. Plot of P, (x); [= —2(V*)¢ U|NzB*) A versus [= B*[k(V*)4T), where
V* is the molar volume at the second order transition point T*, At the first order
transition point the shaded areas are equal so that the Helmholtz free energy of the
ordered and disordered phases are the same, At the second order transition point
Pz(xij) =62=1/7~
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has been calculated as a function of temperature. The plot of U versus 1/T at con,
stant volume at once yields both T, and T* (figure 3). It is found that T#/T,=0-95-
which is a significant improvement over the mean field value of 0-90, but still appre-
ciably less than that derived from experiment. It may be emphasized that this pro-
cedure ignores the volume change at T,. We have also evaluated some of the pro-
perties of the ordered phase, e.g., the long range order parameter as a function of tem-
perature, which will be discussed elsewhere.

6. Specific heat of the isotropic liquid

In the absence of an external field, the internal energy of the isotropic liquid due to
short range orientational order is

U= —}NzB*c,[V*

and the specific heat
__9Nz(B*)*
Vo ekTEps
For PAA, Cy, turns out to be 322 J mole™ Kt at T;+1-5K decreasing to 2-10 J mole™?
K-1 at T,4+40 K. Judging from the available measurements of the specific heat at
constant pressure (Arnold 1964), the isothermal compressibility (Gabrielli and Verdini

1955; Hoyer and Nolle 1956, Kapustin and Bykova 1966) and the thermal expansion
(Maier and Saupe 1960) the theoretical value of Cy, appears to be of the right magni-

[cos* 8 — (cos?6)2].

tude but varies rather too slowly with temperature.

References

Arnold H 1964 Z. Phys. Ghem. 226 146

Bernal ] D and Crowfoot D 1933 Trans. Faraday Soc. 29 1032

Boticher C J F 1952 Theory of Electric Polarization (Elsevier: London and New York.)

Chandrasckhar S and Madhusudana N V 1971 Acta Crystallogr. A27 303

Chandrasekhar S and Madhusudana N V 1972a Mol. Cryst. Liguid Cryst. 17 37

Chandrasekhar S and Madhusudana N V 1972b Fourth International Liquid Crystal Conference Kent,
Ohio, USA, August 1972

Chandrasekhar S and Madhusudana N V 1973 Mol. Cryst. Liquid Cryst. {in press)

Chandrasekhar S, Madhusudana N V and Shubha K 1971 Sympoesia of the Faraday Society No. 5,
Liguid Crystals, 26

Chandrasekhar S and Shashidhar R 1972 Mol. Cryst. Liquid Cryst. 16 21

Chang T S 1937 Proc. Gambridge Phil. Soc. 33 524

de Gennes P G 1971 Mol Cryst. Liquid Cryst. 12 193

Filippini J G 1972 C. R. Acad. Sci. Ser. B 275 349

Gabrielli I and Verdini L 1955 Nuovo Cimento X1 526

Gasparoux H, Regaya B and Prost J 1971 C. R. Acad. Sci. Ser. B. 272 1168

Hoyer W A and Nolle A W 1956 7. Chem. Phys. 24 803

Kapustin A P and Bykova N T 1966 Sov. Phys.-Crystallogr. 11 297

Krieger T G and James H M 1954 7. Chem. Phys. 22 796

Madhusudana N V and Chandrasekhar S 1973a to be presented at the Symposium on Ordered Fluids
and Liquid Crystals, National Meeting of the American Chemical Society, Chicago, August 1973

Madhusudana N V and Chandrasekhar S 1973b Solid State Commun. (in press)

Maier W and Meier G 1961a . Naturforsch. A 16 262 !

Maier W and Meier G 1961b Z. Naturforsch. A 16 470

Maier W and Saupe A 1960 Z. Naturforsch. A 15 287

Martinoty P, Candau S and Debeauvais F 1971 Phys. Rev. Lett. 27 1123




20 NV Madhusudana and S Chandrasekhar

McColl ] R and Shih C § 1972 Phys. Rev. Lett. 29 85

Saupe A and Maier W 1961 £. Naturforsch. A 16 816

Schadt M and Helfrich W 1972 Mol. Gryst. Liquid Cryst. 17 355

Stinson T W 1971 Order-Disorder Transitions in Liquid Crystals, Ph.D, Thesis, MIT, Cambridge, USA
Stinson T W and Litster ] D 1970 Phys. Rew. Leit. 25 503

Tsvetkov V N and Ryumtsev E T 1968 Sov. Phys.-Crystallogr. 13 225

Zadoc-Kahn J 1936 Ann. Phys. (Paris) 11 455



