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Incipient motion of gravel and coal beds
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Abstract. An experimental study on incipient motion of gravel and coal beds
under unidirectional steady-uniform flow is presented. Experiments were carried
out in a flume with various sizes of gravel and coal samples. The critical bed
shear stresses for the experimental runs determined using side-wall correction show
considerable disagreement with the standard curves. The characteristic parameters
affecting the incipient motion of particles in rough-turbulent regime, identified
based on physical reasoning and dimensional analysis, are the Shields parameter,
particle Froude number, non-dimensional particle diameter and non-dimensional
flow depth. Equations of critical bed shear stress for the initial movement of gravel
and coal beds were obtained using experimental data. The method of application
of critical bed shear stress equations is also mentioned.
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transport; sediment threshold; fluvial hydraulics.

1. Introduction

The erosion and sedimentation of fluvial beds can be predicted if the critical shear stress
for the initiation of bed particle motion is accurately determined. Shields (1936) has been
the pioneer in describing the initiation of motion of uniform sediment particles. Although
his diagram is widely used, Mantz (1977), Milleret al (1977), Yalin & Karahan (1979)
and Dey (1999) expressed reservations about it. Incipient motion of uniform sediments was
also studied by Iwagaki (1956), Yang (1973), Yalin & Karahan (1979), Ling (1995), and
others. Several investigations on incipient motion of non-uniform sediment mixtures were
also reported (Egiazaroff 1965; Nakagawaet al1982; Parkeret al1982; White & Day 1982;
Wiberg & Smith 1987; Wilcock & Southard 1988; Bridge & Bennett 1992; Wilcock 1992,
1993; Kuhnle 1993; Patel & Ranga Raju 1999; Dey 1999; Deyet al 1999; Dey & Debnath
2000). Furthermore, experimental studies with gravel beds were put forward by Bathustet al
(1987) and field studies with gravel and boulder beds river data were reported by Andrews
(1983, 1994), Andrews & Erman (1986), Andrews & Parker (1987), Ashworth & Ferguson
(1989) and Bathurst (1987).
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The aim of the present investigation is to report the results of experiments on incipient
motion of gravel and coal beds under a unidirectional steady-uniform flow. The experimental
results are used to put forward simple equations for critical bed shear stress.

2. Experimentation

2.1 Set-up and procedure

The experiments were performed in a rectangular flume 14 m long, 0.51 m wide and 0.25 m
deep. The sides of the flume, in the test section, were made of glass enabling observation of
the movement of bed particles. Before starting an experimental run, the gravel or coal bed of
the test section was leveled. The downstream control valve of the flume was closed initially.
Water was introduced to the set-up by gradually opening an upstream valve. After the bed
was completely submerged, the downstream valve was opened gradually. At the same time,
the upstream discharge was adjusted so that the incipient condition was reached when all
fractions of bed particles (on the surface) had movement over a period of time. The incipient
condition was revealed by collecting the removed particles in a wire-net downstream. It is
always difficult to observe the real beginning of bed particle motion (Neill & Yalin 1969).
However, a certain degree of established movement of bed particles can be considered as the
condition of incipient motion. Once the incipient condition was reached, dischargeQ and
corresponding flow depthh were registered. The flow depth h is a distance from the free
surface of flow to the virtual bed level. The virtual bed level was considered to be at 0.25d50

below the top level of the bed particles, as was done by van Rijn (1984), Dey (1999) and
Dey et al (1999). Here,d50 is the 50 percent finer particle diameter. Table 1 summarizes the
characteristics of gravel and coal samples used along with the flow conditions and energy slope
Se. The effort was given to have a uniform flow in the test section, which had a slope almost
equal toSe. Detailed data are given by Raju (1989). The choice of these samples was dictated
by a desire to vary the geometric standard deviationσg of the particle size distribution given by
(d84/d16)

1/2.

2.2 Estimation of effective diameter

The effective diameterde of the sample, which is the diameter of a uniform spherical
particle that behaves in the same way as the sample, was determined analytically from
the particle size distribution curve following the relationship by Christensen (1969), given
below.

de = 1/

∫ 1

0

dF

d
= 1/

i=n∑
i=1

[
Fi − Fi−1

didi−1

] [
di − di−1

ln di − ln di−1

]
, (1)

where dF = increment in fraction finer of particles, andd = particle diameter.

2.3 Estimation of bed shear stress

The equation of bed shear stressτb as a function of dynamic pressure is used here, which is

τb = (fb/8)ρV 2
b , (2)
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Table 1. Experimental data.

de d65 d50 d̂ σg h ĥ V Fd τ̂ R∗ Se

(mm) (mm) (mm) (cm) (m/s)

Gravel(s = 2.56)
7.11 7.51 7.18 1.056 1.11 3.54 0.201 0.561 2.124 0.027 387 0.0112
7.16 7.54 7.23 1.054 1.12 3.90 0.183 0.528 1.993 0.023 359 0.0116
6.87 7.45 7.05 1.085 1.20 3.78 0.182 0.523 2.015 0.024 343 0.0114
6.87 7.47 7.11 1.087 1.29 3.17 0.217 0.566 2.180 0.030 386 0.0107
6.63 7.61 7.06 1.149 1.27 2.86 0.232 0.590 2.314 0.036 400 0.0129
6.45 7.70 7.07 1.194 1.36 3.84 0.168 0.548 2.179 0.028 339 0.0104
6.27 7.82 7.10 1.247 1.44 3.11 0.202 0.634 2.556 0.043 401 0.0119
6.12 7.89 7.14 1.289 1.47 3.66 0.167 0.491 2.003 0.024 293 0.0107
5.95 7.93 7.19 1.333 1.58 3.81 0.156 0.532 2.202 0.029 306 0.0109
5.83 8.10 7.25 1.390 1.64 3.84 0.152 0.500 2.091 0.026 283 0.0129
5.66 8.14 7.28 1.437 1.72 3.26 0.174 0.667 2.830 0.052 381 0.0133
5.55 8.34 7.34 1.503 1.79 3.41 0.163 0.698 2.992 0.058 388 0.0117
5.53 8.45 7.52 1.529 1.80 3.84 0.144 0.610 2.620 0.042 330 0.0126
5.55 5.81 5.65 1.046 1.12 2.62 0.212 0.567 2.430 0.036 308 0.0120
4.54 5.44 4.93 1.199 1.32 2.71 0.167 0.430 2.038 0.024 187 0.0105
4.37 5.59 4.89 1.280 1.40 2.86 0.153 0.490 2.367 0.032 204 0.0117
4.22 5.48 4.97 1.299 1.58 2.01 0.210 0.536 2.635 0.047 233 0.0110
4.11 5.87 5.12 1.427 1.68 2.59 0.159 0.467 2.325 0.034 189 0.0108
4.11 5.96 5.35 1.452 1.79 2.22 0.185 0.557 2.775 0.052 234 0.0118
4.16 6.59 5.64 1.583 1.93 2.80 0.149 0.437 2.162 0.030 181 0.0104
4.26 6.62 5.96 1.553 1.86 2.83 0.151 0.521 2.548 0.041 220 0.0101
4.38 7.05 6.31 1.608 2.09 2.56 0.171 0.478 2.305 0.036 216 0.0110
4.51 7.56 6.60 1.678 2.11 2.68 0.168 0.561 2.668 0.049 262 0.0107
8.72 8.91 8.77 1.022 1.06 3.20 0.273 0.664 2.270 0.035 599 0.0108
8.94 8.94 9.07 1.000 1.10 3.90 0.229 0.550 1.857 0.022 487 0.0126
8.93 9.19 9.21 1.029 1.21 3.63 0.246 0.619 2.091 0.029 560 0.0146
8.74 9.53 9.18 1.091 1.25 3.51 0.249 0.664 2.268 0.035 597 0.0146
8.43 9.66 9.17 1.146 1.33 3.44 0.245 0.666 2.316 0.037 582 0.0154
8.05 10.02 9.20 1.245 1.42 3.99 0.202 0.605 2.153 0.030 492 0.0132
7.65 10.14 9.25 1.325 1.53 3.35 0.228 0.769 2.807 0.056 623 0.0149
7.32 10.33 9.32 1.411 1.68 3.60 0.203 0.611 2.280 0.036 467 0.0114
7.07 10.28 9.39 1.454 1.82 4.02 0.176 0.613 2.328 0.036 440 0.0118
6.89 10.82 9.47 1.571 1.63 3.78 0.182 0.734 2.824 0.056 527 0.0169

Coal (s = 1.39)
30.90 33.62 31.75 1.088 1.68 4.36 0.709 0.427 0.776 0.030 1837 0.0104
26.57 32.60 28.60 1.227 1.18 5.06 0.525 0.546 1.069 0.050 1907 0.0080
21.69 30.05 25.18 1.385 1.42 3.44 0.631 0.629 1.364 0.100 1977 0.0185
20.19 29.53 23.98 1.463 1.79 4.57 0.442 0.564 1.267 0.071 1496 0.0098
19.63 28.75 23.51 1.465 1.16 5.46 0.359 0.417 0.950 0.035 1013 0.0134
22.07 23.05 22.44 1.044 1.29 4.54 0.486 0.483 1.038 0.041 1302 0.0109
21.88 25.88 24.04 1.183 1.52 4.30 0.509 0.474 1.023 0.044 1333 0.0130
20.06 26.05 23.41 1.298 1.60 4.21 0.477 0.570 1.285 0.071 1482 0.0075
19.45 26.53 23.13 1.364 1.66 4.57 0.426 0.505 1.156 0.055 1249 0.0128
19.21 26.40 23.01 1.374 1.64 4.63 0.415 0.547 1.260 0.065 1327 0.0137
15.45 16.90 15.88 1.094 1.18 3.14 0.492 0.452 1.161 0.053 865 0.0106
15.26 17.10 16.22 1.121 1.32 3.44 0.444 0.510 1.318 0.065 942 0.0102
15.52 18.62 17.53 1.200 1.50 4.39 0.354 0.479 1.228 0.052 862 0.0073
16.45 21.65 19.32 1.316 1.65 4.14 0.397 0.451 1.123 0.049 913 0.0112
17.20 23.48 20.54 1.365 1.74 4.36 0.394 0.533 1.298 0.066 1139 0.0103
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wheref = friction factor, ρ = mass density of fluid, andV = mean velocity of flow.
Subscriptb refers to the quantities associated with the bed. The Colebrook–White equation,
used to evaluatefb, is,

1√
fb

= −0.86 ln

[
ksPb

14.8Ab

+ 2.51

Rb

√
fb

]
, (3)

whereks = equivalent roughness height,A = flow area,P = wetted perimeter, and R=
Reynolds number of flow. In the present study, the bed, is rough, consisting of gravel or coal
bed and the side-walls are smooth. As a result of this,fw is considerably different fromfb,
where subscriptw refers to the quantities associated with the side-walls. Consequently,τw

is significantly different fromτb. Therefore, Vanoni’s (1975) method ofside-wall correction
for a rectangular flume is used here. Thus, the dischargeQ is expressed as

Q = AV = AwVw + AbVb. (4)

The mean velocityV , considered same asVw andVb, can be computed onceQ is known.
The equation of force along the stream-wise direction is

−A
dp

dx
= ρ

f

8
V 2P = ρ

fw

8
V 2

wPw + ρ
fb

8
V 2

b Pb, (5)

where dp/dx = stream-wise pressure gradient. UsingV = Vw = Vb (Vanoni 1975) in (5),
we get

Pf = Pwfw + Pbfb. (6)

As the hydraulic grade line is the same for the smooth side-wall and rough bed regions,
equating forces to the wall and bed regions yields

Pf

A
= Pwfw

Aw

= Pbfb

Ab

. (7)

Reynolds numbers of flow for the different regions are

R = 4V A

vP
, Rw = 4V Aw

vPw

, Rb = 4V Ab

vPb

, (8)

wherev = kinematic viscosity of fluid. Inserting (7) into (8), one gets

R

f
= Rw

fw

= Rb

fb

. (9)

As the wall is smooth, the Blasius equation can be used to evaluatefw,

fw = 0.316/R0.25
w . (10)

Using (4)–(10), the following is obtained

fb = 0.316Rb

[
4V A

vPw

− RbPb

Pw

]−1.25

. (11)

Again, using (8) in (3), the Colebrook–White equation becomes

1√
fb

= −0.86 ln

[
ksV

3.7vRb

+ 2.51

Rb

√
fb

]
. (12)

Here,ks is assumed to bed65, as was done by Wiberg & Smith (1987) and Patel & Ranga
Raju (1999). For given values ofA, V, P, Pw, Pb, v, ρ andd65, the unknowns Rb andfb can
be determined numerically solving (11) and (12). Then, (2) is used to estimateτb.
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3. Critical bed shear stress equation

The experimental critical bed shear stressesτb were estimated using the methodology
described in the preceding section for various runs. Table 1 presents the details of experimen-
tal data collected for the incipient motion of bed particles. The non-dimensional critical bed
shear stress or Shields parameterτ̂ (= τb/1gρde; where1 = s − 1, s = relative density of
bed particles, andg = gravitational constant) and corresponding particle Reynolds number
R ∗ (= de(τb/ρ)1/2/v) are plotted in figure 1a. It is observed that the experimental data are

τ̂

τ̂

Figure 1. (a)Comparison of the experimental data with the curves (τ̂ versus R∗) proposed by Shields
(1936), Yalin & Karahan (1979) and Dey (1999) in rough-turbulent regime; and(b) comparison of the
results ofτ̂ obtained using (17) with the present experimental data for gravel and coal beds.
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in complete disagreement with the Shields (1936), Yalin & Karahan (1979) and Dey (1999)
curves in rough-turbulent regime. This disagreement is not at all uncommon for gravel beds,
as it was reported in the literature (Andrews 1983; Kuhnle 1993).

The set of characteristic parameters appropriate for the beginning of bed particle motion
phenomenon can be given in functional form as,

τb = f1(V , de, h, ρ, ρs, ks, g, v, σg), (13)

where ρs = mass density of bed particles. For two-phase flow phenomena involving
sediment–water mixture, the termsρ andρs should not appear as independent parameters in
(13). However, a better representation is1ρ. Moreover, as fully developed rough-turbulent
flow regime(R∗ � 70) occurred in each run, the inclusion ofv becomes insignificant in the
present analysis. Therefore, (13) becomes

τb = f2(V , de, h, 1ρ, g, ks, σg). (14)

Using the Buckinghamπ -theorem and selecting the parametersτb, g andde as repeating
variables, yields

τ̂ = f3(Fd, d̂, ĥ, σg), (15)

where Fd = particle Froude number, that isV/(gde)
0.5, d̂ = ks/de, andĥ = de/h. The term

σg represents the sediment gradation on the initiation of bed particle motion. The values of
σg in table 1 being below two (except in two samples) indicate that most of the samples are
uniform. Therefore, the parameterσg is also insignificant. Thus, (15) reduces to

τ̂ = f3(Fd, ĥ, d̂). (16)

The above non-dimensional parametric representation appropriate to the present study may
be justified as follows.

• The term Fd indicates the mobility of the bed particles under stream velocity.
• The termd̂ refers to the role of particle size on the initiation of particle motion. It was

reported that̂d is a function of angle of reposeφ (Dey 1999; Deyet al 1999). Thus, it
also includes the effect ofφ on the incipient motion.

• The termĥ represents the effect of relative submergence of the particle on the incipient
motion.

Altogether forty-eight runs were made with various gravel and coal beds (table 1). A multiple-
linear regression analysis of the experimental data yields the following equation of non-
dimensional critical bed shear stress or Shields parameter,

τ̂ = 0.085F 1.03
d d̂1.52ĥ1.27. (17)

Comparisons of̂τ obtained from (17) with the experimental data (table 1) are shown in
figure 1b. The value of the correlation coefficient between the experimentally obtained and
computedτ̂ is 0.924, which indicates that the above equation can adequately be used for
the estimation of critical bed shear stress for gravel and coal beds in rough-turbulent regime.
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Equation (17) is applicable for the range ofd50 = 4.89− 31.75 mm. Also, the two data sets
(gravel and coal) were analysed separately to have the following two equations:

τ̂ = 0.013F 2
d d̂0.48ĥ0.49, for gravel bed, (18)

τ̂ = 0.058F 2
d d̂0.62ĥ0.63, for coal bed. (19)

The comparisons of̂τ obtained from (18) and (19) with the experimental data (table 1) are
shown in figures 2a and 2b, respectively. The correlation coefficient between the experimen-
tally obtained and computed values ofτ̂ is 0.998 for both the cases. This indicates that (18)

τ̂

τ̂

Figure 2. (a)Comparison of the results ofτ̂ obtained using (18) with the present experimental data
for gravel bed; and(b) comparison of the results ofτ̂ obtained using (19) with the present experimental
data for coal bed.
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and (19) do an excellent job in predicting critical bed shear stress for gravel and coal beds
respectively, in the rough–turbulent regime.

4. Applications

In the field, the following data are required as the input data to calculate the critical bed shear
stressτ̂ of the bed material.

• The longitudinal bed slopeS of the site is to be determined, as the gravel-bed rivers
usually have considerable longitudinal bed slopes.

• The relative densitys, effective diameterde, and equivalent roughness heightks(= d65)

are to be determined through appropriate sampling of the bed material from the river site.

In (17)–(19), the values ofFd, ĥ and τ̂ are not known. Hence, the resistance equation for
gravel-bed rivers given by Aberleet al (1999) can be used as an auxiliary equation. It can be
written, on modification for the incipient condition, as

[
2.96− 1√

8S

]
Fd√

ĥ
= 2.03 lnĥ + 1.01. (20)

Also, τ̂ can be expressed as

τ̂ = τb

1ρgde

= ρghS

1ρgde

= S

1ĥ
. (21)

If the river is gravel-bed, (18) can be solved numerically forτ̂ with the help of (20) and (21).
However, it is needless to mention that (18) is always a better predictor than (17). Similarly,
for coal beds, (19) is to be used.

5. Conclusions

Experiments were conducted to determine the critical bed shear stress for the initiation of
motion of gravel and coal beds under a unidirectional steady-uniform flow. The experimental
data have a considerable disagreement with the standard curves proposed by Shields (1936),
Yalin & Karahan (1979) and Dey (1999) in rough-turbulent regime. Critical bed shear stresses
for the incipient motion of gravel and coal beds have been represented by simple empirical
equations.

References

Aberle J, Dittrich A, Nestmann F 1999 Discussion of ‘Estimation of gravel-bed river flow resistance’
by H Afzalimehr, F Anctil.J. Hydraul. Eng., Am. Soc. Civil Eng.125: 1315–1317

Andrews E D 1983 Entrapment of gravel from naturally sorted riverbed material.Geol. Soc. Am. Bull.
94: 1225–1231

Andrews E D 1994 Marginal bed load transport in a gravel bed stream, Sagehen Creek, California.
Water Resour. Res.30: 2241–2250



Incipient motion of gravel and coal beds 567

Andrews E D, Erman D C 1986 Persistence in the size distribution of superficial bed material during
an extreme snowmelt flood.Water Resour. Res.22: 191–197

Andrews E D, Parker G 1987 Formation of a coarse surface layer as the response to gravel mobility.
Sediment transport in gravel-bed rivers(eds) C R Thorne, J C Bathurst, R D Hey (Chichester:
Wiley) p. 269

Ashworth P J, Ferguson R I 1989 Size-selective entrainment of bed load in gravel bed streams.Water
Resour. Res.25: 627–634

Bathurst J C 1987 Critical conditions for bed material movement in steep, boulder-bed streams.Erosion
and hydrology(Oxon: Wallingford) p. 309

Bathurst J C, Graf W H, Cao H H 1987 Bed load discharge equations for steep mountain rivers.
Sediment transport in gravel-bed rivers(eds) C R Thorne, J C Bathurst, R D Hey (Chichester:
Wiley) p. 453

Bridge J S, Bennett S J 1992 A model for the entrainment and transport of sediment grains of mixed
sizes, shapes and densities.Water Resour. Res.28: 337–363

Christensen B A 1969 Effective grain size in sediment transport.Proc. 12th Congr. Int. Assoc. Hydraul.
Res.3: 223–231

Dey S 1999 Sediment threshold.Appl. Math. Modelling23: 399–417
Dey S, Debnath K 2000 Influence of stream-wise bed slope on sediment threshold under stream flow.

J. Irrig. Drain. Eng., Am. Soc. Civil Eng.126: 255–263
Dey S, Dey Sarker H K, Debnath K 1999 Sediment threshold under stream flow on horizontal and

sloping beds.J. Eng. Mech., Am. Soc. Civil Eng.125: 545–553
Egiazaroff J V 1965 Calculation of non-uniform sediment concentrations.J. Hydraul. Div., Am. Soc.

Civil Eng.91: 225–247
Iwagaki Y 1956 Fundamental study on critical tractive force.Trans. Jpn. Soc. Civil Eng.41: 1–21
Kuhnle R A 1993 Incipient motion of sand-gravel sediment mixtures.J. Hydraul. Eng., Am. Soc. Civil

Eng.119: 1400–1415
Ling C H 1995 Criteria for incipient motion of spherical sediment particles.J. Hydraul. Eng., Am.

Soc. Civil Eng.121: 472–478
Mantz P A 1977 Incipient transport of fine grains and flanks by fluids-extended Shields diagram.J.

Hydraul. Div., Am. Soc. Civil. Eng.103: 601–615
Miller M C, McCave I N, Komar P D 1977 Threshold of sediment motion under unidirectional currents.

Sedimentology24: 507–527
Nakagawa H, Tsujimoto T, Nakano S 1982 Characteristics of sediment motion for respective grain

sizes of sand mixtures. Bull. No. 286, Disaster Prevention Research Institution, Kyoto University
Neill C R, Yalin M S 1969 Quantitative definition of beginning of bed movement.J. Hydraul. Div.,

Am. Soc. Civil Eng.95: 585–588
Parker G, Klingeman P C, McLean D G 1982 Bed load and size distribution in paved gravel-bed

streams.J. Hydraul. Div., Am. Soc. Civil Eng.108: 544–571
Patel P L, Ranga Raju K G 1999 Critical tractive stress of nonuniform sediments.J. Hydraul. Res.37:

39–58
Raju U V 1989An experimental investigation on incipient motion criteria for flow over non-uniform

bed mixtures at near critical flow and low relative depth. Ph D thesis, Indian Institute of Technology,
Kharagpur

Shields A 1936 Application of similarity principles and turbulence research to bed-load movement.
Mitteilunger der Preussischen Versuchsanstalt f¨ur Wasserbau und Schiffbau26: 5–24

Vanoni V A 1975 Sedimentation engineering. ASCE Manual No. 54
Van Rijn L C 1984 Sediment transport, part I: Bed-load transport.J. Hydraul. Eng., Am. Soc. Civil

Eng.110: 1431–1456
White W R, Day T J 1982 Transport of graded gravel bed material.Gravel-bed rivers(eds) R D Hey,

J C Bathurst, C R Thorne (New York: John Wiley and Sons) p. 181
Wiberg P L, Smith J D 1987 Calculations of the critical shear stress for motion of uniform and

heterogeneous sediments.Water Resour. Res.23: 1471–1480



568 Subhasish Dey and Uddaraju V Raju

Wilcock P R 1992 Experimental investigation of effect of mixture properties of transport dynamics.
Dynamics of gravel-bed rivers(eds) P Billi, R D Hey, C RThorne, P Tacconi (Chichester: John
Wiley and Sons) p. 109

Wilcock P R 1993 Critical shear stress of natural sediments.J. Hydraul. Eng., Am. Soc. Civil Eng.
119: 491–505

Wilcock P R, Southard J B 1988 Experimental study of incipient motion in mixed-size sediment.
Water Resour. Res.24: 1137–1151

Yalin M S, Karahan E 1979 Inception of sediment transport.J. Hydraul. Div., Am. Soc. Civil Eng.
105: 1433–1443

Yang C T 1973 Incipient motion and sediment transport.J. Hydraul. Div., Am. Soc. Civil Eng.
99: 1679–1704


