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Abstract— Depending on implementation, active contours have
been classified as geometric or parametric active contours.
Parametric contours, irrespective of representation, are known
to suffer from the problem of irregular bunching and spacing
out of curve points during the curve evolution. In a spline
based implementation of active contours, this leads to occasional
formation of loops locally, and subsequently the curve blows up
due to instabilities. In this work, we analyse the reason for this
problem and propose a solution to alleviate the same. We propose
an ordinary differential equation(ODE) for controlling the curve
parametrisation during evolution by including a tangential force.
We show that the solution of the proposed ODE is bounded.
We demonstrate the effectiveness of the proposed method for
segmentation and tracking tasks on closed as well as open
contours.

Index Terms— Parametric active contours, Stable contour
evolution, Tangential redistribution of curve points, Image Seg-
mentation.

I. INTRODUCTION

ACTIVE contours or snakes, introduced in [1] by Kass,
Witkin and Terzopoulos, are widely used in computer

vision tasks like tracking [2] [3] and segmentation [4] [5].
Active contours are simply connected curves, generally as-
sumed to be closed but not always so, which move so as to
minimise the energy functional defined on them. The energy
functional could be defined based on some property of the
region enclosed within the curve or it could depend only on the
curve points. The minimisation of the energy functional yields
the corresponding Euler-Lagrange curve evolution equations.

Depending on the energy functional defined on the contour,
the models have been classified into gradient and region based
active contours. Although it is out of the scope of this paper
to review the entire active contour literature in each of these
subdivisions, we do mention some of the important works in
each category. The seminal paper which started off the active
contours research was the work by Kass et al. [1] which is
a gradient based approach. The level set based method was
introduced by Malladi et al. [6]. In [7] [8], the authors have
recast the original formulation proposed in [1] into that of
finding a geodesic defined on the image surface. A recent work
on gradient based active contours is [9] which also contains
a very extensive review of the major gradient based active
contour models. Some of the important region based active
contour models are [5] [10] and [11]. All these snake models
mentioned above have assumed that the contours are closed
curves. This restriction, however, need not always apply, at
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least not for gradient based strategies. In [12] and [13], the
authors have proposed models for gradient based open active
contours. A recent review paper by Cremers et al. [14] gives
a very good overview of the region based strategies for active
contours. Some other interesting works are [15] [16] [17] [18]
[19] [20] [21].

Depending on the numerical implementation of the curve
evolution equations, active contours have been classified as
either parametric or geometric active contours. Parametric
active contours are implemented using a representation like
a spline [22] or a finite element method [23]. These were the
initial choices of implementation. On the other hand, geomet-
ric active contours are implemented in an Eulerian framework
using the level set methods [24] [25]. An interesting paper
which links these two approaches is [21]. The relative merits
and demerits of both these numerical methods are well doc-
umented by a number of researchers, for example [26]. We
briefly state the properties for the sake of completion. Level
set based methods handle any topology change during curve
evolution in a very natural manner. However, level set methods
are quite slow, though use of narrow band techniques [24] do
improve the evolution speed. Recently, in [27] the authors have
described an algorithm for real time implementation of level
sets. Parametric contours, on the other hand, are much easier to
implement. In fact, the simplest implementation is the multi-
point implementation. Parametric contours are much faster
than level set methods. The greatest drawback of parametric
curve representation is that splitting and merging of curves is
not possible, at least not without some additional and possibly
heuristic techniques [28] [29]. However, for many practical
applications, this curb on topology change does to restrict the
scope of application. For example, while tracking a human
being, we do not expect one person to split into two.

Parametric contours, irrespective of representation, are
known to suffer from the problem of irregular bunching and
spacing out of curve points during the curve evolution. In a
spline based implementation of active contours, this leads to
occasional formation of loops locally, and subsequently the
curve blows up due to instabilities. In this work, we analyse
mathematically, the reason for this problem and propose a
definite solution to alleviate the same. We propose an ordinary
differential equation(ODE) for controlling the curve parametri-
sation during evolution. This ODE provides a tangential force
during curve evolution for lateral redistribution of curve points.
We show that the solution of the proposed ODE is bounded.
We demonstrate the effectiveness of the proposed technique
for segmentation and tracking tasks on both closed and open
contours.

A preliminary version of this work appeared at a conference
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[30]. In this work, we extend the framework to also deal with
open curves, which is a non-trivial exercise. This is a non
trivial extension for two reasons. The authors in [31] try to
solve this problem by keeping the end points fixed, that is
speed is set to zero. This is a highly restrictive condition. For
our method, we impose no such restriction. Additionally, we
show a theoretical proof of the boundedness of the solution of
the proposed ODE, with respect to the solution of the ODE
proposed in [31], using Gronwall’s Inequality.

The outline of the paper is as follows. In section II,
we discuss the problem associated with the implementation
of curve evolution equation using parametric representation
of curves. We also discuss the common practical solutions
adopted during implementations and the more specialised
methods proposed in literature to tackle the problem. In
section III, we describe the proposed approach in detail. The
boundedness of the proposed solution is proved in section IV.
We show the experimental results to demonstrate the practical
validation of the proposed ODE in section V. Section VI
presents the conclusion.

II. PROBLEMS WITH PARAMETRIC CONTOUR EVOLUTION

A. Notation and Preliminaries

Before describing the problem with parametric curve evo-
lution, we explain the notation used in this paper. A curve is
denoted by C(p, t), where p is the curve parameter and t is
the artificial time parameter. Thus t parametrises a family of
curves while p parametrises a single member of this family.
The initial curve is C(p, 0) from which a family of curves is
obtained. The local tangent and inward normal to the curve
are denoted by T(p, t) and N(p, t), respectively. The curvature
is denoted by κ(p, t) and the arc length parameter by s. The
most general form of the curve evolution equation is,

∂C(p, t)
∂t

= α(p, t)T(p, t) + β(p, t)N(p, t). (1)

In the above equation, α(p, t) and β(p, t) are the tangential
and normal components of the force moving the curve at each
point.

An important quantity related to the curve is the speed
parameter defined as g(p, t) = |Cp|. This quantity has the
following interpretation. If we imagine a particle traversing
along the curve perimeter with p as the artificial time variable,
then from the above equation, clearly g(p, t) measures the
speed of this hypothetical particle. In other words, g(p, t)
measures the distance we have traversed along the curve
for some change in parametrisation. This is crucial during
discretisation since p is sampled usually in a uniform manner
over its domain. Corresponding to the values of p, the curve
points C(pi) are obtained. Hence, a constant g(p, t) is essential
for a uniform discretisation of the curve.

As mentioned earlier, an energy functional is defined on
active contours for segmentation. Minimisation of the energy
functional leads to the Euler-Lagrange equations. The general
form of energy functional defined on the active contour is as

E(C(p)) = Eim(C(p)) + µEsm(C(p)). (2)

The total energy on the contour E(C(p)) has two components
Eim(C(p)), the energy depending on the underlying image,
and a regularising component Esm(C(p)), which ensures that
the curve evolution proceeds smoothly. These are also known
as the external and internal force terms, respectively. The
parameter µ weighs the relative importance of these two
terms. The relation between equations (1) and (2) is explained
later. From, this point onward, we drop the dependence on
the independent variables p and t for notational convenience,
wherever not needed.

B. Problem with Evolution

Parametric contours exhibit a typical undesirable behaviour
during their evolution. This has been reported in a number of
places, for example [31] [32] [33]. During evolution, the curve
points bunch together in some places while spreading out at
other places along the curve. This uneven spread of points
causes problems in computation of curve measures (e.g. cur-
vature, tangent and normal vectors). Also, due to the spacing
out of points the segmentation is not very accurate. For a spline
based implementation, there is no problem in computing the
curve measures since these are computed analytically, but it
may lead to formation of loops because of the control points
bunching together. This is highly undesirable as it reduces
the curve smoothness and the normal N(p, t) becomes ill-
defined and further curve evolution becomes meaningless. This
problem which is very disturbing during image segmentation,
becomes intolerable while tracking. As a motivational exam-
ple, we show three frames from a tracking sequence of a hand
in figure 1. The tracking algorithm is a very simple extension
of the region segmentation approach. The final contour in
the previous frame is the initialisation for the contour in the
present frame. Although this is a very simple example, it
suffices to illustrate the issue of degeneracy of curve evolution.
Figure 1(a) shows the curve just after initialisation. The points
on the curve are nearly equidistant. After four frames, as
marked in figure 1(b), the points accumulated in two regions
are marked by red circles. In the very next frame, in figure 1(c),
we notice that small loops have formed in these regions. These
loops subsequently blow up and the curve becomes unstable
within the next few frames.

In the above example, there is a good amount of motion
of the hand from the left to right but there is very little
shape change. We show another example, where there is a
rapid change in target shape but the overall global motion of
the target is very small. Figure 2 shows three frames from
an attempted tracking sequence on a target. In figure 2(a),
the curve converges to the palm outline. Within the next two
frames, there is a rapid shrinking of the palm. In figure 2(b),
we can see the beginnings of the loop formation on the top
left of the semi-closed palm. This immediately blows up into
a loop as can be seen in figure 2(c). The above two examples
illustrate very well that the curve evolution process could be
quite unstable. For both these examples, the energy functional
used was the region competition approach by Zhu and Yuille
[5]. We give the exact form of the curve evolution equation in
section V.
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(a) Frame 26 (b) Frame 30 (c) Frame 31

Fig. 1. Illustration of curve degeneration:(a) Initial curve (in red). Convergence to target (in green). (b) Bunching of points (in red) starts due to target motion
leading to (c) loop formation.

(a) Frame 66 (b) Frame 82 (c) Frame 83

Fig. 2. Illustration of curve degeneration due to rapid shrinking of target:(a) Initial curve in red and converged curve in first frame, (b) bunching of points
starts due to target shape change leading to (c) loop formation.

C. Existing Approaches toward stabilisation
We now describe a few commonly used approaches to tackle

this problem and discuss their limitations.
• Re-initialisation of the curve using a least mean squared

criterion [22] can be done either after a fixed number of
frames or when the distance between successive control
points falls below a certain threshold. However, this is
not a very good solution because the shape of the curve
would change during the re-positioning of the control
points. The computation is also increased in checking the
distances in each frame after every iteration.

• Another ad-hoc solution is insertion and deletion of
points from the curve when the distance between two
consecutive curve points exceeds or falls below a certain
threshold. For insertion of points, some kind of local
interpolation is done to introduce new points. This again
is not a very good solution; the thresholds have to be set
manually and, in general, is a naive proposition.

• In a spline based implementation, we could also control
the curve by deleting or inserting control points. This is
because of the fact that looping is caused by nearness
of control points. Although algorithms exist for such a
procedure, for example [34]; this solution is not natural.
Moreover, such a procedure is specific to splines. Also,
if we were to use the control points to represent the
shape space [32], these operations would change the
dimensionality of the feature space.

The above methods are rather ad-hoc attempts to adjust
distance among points. In [32], the authors have used third
order B Splines for curve representation. To alleviate the

problem discussed above, the authors attempt to maintain the
distance between successive control points. This is done by
defining an energy term which also acts as a regularising term
for smooth curve evolution. The energy term defined by the
authors is Esm =

∫ L

0
|Cp|dp, as the regularising term rather

than the L2 definition, where subscript denotes differentiation.
For the specific case of quadratic, uniform B splines, this has
the effect of positioning each control point to be equidistant
between its two adjacent ones. This method is however only
applicable to the specific case of quadratic B-Splines.

In [26], the authors propose the use of a tangential evolution
term to control the curve parametrisation. The tangential force
evolving the curve is obtained by applying the diffusion
equation,

∂g

∂t
=
∂2g

∂p2
+ βκg, (3)

where as mentioned earlier, κ is the curvature and g is
the curve speed term. If we imagine some particle to be
traversing along the curve with p as the artificial time, then
g gives the speed of this particle. The authors proposed
the above form because when the normal force β becomes
small enough, equation (3) becomes the diffusion equation
for the curve parameter g. Hence, the final parametrisation g
becomes some proportion to the arc length parameter s. This
assumption, however, is not very valid in practice. Further, the
redistribution of the point set in this case does not explicitly
depend on the image data.

The term proposed in [33] is of the form Esm =
∫ L

0
(g2 −

M)2ds, where M is proportional to the curve length. This
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term may cause extra smoothing and shrinking of the curve.
This is not a desirable effect because curve regularising terms
are already defined.

A comprehensive effort on stable evolution was in [31],
where the authors have proposed the following ODE for
evolving α defined in equation (1),

∂α

∂s
= κβ − 1

L
< gκβ > +(

L

g
− 1)(k1 +

k2

L
< gκβ >) (4)

where s is the arc length parameter, L is the curve length.
k1, k2 > 0 are arbitrary constants and < φ > is the average of
the quantity φ, i.e. < φ >=

∫ 1

0
φ(p) dp. This is a fairly general

equation governing α and the authors have proved that the
evolution is stable. However, there is no well-defined method
to select proper values of these constants. Thus for various
values of k1 and k2, there is a family of temporal evolutions
of the curve. However, it is difficult to predict which set of
values would yield best results in actual implementation. The
purpose of the current work is to avoid this kind of heuristic
choice of parameters during the evolution without affecting
the convergence issues.

We provide a new term for evolution of the tangential
component that depends only on single parameter K, instead
of two completely unknown parameters k1 and k2 in equation
(4), but still gives an even redistribution of points. Further,
assuming the natural periodic boundary conditions for closed
contours, one can have an exact expression for K. This
assumption is, however, not valid for evolution of an open
curve where the boundary conditions are already given. In
this case, we use a simple numerical discretisation scheme for
calculation of K. This avoids any heuristic selection of the
control parameter K. Further, we provide the necessary proof
of boundedness of the curve evolution.

III. STABLE CURVE EVOLUTION

The force at each point on the curve can be resolved into two
components: along the local tangent and normal denoted by
α and β, respectively. Therefore, for planar curve evolution,
the most general form of curve evolution can be written as
in equation (1). Given this form of the evolution equation, g
varies as follows [35] [31]:

∂g

∂t
= −gκβ +

∂α

∂p
, (5)

It is seen from the above equation that g depends on both the
components. It has been shown by researchers [35] that only
the normal component of the force β influences the shape of
the curve. The tangential component α simply re-parametrises
the curve. Based on this fact, most works have concentrated
on defining the normal term to speed up the convergence,
increase the capture range, etc. No specific efforts were made
(except for few works cited previously) to give some form
to the tangential term for the purpose of curve stabilisation.
This did not pose any problems as these works used level
set methods which do not suffer from the same problems. In
this work we propose an exact tangential evolution term to
stabilise the curve and derive precise bounds for important
curve measures like the length and curvature.

We first qualitatively discuss the cause for the bunching
of the points on the curve and the control points. It is seen
from equation (5) that g depends on both components of the
force. Therefore, while reconstructing the curve with a discrete
set of points the spacing between the points may occasionally
vary in an unpredictable manner. This leads to uneven spacing
of points at certain locations of the curve which cannot be
brought under control by normal smoothing term alone.

In our approach we ensure curve stability by using a very
simple equation to control g. Though arc length parametri-
sation is the most desirable, it cannot always be achieved in
practice due to the curve representation. Therefore, a proper
choice of the control parameter g = K is essential for
maintaining uniform distribution of points. We further argue
that this K should be independent of the parametrisation used
and a function of time step t only, and denote this by Kt, for
convenience we drop the superscript. The usefulness of this
argument will be made clear in the next section.

It is then natural to use equation (5) to force the curve
towards the parametrisation which would make g = K. The
left hand side of this equation predicts how g changes given
β and α. We know the normal component β(p, t); these are
given by equations 25, 27 or 28 depending on the model we
have chosen. Equation (5) can be rewritten as:

∂α

∂p
=
∂g

∂t
+ gκβ, (6)

We propose to set,
∂g

∂t
= K − g. (7)

Qualitatively, at each point we try to find α by pushing g
at that point to the constant K. We obtain α by substituting
equation (7) in equation (6) and then numerically solving the
resulting PDE

∂α

∂p
= K − g + gκβ. (8)

After solving for α(p, t), we use the values in equation (1) to
evolve the curve.

In the next section, we propose a choice of K and also prove
that important curve properties like the length and curvature
remains bounded for the given choice of K.

IV. BOUNDEDNESS OF EVOLUTION

The goal of this section is to determine the term K entering
the constitutive relation in equation (7) yielding asymptotically
uniform redistribution of numerically computed grid points.
Recall that K = Kt, i.e. K is independent of the spatial
parameter p. Without loss of generality we assume that the
parameter p belongs to the interval [0, 1]. If we take into
account periodic boundary conditions imposed on tangential
velocity term α then the term K = Kt has to satisfy:

0 = α(1, t)− α(0, t) =
∫ 1

0

∂pα(p, t) dp

=
∫ 1

0

(K − g + κβg) dp

= K −
∫ 1

0

g dp+
∫ 1

0

κβg dp
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= K − Lt +
∫

Γt

κβ ds

and therefore K = Kt is given by

K = Lt −
∫

Γt

κβ ds (9)

where Lt is the length of the curve Γt, i.e. Lt =
∫
Γt ds =∫ 1

0
g dp.

In what follows we shall assume that the normal velocity β
has the general form: β = µκ + f(C) where f is a bounded
function depending on the position of a curve point C. The
validity of this assumption is shown in section V, where the
final evolution equations are shown. The parameter µ controls
the weight of the two terms.

Concerning estimate of the length Lt of the curve Γt and the
modulus of |κ| and |κβ| we have the following proposition:

Lemma 1: Assume the normal velocity β = µκ + f(C)
where µ > 0 is a positive constant and f : Ω ⊂ R2 → R is
a bounded function, i.e. ‖f‖∞ = supC∈Ω |f(C)| < ∞. Then
following estimates are satisfied:

Lt ≤ L0 exp
(
t‖f‖2∞/(2µ)

)
∫

Γt

|κ| ds ≤ δt + ‖f‖∞
µ

Lt

and ∫
Γt

|κβ| ds ≤ δt δ
t + ‖f‖∞

µ
Lt

where δt = maxΓt |β|.
Proof of the above lemma is presented in the appendix.

Now we are able to prove boundedness of the tangential
velocity α proposed in section III. Recall that α can be
computed from the equation

∂pα = L−
∫

Γ

κβ ds− g + κβ (10)

by taking into account the boundary condition α(0, t) = 0.
Therefore, for any p∗ ∈ [0, 1] we have

|α(p∗, .)| = |
∫ p∗

0

∂pα dp| ≤
∫ p∗

0

|∂pα| dp ≤
∫ 1

0

|∂pα| dp

≤
∫ 1

0

|Kt − g + gκβ| dp

≤ |Kt|+
∫ 1

0

g dp+
∫ 1

0

|gκβ| dp

= |Kt|+ Lt +
∫

Γt

|κβ|ds

where Kt = Lt−
∫
Γt κβds. Taking into account the estimates

from the previous lemma we can conclude:
Theorem 1: If the normal velocity satisfies β = µκ+f(C)

where µ > 0 is a positive constant and f : Ω ⊂ R2 → R is a
bounded function then the tangential velocity α given by (10)
is globally bounded in spatial parameter p, and

max
p∈[0,1]

|α(p, t)| ≤ 2
(
Lt +

∫
Γt

|κβ| ds
)
≤ CLt(1 + |δt|2)

for any t ∈ [0, T ] where δt = maxΓt |β| and C > 0 is a
constant depending only on µ, T and ‖f‖∞.
Remark 1. Clearly, < g >= L and < gκβ >=

∫
Γ
κβ ds.

Comparing equation (4) for ∂sα with our proposition in
equation (7) where Kt = Lt −

∫
Γt κβ ds we conclude that

our choice of the tangential velocity sets k1 = 1 and k2 =
−1, respectively. Note however that our approach cannot be
derived from [31] as in their work they have assumed both
k1, k2 > 0, failing which convergence cannot be guaranteed.
Hence the proposed solution is different from that of [31].

A. Conditional boundedness of tangential evolution

In this section, we show that the ODE proposed in equation
(8) is bounded with respect to that proposed in Mikula et al.
[31] or in other words, the proposed curve evolution will be
asymptotically at a finite distance from that of the evolved
curve of Mikula et al. Mikula and Sevcovic [31] have shown
in their work that using their proposed tangential component,
the 4-tuple (C, κ, ν, L) remains bounded, under the condition
that the normal force is bounded, where ν is the tangent angle.
To prove this, we need the form of Gronwall’s inequality [36]
stated below. This inequality is well known in the area of
adaptive control.

The Gronwall inequality as stated here is adapted closely
from Howard [37]. We include the statement for the sake of
completeness, the proof can be found in the same reference
The inequality relates the solutions of two Odes. The theorem
is stated below.

Gronwall’s Inequality

Theorem 2: Let X be a Banach space. Let U ⊂ X and U
be an open subset. Let f, g : [a, b]×U → X. We assume that
f, g are continuous functions. Let y, z : [a, b] → U satisfy the
initial value problem

ẏ(t) = f(t, y(t)), y(a) = y0 (11)
ż(t) = g(t, y(t)), z(a) = z0 (12)

Let us assume that there is a constant H such that

‖ g(t, x2)− g(t, x1) ‖≤ H ‖ x2 − x1 ‖ (13)

and a continuous function ψ : [a, b] → [0,∞), such that

‖f(t, g(t))− g(t, y(t))‖ ≤ ψ(t). (14)

Then, for t ∈ [a, b]

‖y(t)−z(t)‖ ≤ eH|t−a|‖y0−z0‖+eH|t−a|
∫ t

a

e−H|s−a|ψ(s)ds.

(15)
The above inequality gives a bound on how different two

temporally evolving functions are. In order to prove the con-
ditional boundedness of the proposed solution, let us denote
by α1 and α2 the proposed ODE in equation (8) and the
ODE proposed in [31], respectively. Following Gronwall’s
inequality in the stated form, we can write equations (8) and
(4) as:

∂α1

∂s
= h1(p, α1) =

K

g
− 1 + κβ (16)
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∂α2

∂p
= h2(p, α2) = κβ − 1

L
< gκβ > +(

L

g
− 1)ω (17)

in place of equations (11) and (12). Note that here the
derivatives are with respect to the arc length parameter s.
We note that in both the equations (16) and (17), the RHS
is independent of variables α1 and α2, respectively.

First, we show that there exists such a constant H , so that
||h2(p, x2)− h2(p, x1)|| ≤ H . Since h2 is independent of α2,
we set H = 0. Any finite non-negative choice can be used
here.

Next, we show that there exists such a ψ such that
||h2(p, x2) − h1(p, x1)|| ≤ ψ(p)∀p ∈ [pi, pf ], where pi and
pf denote the limits of the curve parametrisation, for any x1

and x2. This expression after substitution of the right hand
sides of equations (16) and (17) can be written as,

||L
g
ω − ω − 1

L
< gκβ > −K

g
+ 1||

≤ ||Lω −K
g

||+ ||1− < κβ > −ω||, (18)

where the inequality follows from the triangular inequality
property of norms. The second term of the inequality is
essentially constant, as < . > denotes averaging over the
curve. Let us denote this by C1, i.e, C1 = 1− < κβ > −ω.
Therefore, we set,

ψ = ||Lω −K
g

||+ ||1− < κβ > −ω||. (19)

Finally, we use the above results to prove that ||α1−α2|| is
bounded over the curve. We use H and ψ as obtained earlier.
Using Gronwall’s inequality as given in equation (15) and
keeping in mind that H = 0, we have:

||α2(p)− α1(p)|| ≤ ||α2(0)− α1(0)||

+
∫ p

pi

(
||Lω −K

g
|| + ||C1||

)
ds. (20)

The above expression can be easily shown to be bounded
since g is finite and greater than zero, ||C1|| is finite and the
first term in the RHS is bounded as curve initializations are
usually done very close to each other for both the methods.
If one uses the same initialization, then the first term also
becomes zero. This proves that the tangential evolution is
always bounded.

B. Computation of K: Open curve

Recall that the equation (9) gives the theoretical value of
K per iteration of evolution. We assume existence of periodic
boundary conditions along the curve for the calculation K.
This value of K is valid only for the case of tangential term
for evolution of closed curve. This is obvious because for
open curves, we cannot assume that α(0, t) = α(1, t). In fact,
depending on the energy functional, each end point of the
curve may have its motion defined for both the normal and
tangential directions [12] [13]. Therefore, for the case of open
curves, calculation of K follows a slightly different procedure,
which is as follows.

We assume that the tangential motion at the end points of
the curve points are known to be α̂[1] and α̂[N ] respectively,
assuming that the curve is discretised into N points. Note,
that the tangential term for open curves is still defined as per
equation (8). It follows that

α(1, t) = α(0, t) +
∫ 1

0

(K − g + gκβ) dp. (21)

Therefore, we get the value of K very simply to be as,

K = α̂(1, t)− α̂(0, t) + Lt −
∫ 1

0

κβ dp. (22)

Numerical implementation of equation (8) is done very
simply using first order finite differences. It can be done using
higher order differences also, but for our experiments first
order difference methods are seen to give satisfactory results. It
is possible to show that numerical implementation of equation
(8) will lead to error in the value of α(1, t). Specifically, at
the boundary point C(1, t), the calculated value α[N ] will not
be equal to the given value α̂(1, t), where α[N ] is obtained
by discretising equation (8) using any numerical technique.
This residual error is significant enough to cause problems in
evolution at the boundary C(1, t). The problem which occurs
during evolution is that at the end point C(1, t), the residual
error causes the curve to grow outward continuously. This
phenomenon is particularly noticeable when the iterations are
large. The reason for this residual is that equation (8) is a
first order ODE. Therefore, this should be ideally be an initial
value problem with one boundary condition specified. As
explained above, because of the underlying snake model, both
the end conditions have been specified. For such problems,
different methods of discretisation has been discussed in [38].
We have adopted the strategy of determining the value of K
after discretising the equation. We assume that the curve is
discretised into N points and denote the value of g, κ, β at
i-th point by gi, κi and βi respectively. Then the expression
for K is as follows

K =
ΣN−1

i=1 (gi + giκiβi)
N − 1

+
α̂[N ]− α̂[0]
(N − 1)4p

(23)

where 4p is the step size of discretisation of the curve
parameter p.

V. RESULTS AND DISCUSSIONS

A. Implementation details

We have used closed, periodic, cubic B-Splines [39] to
implement the curves. For all the examples in this work, we
have used a B-Spline based implementation for curve evolution
similar to that of [22]. The discretisation of equation (8) is as
follows. Let us assume that the curve is discretised into N
points. The numerical discretisation of equation (8) is as,

α(pi+1) = α(pi) +K − g(pi)
+ g(pi)κ(pi)β(pi), i = 2 . . . N − 1 (24)

The periodic boundary condition leads to α(p0) = α(pN ).
The implementation is as follows. First the normal force is
computed and β determined. It is to be noted that the normal
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force consists of both the internal and external energy terms.
This is entirely dependent on the active contour model used.
Then, once we know β, we compute α using the discretisation
scheme of equation (24) above. From equation (9) of the
manuscript, we can very easily compute the value of K. If we
neglect < g(p, t)κ(p, t)β(p, t) > in comparison to the length
L of the curve, one may use the approximation K = L. We
compute K while computing the normal force β. Now, we
have both β, the normal term and α, the tangential term. We
simply plug these values back into equation (1) and evolve the
curve.

The computation overhead for implementation of the tan-
gential term is minimal. As we can see from the previous point,
computation of K is done while computing the normal term.
The only extra computation is the implementation of equation
(24). Implementation of this has very less overhead because
this is a simple summing operation over N points.

In a B-Spline representation, we need a higher number
of control points to get a better delineation of the object
boundary. An unfortunate side-effect of this necessity is that
the tendency to form loops also increases [39]. Other represen-
tations for curves can also be used as the method proposed is
independent of the choice of representation. The segmentation
algorithms for closed curves used in this study are the gradient
vector force(GVF) algorithm [4] and the region competition
model [5]. For open curve evolution, we have implemented
the model proposed in [13]. For the sake of completion, we
write down the curve evolution equations here for the different
models. For more details the reader is referred to the original
papers. The normal term βR for the region competition model
is

βR = log(pB(I(C)))− log(pT (I(C))) + µκ, (25)

where pB(.) and pT (.) denote the probability that the pixel
at image location I(C(p, t)) belongs to the background and
target respectively. Keeping in mind that the local normal
direction points inwards to the curve, the interpretation of the
above equation is that the curve moves along the inward di-
rection when the image point I(C(p, t)) on the curve (C(p, t)
has a higher probability of being a background pixel, otherwise
the direction of motion is reversed. For the region competition
model, we assume that there is one target and one background
region. The probability distributions pB and pT are assumed
to be known a priori. For our work, we have used histograms,
rather than parametric Gaussian models as done in the original
work, to model the target and the background. As, before
the parameter µ weighs the importance of the image and
smoothness terms.

In [4], the authors define a motion field F = (u, v) having
two components in the image plane which moves the active
contour toward the local edge, which is assumed to form the
complete boundary of the target. The force field is obtained
by minimising the following functional,

Eim = EGV F =
∫ ∫

(F−∇I)2

+ γ(u2
x + u2

y + v2
x + v2

y)dxdy (26)

where γ is a parameter which controls the spatial extent of
the field. The normal force βGV F driving the curve evolution
in this case is

βGV F = F � N + µκ (27)

Finally, for the open curve model, the normal term βKB is
as follows

βKB = sign(∇I � N)4I + κ

βKB(0) = −sign(∇I � N)(∇I � T)
βKB(1) = sign(∇I � N)(∇I � T)

(28)

where without loss of generality we assume that the curve
parametrisation 0 ≤ p ≤ 1. The tangential force at the end
points of the contour αKB is as

αKB(0) = |∇I � N| − 1
αKB(1) = 1− |∇I � N|

(29)

The complete curve evolution equation is obtained by
adding any of equations(25), (27) or (28) with the tangential
term defined as per equation (8). This will then give the general
form of the evolution equation (1). For the case of open curve
evolution K is calculated as per equation (23), where the
tangential force at the end points are defined as per equation
(29).

B. Segmentation Results

1) Closed Curve: Figures 3 and 4 show the results of the
stabilising term applied to static segmentation using region
based approach and GVF model, respectively. Figures 3(a) and
4(a) show the results of segmentation without the use of the
tangential term. The segmentation model for the hand images
was the region competition method. For the segmentation of
the aeroplane, we used the GVF model. The curves in yellow
in figures 4(a) and 4(b) denote the initialisation. Without the
use of the stabilising tangential term, we note that formation
of loops has occurred, as expected. It is worth mentioning that
for the hand segmentation, we found that the loop formation
problem could be avoided by reducing drastically the number
of control points. This however leads to a poor segmentation.
The results of segmentation using the proposed stabilising
tangential term is shown in figures 3(b) and 4(b). There is
no formation of loop and the segmentation results are quite
accurate.

In order to demonstrate the effect of the tangential term
quantitatively, we take two measures defined on the curve.
These are the normalised inter-point distance between the ith
and i+1 point on the curve, di = ||C(pi, t)−C(pi+1, t||/Lt,
and its variance σ = 1

N Σi

(
di− 1

N

)2
. We have normalised the

inter-point distance with respect to the curve length to account
for the fact that the curve length need not remain constant
during evolution. This may increase or decrease depending
on the initialisation and the target shape. In figure 5 we
show the variation of these measures for the gradient based
segmentation model of figures 4(a) and 4(b). Specifically, in
figure 5(a), we show the normalised inter-point distance for
all the points on the curve. For these experiments, the curve
was discretised into 250 points. These distance were generated
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(a) Region based segmentation (b) Region based segmentation using tangential
term

Fig. 3. Region segmentation results: (a) No stabilising term used. (b) Stabilisation with derived K.

(a) Edge based segmentation (b) Edge based segmentation with tangential term (c) Edge based segmentation with redistribution
term of [31]

Fig. 4. Edge segmentation results: (a) No stabilising term used. (b) Stabilisation with derived K.

with and without incorporating the tangential term but after
reducing the number of control points(as opposed to what
is shown in figures 4(a) and 5(a) ) such that the evolution
remains stable even without the use of the tangential term.
The reduction in the number of control points results in a poor
segmentation of the contour. The curves in red and blue show
the normalised distance with and without the tangential term,
respectively. Clearly, the distribution is enclosed in a much
tighter envelope for the red curve, signifying that the point
spacing is more uniform. This is more clearly exemplified
in figure 5(b) where we have plotted the variance σ as the
iterations increase. The total number of iterations was 150000
and we plotted the variance every 1000 iterations. With the
use of the tangential term, as shown in red, the variance is
nearly half the value without the stabilising term. These plots
clearly indicate the strong redistribution effect of the proposed
term.

In figure 6, we show the similar plots for the case of region
based evolution. The test cases were similar to the evolution
shown in figures 3(a) and 3(b). Unlike in the previous case,
in these sets of experiments, we did not try to prevent curve
degeneration due to non usage of the tangential term. This
could have been done by cutting down the number of control
points but this yields a poor segmentation around the sharp
corners. The curve degenerated in about 7000 iterations when
the tangential term is not used. Using the tangential term, we
evolved the curve for 27000 iterations to get the sharp corner
near the fingertips and other places. The normalised distance

without using the tangential term is shown in red in figure 6(a)
at the end of 7000 iterations. It is to be noted that this distance
fluctuated wildly along the curve, being very large near the end
points and decreasing to a small value at at the middle. The
curve in green shows the same measure for the tangential term
case, where there is a much more narrow envelope delimiting
the curve. In figure 6(b) we show the variance with respect
to iteration number. The curve in red shows a drastic increase
in variance at an early stage in the evolution. The curve in
green maintains a tighter variance and hence, a better point
distribution throughout the evolution.

For the purpose of comparison in figure 4(c), we show the
segmentation result using the tangential redistribution term
proposed in [31] for the image in figure 4(a). For implemen-
tation purposes, we used the values of k1 = 1.0 and k2 = 0.0
as mentioned by the authors. The initialisation is shown in
red and the final converged curve is shown in yellow. This
same initialisation is also used in figures 4(a) and 4(b). It is
obvious from the image that the final curve does not have
uniform point distribution as in figure 4(b). The variance of
the distribution of the final points is shown in figure 7. The
curve in red shows the plot of variance versus the iterations
for the evolving curves in figure 4(c). Similarly, the figure in
blue shows the variance plot for the evolving curves using the
proposed redistribution term. It is again clear from the plots
that the proposed method outperforms the redistribution term
proposed in [31].

For the sake of brevity, we do not show any more results
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(a) (b)

Fig. 5. Plots of (a) normalised inter-point distance and (b) the corresponding variance (as a function of number of iterations during evolution) for the edge
based curve evolution of figures fig. 4(a) and 4(b). The curve was discretised into 250 points. Thus the average inter-point distance is 0.004.

Fig. 7. Variance of point distance of the final converged curve in figure 4(c)
. Plot in red shows the variance using the redistribution term of [31]. Plot in
blue shows the variance using the proposed term. For implementation, values
of k1 and k2 were set to 1.0 and 0.0 as chosen in [31].

of static segmentation. However, as mentioned earlier, since
tracking of moving objects poses a bigger problem, we show
some of these results in more details.

2) Tracking Results: The tracking algorithm is a naive
extension of the one used for segmentation explained above.
We take the final contour in previous frame as the initialisation
for the contour in the current frame. For tracking, we observed
that curve degeneration happens when there is a sudden change
in shape or rapid motion. In figure 8, we show the same frames
as in figure 1. We note that not only is the curve stabilised in
figure 8(a) but also continues to remain so in figure 8(b), 9
frames later.

We show tracking results on three much more challenging
sequences in figures 9, 10 and 11. Sequences shown in figures
10 and 11 have been taken from [40]. Figure 9 shows the
tracking of a rapidly dropping balloon. The shape of the
balloon also changes drastically at the end while it is still
moving. Tracking for this sequence is done using the region

competition model as mentioned above. Without the use of
the tangential term, the curve degenerated within one or two
frames. The whole sequence is of length 21 frames. Although
we have successfully tracked sequences consisting of hundreds
of frames, we chose this example to show the effectiveness of
the proposed term even during rapid object motion and shape
change.

In figure 10, we show the tracking of a rapidly bending
person. The length of this sequence is 93 frames. For seg-
mentation, we initially learn the background and subtracted
each incoming frame from the learned background. Since this
is a static scene, the simple approach of frame differencing
followed by thresholding was sufficient for the purpose. We
then generated the force field using the gradient vector force
[4] on the resulting difference map. This is the normal force
moving the contour. Note here that we do not initialise the
curve in each frame of the sequence. As before, we use the
final converged contour of the previous frame as the initialising
contour for the current frame. We see the efficacy of the
proposed tangential term in stabilising the curve evolution.
The tracked contour was able to follow the bend of the human
target very well. As can be seen, the proposed tangential term
makes the tracking possible, which was not possible without
the redistribution term.

Finally, in figure 11, we show the tracking results on a
sequence in which a person is moving rapidly by hopping
on one foot while moving from the left to right. The motion
field for curve evolution was generated as explained above for
the case of the bending person. This sequence is of length 37
frames. Once again we note that the object has been tracked
very successfully.

We have used the proposed term for processing sequences
consisting of hundreds of frames. The results have been
uniformly good for all the sequences.

C. Open curve

For the case of open curve evolution, we have used the
model proposed by Kimmel et al. [13]. In this model, the curve
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(a) (b)

Fig. 6. Plots of (a) normalised inter-point distance and (b) the corresponding variance as a function of the number of iterations for the region based curve
evolution shown in figures fig. 3(a) and 3(b). The curve was discretised into 350 points. The average inter-point distance is thus 0.003. Note that the evolution
without the tangential redistribution term degenerates after about 7000 iterations.

(a) (b)

Fig. 8. Tracking results for the same sequence with same initialisation as figure (1). The final curve remains stable despite significant motion and shape
change. The image on the left (a) shows the result on the first frame and the image on the right(b) is 9 frames hence.

end points have a pre-defined tangential motion as per equation
(29). This is because the curve shrinks in regions of small
gradient and increases in length along an edge. Therefore, to
calculate K for each iteration, we use the procedure described
in section IV-B. In figure 12(a), the initial curves are indicated
in green and the final curves are indicated in red. As expected,
the curves initialised on the edges initially shrink to the edge
and then expand to the length of the edge. The curve in the
centre has no nearby edge to latch on to. Hence, it keeps on
shrinking and the evolution was stopped after sometime. If
the evolution is continued, then the curve shrinks to a point
which is in complete accordance with the original model.
The curves along the edge stopped at the edge of the square
because of the sharp corners. This result is indicative of
the effectiveness proposed tangential term. It performs the
smooth re-parametrisation of points while keeping the edge or
boundary conditions unchanged. Hence, the term in no way
disturbs the original model.

In figure 12(b), we have used the cropped version of an
image used in [13]. In this image, as in the previous image,
the initialisation is given in green and the final curves are
marked in red. We have used different initialising curve for

each edge of the target. The curve latches onto the edge and
expands along it till it reaches the corner of the target.

Figure 13 shows a sequence of figures which show the
evolution the open curve. In these images, the curve in yellow
is the initial curve. The curve in pink is the evolved curve.
Initially, the curve gets attracted and lengthened by the weaker
edges. As the evolution proceeds, the curve gets attracted to
the stronger edge of the pool boundary. Once the curve latches
onto this strong edge, evolution proceeds smoothly and the
curve increases in length. The initial curve length is about
125 and the final length is about 725 pixel units. It may be
noted that the points stretch smoothly as the curve expands.

It is interesting to note here that as mentioned in the original
paper [13], the authors have implemented the evolution by
using a multiple point representation of the curve. The distance
between successive points in maintained by removing a point
or adding point between them, when the distance becomes
lesser or greater than a certain threshold. Hence, the number
of points is not constant and varies during evolution. Our
method is much more elegant for maintaining the distribution
of curve points. We wish to remark here that for the case
of open curves, the evolution is strongly dependent on the
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(a) Frame 1 (b) Frame 4 (c) Frame 9

(d) Frame 12 (e) Frame 17 (f) Frame 21

Fig. 9. Tracking results for the balloon sequence: (a-g)Note the rapid motion at the beginning and shape shrinkage of the balloon at the end. The balloon
is perfectly tracked even through the drastic change in position and shape change. There is no formation of loops or accumulation of points anywhere along
the curve. Initial curve is marked in red in sub-figure (a).

(a) Frame 1 (b) Frame 25 (c) Frame 42

(d) Frame 57 (e) Frame 70 (f) Frame 85

Fig. 10. Tracking results: (a-f) The tracked person rapidly bends forward and regains the initial posture. Initial curve marked in red in sub-figure(a).
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(a) Frame 1 (b) Frame 8 (c) Frame 15

(d) Frame 20 (e) Frame 28 (f) Frame 35

Fig. 11. Tracking results: (a-f) The tracked person moves from the left to right very rapidly. Initial curve is marked in red in sub-figure (a).

(a) (b)

Fig. 12. Evolution of open curve using the Kimmel-Bruckstein model [13]. The curve in green and red are the initial and final curves respectively. (a) For
the curve in the centre of the box, the evolution was stopped after some time. This is because the curve shrinks to a point, since it is not located along any
edge.(b) Result shown on image taken from [13].

relative weights of the tangential and normal evolution term.
We have noted this phenomenon for all the cases of open curve
evolution we have worked on. It is important to note that this
is true for any implementation of the open curve and this is
not particular to the proposed tangential term.

VI. CONCLUSIONS

Parametric curves and B-Splines are simple methods to
evolve an active contour. However, these suffer from the
typical implementation problems of bunching and other asso-
ciated instabilities. In this work, we have proposed a method
for tangential redistribution of curve points and proved the
boundedness of a tangential stabilising term. The proposed
method is highly suitable for practical implementations of

wide variety of curve evolution equations. We have also
demonstrated how the proposed method can be used for open
curve evolution.

APPENDIX
PROOF OF THE BOUNDEDNESS OF CURVATURE

We present the proof of lemma 1 here.

Proof. Since d
dtL

t = −
∫
Γt κβ ds = −µ

∫
Γt κ

2 ds−
∫
Γt fκ ds

Using Young’s inequality ab ≤ (a2 + b2)/2 we obtain

|fκ| = √
µκf/

√
µ ≤ 1

2
µκ2 +

1
2µ
f2.
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(a) Iteration 0 (b) Iteration 15000

(c) Iteration 25000 (d) Iteration 35000

(e) Iteration 45000 (f) Iteration 55000

Fig. 13. Figure showing different stages of curve evolution. The curve in yellow is the initial curve and the curve in pink shows the evolved curve at different
stages. Initially the curve gets attracted by the weaker edge, eventually it recovers and covers the complete circle.

Hence,

d

dt
Lt ≤ −1

2
µ

∫
Γt

κ2 ds+
‖f‖2∞

2µ

∫
Γ

ds ≤ ‖f‖2∞
2µ

Lt.

Integrating this inequality we end up with the desired bound
Lt ≤ L0 exp

(
t‖f‖2∞/(2µ)

)
, as claimed.

Again using Young’s inequality we obtain

|κ| =
√

2εµ|κ|
√

1/2εµ ≤ εµκ2 +
1

4εµ
= εκ(β − f) +

1
4εµ

.

Hence

|κ| ≤ ε(δt + ‖f‖∞)|κ|+ 1
4εµ

.

Taking

ε =
1

2(δt + ‖f‖∞)

we obtain

|κ| ≤ 1
2
|κ|+ δt + ‖f‖∞

2µ

and thus, by integrating |κ| over the curve Γt we obtain∫
Γt

|κ| ds ≤ δt + ‖f‖∞
µ

∫
Γt

ds =
δt + ‖f‖∞

µ
Lt

as claimed. The third inequality follows from
∫
Γt |κβ| ds ≤

δt
∫
Γt |κ| ds. ♦
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