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A food-web based unified model of “macro”- and “micro-” evolution
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We incorporate the generic hierarchical architecture of foodwebs into a “unified” model that
describes both “micro” and “macro” evolutions within a single theoretical framework. This model
describes the “micro”-evolution in detail by accounting for the birth, ageing and natural death of
individual organisms as well as prey-predator interactions on a hierarchical dynamic food web. It
also provides a natural description of random mutations and speciation/orgination of species as well
as their extinctions. The distribution of lifetimes of species follows an approximate power law only
over a limited regime.
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I. INTRODUCTION

The questions of “origin” and “evolution” have always
fascinated scientists in all disciplines. Physicists have fo-
cussed attention mostly on cosmological evolution and
origin of universe. On the other hand, chemists and bi-
ologists have studied chemical evolution (i.e., formation
of elements and compounds) as well as pre-biotic evolu-
tion and “origin” of life. Similarly, paleontologists try
to understand the origin of species and evolution of eco-
systems by reading “history of life written on stone” in
the form of fossil records. In a recent Letter [1] we devel-
oped a dynamic network model for studying some generic
features of the biological evolution of eco-systems. In this
paper we extend that model incorporating the generic
trophic-level architecture of food webs and show how it
can account for evolution at both ecological as well as
geological time scales.

II. EARLIER MODELS AND THEIR

LIMITATIONS

Because of the close similarity between the evolution
of interacting species and that of conventional systems of
interacting agents studied in statistical physics, several
models of “macro”-evolution of eco-systems have been
reported over the last decade in the physics literature
(see [2, 3, 4] for recent reviews). Some of these describe
macro-evolution as random walks on fitness landscape
[5, 6] (see also [7, 8] for reviews), while some others have
been formulated in terms of a matrix of inter-species
interactions [4, 9]. However, most of these models of
“macro”-evolution do not account for the dynamics of
populations of species even in a collective manner. In
other words, such models ignore biological details that
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are certainly important on ecological time scales and,
therefore, cannot provide a natural description of origin,
evolution and extinctions in terms of population dynam-
ics.

On the other hand, the Lotka-Volterra equation [10]
has been used extensively in the mathematical modelling
of population dynamics of prey-predator systems. How-
ever, for the study of population dynamics of entire eco-
logical communities one needs a model of the food web
[11]. A food web [12, 13, 14] corresponding to an eco-
system is a graphic description of prey-predator relations.
More precisely, a food web is a directed graph where each
node is labelled by a species’ name and each directed link
indicates the direction of flow of nutrient (i.e., from a
prey to one of its predators). However, most often, these
models assume static food webs, where inter-species in-
teractions are assumed to be independent of time. But, in
real eco-systems, species are known to change their food
habits with time [15]. These changes in diets may be
caused by scarcity of the normal food and abundance of
alternative food resources. This may also arise from the
adaptations of the prey species that tend to avoid being
eaten by predators through camouflage or other mecha-
nisms. Therefore, Lotka-Volterra type models with time-
independent food webs cannot be expected to account for
“macro”-evolution of the eco-system over geological time
scales.

Limitations of both these approches are well known
[16], and attempts have been made to merge population
dynamics and “macro”-evolution within a single math-
ematical framework [17]. Population dynamics is moni-
tored in Abramson’s “macro”-evolutionary model [18] in
a simplified manner. However, Abramson postulated an
oversimplified model of dynamically evolving food web
that, essentially, consists of a single food chain. Ama-
ral and Meyer [19] developed a “macro”-evolutionary
model with a dynamically evolving food web where niches
are arranged in a hierarchical trophic level architecture.
However, population dynamics of the species does not en-
ter explicitly in this model. The strength of this model
is its simplicity as some of its properties, e.g., its self-
organized criticality, can be studied analytically [20, 21].
However, we feel, more details need to be included to
address a wider range of biologically relevant questions.
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FIG. 1: A schematic representation of the network model,
with random foodweb architecture, considered in [1]. The
circles represent the niches in the eco-system. The arrows
indicate the directions of nutrient flows to the species at an
arbitrary stage during the evolution of the eco-system.

III. THE “UNIFIED” ECO-SYSTEM MODEL

To our knowledge, our recent “unified” model [1] is one
of the first few [22, 23] that describes not only “macro”-
evolution of origin/speciation and extinction of species on
geological time scales but also “micro”- evolutionary pro-
cesses like, for example, the birth, growth (ageing) and
natural death of individual organisms as well as the ef-
fects of prey-predator interactions on their populations.
Our ”unified” model, reported in [1], can be schemati-
cally represented by the random network shown in figure
1. Each node of this network, denoted by the circles,
represents a niche that can be occupied by at most one
species at a time. In that Letter [1] we postulated a
simple random, but dynamic, food web ignoring the hi-
erarchical organization of species in food webs. In this
paper we postulate a generic hierarchical food web, where
niches are arranged in different trophic levels, with bio-
logically realistic inter-species interactions.

A. Architecture of the network

As in our earlier work [1], we model the eco-system as
a dynamic network each node of which represents a niche
that can be occupied by at most one species at a time. We
assume a generic hierarchical architecture of this network
(see fig.2) in order to capture the organization of species
in different trophic levels of foodwebs [12]. If the i-th
species occupies the ν-th node at the ℓ-th trophic level of
the food web, we denote its position by the ordered pair

FIG. 2: A schematic representation of the network model,
with hierarchical foodweb architecture. The circles represent
the niches in the eco-system. Each arrow represents direc-
tion of nutrient flow. All possible nutrient flows to the species
occupying the second node at the second level and that occu-
pying the highest level are shown explicitly.

ℓ, ν. We assume only one single species at the highest
level ℓ = 1. Each node at level ℓ leads to m branches at
the level ℓ + 1; therefore, the maximum allowed number
of nodes in level ℓ is mℓ−1 and the allowed range of ℓ
is 1 ≤ ℓ ≤ ℓmax. The hierarchical architecture helps
us in capturing a well known fact that in the normal
ecosystems the higher is the trophic level the fewer are
the number of species.

B. The network is dynamic

The faster dynamics within each node captures
”micro”-evolution, i.e., the birth, growth (ageing) and
natural death of the individual organisms. Moreover,
the network itself evolves slowly over sufficiently long
time scales. For example, the adaptive evolution of the
species takes place through alterations in some of their
crucial characteristics by random mutations. Further-
more, as the eco-system evolves with time, the popula-
tions of some species would drop to zero, indicating their
extinction, and the corresponding nodes would be slowly
re-occupied by new species through the process of speci-
ation.

At any arbitrary instant of time t the model consists
of N(t) species each of which occupies one of the nodes of
the dynamic network. The total number of species can-
not exceed Nmax = (mℓmax − 1)/(m− 1), the total num-
ber of nodes. Our model allows N(t) to fluctuate with
time over the range ℓ ≤ N(t) ≤ Nmax. The population
(i.e., the total number of organisms) of a given species,
say, i, at any arbitrary instant of time t is given by ni(t).
The intra-species interactions among the organisms of the
same species for limited availability of resources, other
than food, imposes an upper limit nmax of the allowed
population of each species. Thus, the total number of

organisms n(t) at time t is given by n(t) =
∑N(t)

i=1 ni(t).
Both Nmax and nmax are time-independent parameters
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in the model.

C. Interactions in the food web

Between any two species i, k that occupy two adjacent
trophic levels there is either a link (Jik = ±1) or no link
(Jik = 0). The sign of Jik gives the direction of trophic
flow, i.e. it is +1 if i eats k and it is −1 if k eats i. Thus,
Jik = 0 means that there is no prey-predator relation
between the two species i and k.

If we neglect parasites and herbivorous insects on trees,
then, in general, predators are rarer and bigger than their
prey [24]. This is very naturally incorporated in the hi-
erarchical food web structure of our model by assuming
that each predator needs m prey animals to survive (see
factor m below). The maximum number of individuals
on each level ℓ is m times bigger than on its predator level
ℓ − 1 in the model, and when we imagine the predator
mass to be m times the prey mass, then the maximum
(and initial) amount of biomass on each level is the same.
In this way, the body size and abundance of a species are
strongly correlated to the food web and its interactions
with other species [24, 25].

The J account not only for the inter-species interac-
tions but also intra-species interactions. Let S+

i be the
number of all prey individuals for species i on the lower
trophic level, and S−

i be m times the number of all preda-
tor individuals on the higher trophic level. Since a preda-
tor eats m prey per time interval, S+

i gives the available
food for species i, and S−

i is the contribution of species i
to all predators on the higher level. If the available food
S+

i is less than the requirement, then some organisms of
the species i will die of starvation, even if none of them is
killed by any predator. This way the model can account
not only for the inter-species prey-predator interactions
but also for the intra-species interactions arising from
the competition of individual organisms during shortage
of food supply.

Note that the food resources of a given species are not
restricted to only the lower branches emanating from that
node but it can also exploit the species at the lower-level
nodes emanating from other nodes at its own trophic
level. Moreover, note that although there is no direct
interaction between species at the same trophic level in
our model, they can compete, albeit indirectly, with each
other for the same food resources available in the form of
prey at the next lower trophic level.

D. The collective characteristics of species

An arbitrary species i, occupying the ν-th node at the
ℓ-th level is collectively characterized by [1]:
(i) the minimum reproduction age Xrep(i),
(ii) the birth rate M(i),
(iii) the maximum possible age Xmax(i).
An individual of the species i can reproduce only after

attaining the age Xrep(i). Whenever an organism of this
species gives birth to offsprings, M(i) of these are born si-
multaneously. None of the individuals of this species can
live longer than Xmax(i), even if an individual manages
to escape its predators.

Note that, in several earlier works the reproductive
success was modelled mathematically by assigning a “fit-
ness” to a species or to an individual organism. The
use of the term “fitness” has an interesting history [26].
In contrast to these earlier works, in our models, we as-
sign a minimum reproductive age, a maximum possible
age and the birth rate to model the reproductive suc-
cess (or failure). It has been felt [26] that fitness merely
summarizes, instead of explainig, the ability to survive
and reproduce. On the other hand, the interplay of the
M, Xrep and Xmax, we hope, will be able to explain why
some species survive while others become extinct.

E. The dynamics of the eco-system

The state of the system is updated in discrete time
steps as follows:
Step I- Birth: Assuming, for the sake of simplicity, the
reproduction to be asexual, each individual organism
α (α = 1, ..., ni(t)) of the species i (i = 1, 2, ...N(t))
is allowed to give birth to M(i; t) offsprings at every
time step t with probability (per unit time) pb(i, α; t)
which is non-zero only when the individual organism’s
age X(i, α; t) ≥ Xrep(i; t).
Step II- Natural death: At any arbitrary time step t
the probability (per unit time) of “natural” death (due
to ageing) of an individual organism α of species i is
pd(i, α; t).
Step III- Mutation: With probability pmut per unit time,
each of the species simultaneously increases or decreases,
with equal probability, their Xrep, Xmax and M by unity.
(The ages are restricted to the interval from 1 and 100,
and M > 0.) Moreover, with the same probability pmut

per unit time, they also re-adjust one of the links J from
prey and one of the links J to predators [9]; if the link
J was zero, it is assigned a new value of ±1 whereas
if the link was non-zero it is assigned a new value of
zero. These re-adjustments of the incoming and outgoing
(in the sense of nutrient flow) interactions are intended
to capture the facts that each species tries to minimize
predators but look for new food resources.
Step IV- Starvation death and killing by prey: If ni−S+

i is
larger than S−

i then food shortage will be the dominant
cause of premature death of a fraction of the existing
population of the species i. On the other hand, if S−

i >
ni−S+

i , then a fraction of the existing population will be
wiped out primarily by the predators. In order to capture
these phenomena, at every time step t, in addition to the
natural death due to ageing, a further reduction of the
population by

C max(S−
i , ni − S+

i ) (1)
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is implemented where ni(t) is the population of the
species i that survives after the natural death step above.
C is a constant of proportionality. If implementation of
these steps makes ni ≤ 0, species i becomes extinct.
Step V- Speciation: After the extinction of, typically, half
of the species in a trophic level, the niches (nodes) left
empty are re-filled by new species, with probability psp.
All the simultaneously re-filled nodes in a trophic level of
the network originate from one common ancestor which
is picked up randomly from among the surviving species
at the same trophic level. All the interactions J of the
new species are identical to those of their common an-
cestor. The characteristic parameters Xmax, Xrep, M of
each of the new species differ randomly by ±1 from the
corresponding parameters for their ancestor.

F. Probability of birth

We assume the time-dependent probability pb(i, α) (of
individual α in species i) of giving birth per unit time
to decrease linearly with age, from its maximum value,
attainable at the minimum reproduction age, down to
zero at the maximum lifespan. It is multiplied with a
Verhulst factor 1−ni/nmax and equals this factor at X =
Xrep. Thus in the limit of vanishingly small population,
i.e., ni → 0, we have pb(i, α) → 1 if X(i, α) = Xrep(i)
and, thereafter, pb decreases linearly [27] as the organism
grows older. However, since the eco-system can support
only a maximum of nmax individual organisms of each
species, pb(i, α; t) → 0 as ni(t) → nmax, irrespective of
the age of the individual organism α [28].

G. Probability of natural death

Similarly, we assume the probability pd of “natural”
death (due to ageing) to increase linearly with age [29]
and to reach unity at the maximum lifespan Xmax of
the species: pd = (XM − Xrep)/(XmaxM − Xrep). (For
X < Xrep the death probability, instead, has the con-
stant value that pd attains at X = Xrep; if the above
denominator is negative, pd = 1.) Note that, for a given
Xmax and Xrep, the larger is the M the higher is the pd

for any age X . Therefore, each species has a tendency to
increase M for giving birth to larger number of offsprings
whereas the higher mortality for higher M opposes this
tendency [30].

IV. RESULTS

In our simulations. initially, M = 10, Xmax is dis-
tributed randomly between 2 and 99 independently for
each species, Xrep randomly between 1 and Xmax, the
population randomly between 1 and nmax/2. The ages
of the individuals vary randomly between 1 and the Xmax

of their species.
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FIG. 3: Log-log plots of the distributions of the lifetimes of
the species in an eco-system with nmax = 102 to 104 and 600
to 60000 iterations. The line with slope −2 corresponds to
a power law distribution that has been predicted by many
theories. The common parameters for both plots are m =
2, ℓ = 5 (i.e. Nmax = 31), psp = 0.1, pmut = 0.0001, C =
0.05). In the upper plot, the symbols +,× and ∗ correspond to
nmax = 102, 103, 104 averaged over 6400, 640 and 64 systems
respectively. In the lower plot, nmax = 1000 (except for the
line where nmax = 100) and the maximum simulation time
is 600 (+) and 60000 (× and line) iterations; ∗ corresponds
to m = 12, ℓ = 3 after 6000 iterations; 640 systems were
averaged over for short and intermediate times, and 64 for
the longest time. Each system started from a new random
initial state.

The longest runs in our computer simulations were con-
tinued upto a a million time steps. If each time step in
our model is assumed to correspond to a real time of the
order of one year, then the time scale of a million years,
over which we have monitored our model eco-system, is
comparable to real speciation time scales.

A. Lifetime distributions

The average distributions of the lifetimes of the species
are plotted in fig.3 for various sets of values of the param-
eters. Only very approximately, the data are consistent
with a power-law; the effective exponent, which is, ap-
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FIG. 4: Semi-log plot of the distributions of Xrep (×) and
Xmax, taken from the simulations symbolized by the curved
line in the lower part of fig.2: m = 2, ℓ = 5, nmax = 100, t =
60000, 640 systems.
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FIG. 5: Semi-log plot of the distribution of M . The parameter
values are same as those in fig.4; shorter and longer simula-
tions are added to show further broadening of the distribution.
The symbols +, × and ∗ correspond to 600, 60000 and 600000
iterations, respectively, using 6400, 640 and 1 systems. The
lower lines, using 64 lattices with nmax = 100, t = 6000,
show the broadening with increasing mutation rate pmut =
0.00001, 0.001 and 0.01.

proximately, 2, is also consistent with the corresponding
estimate quoted in the literature [2, 3]. However, in fig.3
the power law holds only over a limited range [31] of
times; for longer times a plateau seems to develop. Since
real eco-systems are much more complex than our model
eco-system and the available fossil data are quite sparse,
it is questionable whether real extinctions follow power
laws and, if so, over how many orders of magnitude.

B. Distributions of Species Characteristics

Figs.4,5 show the time-averaged distributions of Xmax,
Xrep and M . We see that the minimum age of reproduc-
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FIG. 6: Log-log plot of the distribution of lifetimes for
speciation probabilities psp = 0.02 (+) and 0.5 (×), and
(squares, with psp = 0.1) for Gompertz mortality assumption:
pd = exp[(max(X, Xrep) − Xmax)/M ], using 640 systems for
nmax = 100 and t = 6000.
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FIG. 7: Log-log plot of the distribution of lifetimes for the
whole ecosystem of ℓ trophic layers, with ℓ = 5, m = 2 and
ℓ = 3, m = 6, from 1 and 10 systems only; nmax = 100.

tion Xrep is quite small, as usual in a similar ageing model
[32]. The age distribution (not shown) decays stronger
than a simple exponential, indicating a mortality increas-
ing with age as it should be [29]. The genetic death ages
5 < Xmax < 100 reach ages far above the upper end
≃ 50 of the age distribution (for the species on top of the
food web), as is appropriate for animals in the wild [27].
Finally, fig.5 shows the distribution of M(i) which is still
broadening even after 60000 iterations.

We have also observed (not shown) that the higher is
the mutation probability pmut the lower is the lifetime of
the eco-system; this is consistent with the intuitive expec-
tation that a higher rate of mutation leads to higher lev-
els of biological activity in the eco-system thereby leading
to the extinction of larger number of species. Fig.5 from
these data shows that the broadening of the histogram
for M , i.e. the equilibration process, is determined by
the product pmutt giving the average number of muta-
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tions per species. But, psp had weaker effect on the same
data as shown in Fig. 6. The same figure also shows a
somewhat better power law at short times if the above
linear increase of the mortality with age is replaced by
an exponential increase (Gompertz law [27]).

C. Collapse of fragile ecosystems

We model an eco-system with a fixed number ℓ of
trophic levels; thus as soon as we find one level to be ex-
tinct completely, we regard the eco-system as destroyed
and try to build a new one for the same parameters,
changing only the random numbers. Hundreds of such at-
tempts are needed for a successful system lasting the pre-
scribed number (like 6000) of iterations, see fig.7. This
method simulates the billions of years which natural evo-
lution needed to build the present life on earth.

V. SUMMARY AND CONCLUSION

In summary, we have presented a unified model which
describes not only the birth, ageing and death of indi-

viduals as well as population dynamics on short time
scales but also the long-time evolution of species, their
origination/speciation and extinction. The total number
of species, the inter-species interactions and the collec-
tive characteristics, namely, Xrep, Xmax and M , of each
species vary following a stochastic dynamics with Dar-
winian selection. Thus, our model is capable of self-

organization.
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