
PHYSICAL HEVIEW A VOLUME 12, NUMBKH 4 OCTOBER 1975

Quantum electrodynamics in the presence of dielectrics and conductors. IV. General
theory for spontaneous enussion in finite geometries

G. S. Agarwal
Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay-400005, India

(Received 4 December 1974)

A quantum-electrodynamic theory of spontaneous emission in presence of dielectrics and conductors is
developed. The theory makes use of the master-equation techniques and the response-function formalism
of part I of this series of papers. Various observable entities such as damping coefficients (lifetimes),
Lamb shifts, and frequency shifts are related to the appropriate surface-dependent response functions. The
results are valid for arbitrary geometries (involving linear dielectrics) and naturally contain, as a special
case, the usual results of spontaneous emission in free space. As explicit examples we consider a two-lev-
el atom (also the multilevel atom) in presence of a plane dielectric interface and between two conducting
plates. Formulas for the shifts and widths are given and their asymptotic behavior for large and short
distances is discussed. The behavior when the atom is embedded inside the dielectric is diferent than
when the atom is outside the dielectric. The origin of coherence in the present model is discussed and
the coherence effects in this model are contrasted with those in Dicke's mode1. The results are also
compared with those obtained by the image method. Exact expressions for the operator radiation-re-
action fields are obtained in terms of the atomic polarization operators and response functions. Ap-
proximate results for such fields are also given. The far-zone behavior of the radiation fields is ob-
tained in terms of response functions and the polarization operators. Some of the normally ordered
correlation functions are also calculated. The connection of some of the theoretical results with a
recent experimental work of Carniglia, Mandel, and Drexhage is discussed. The effect of anisotropy of
the dielectric function on the lifetimes as well as on the far-field correlation functions is also considered.
Finally the contribution to the shifts and widths due to the excitation of surface polariton modes is
computed and the results are compared with those obtained by the quantization of surface polariton
field. It is found that such surface modes contribute significantly to widths.

I. INTRODUCTION

In part I of this series of papers' we discussed
how the linear response functions can be used to
study the electromagnetic field fluctuations. In

parts II and III ' ' we discussed several applications
of this formalism and a number of new effects
which arise as a result of the presence of dielectric
and conducting surfaces. %e also discussed how
the formalism of I can be generalized to discuss
electromagnetic fields which are not necessarily
in thermal equilibrium. In the present paper we
discuss how spontaneous emission can be treated
in this framework and discuss a number of new
coherence effects. '

Spontaneous emission has been the subject of a
great many investigations, recently, both theo-
retical and experimental. ' " In a recent article"
we discussed at length different concepts pertain-
ing to spontaneous emission and also different
theories which have been used to treat spontaneous
emission. In that treatment it was assumed that
atoms were emitting in free space. Here we dis-
cuss various aspects of spontaneous emission in
presence of interfaces.

The plan of the paper is as follows. In Sec. II
we obtain the master equation for the reduced den-
sity operator corresponding to the atomic system

and use it to obtain the lifetime and the shifts of
the atomic states, and the relation of these to the
surface-dependent response functions is discussed.
In Sec. III the shifts and widths are evaluated for
the case when the atom is emitting in the vicinity
of a plane dielectric interface. Various limiting
cases are examined. Next we study the change in
the lifetimes due to the presence of two conducting
mirrors. In Sec. V the radiation-reaction fields
are calculated. Both positive and negative fre-
quency parts of the field operator are obtained.
The far-zone behavior of the radiation fields is
discussed in Sec. VI, and the normally ordered
correlation functions of the field operators are
computed. The far-zone field is found to be essen-
tially the one which one would obtain from a clas-
sical analysis. " In Sec. VII we examine the origin
of the coherence effects in the present problem and
contrast the present effect to that of Dicke's su-
perradiance. " %e comment on the method of
images used by some authors"'" in the treatment
of spontaneous emission and point out some of the
inadequacies of that method (Sec. VIII}. In Sec. IX
we calculate the contributions to the shifts and
widths due to the excitation of the surface polariton
modes. The paper is concluded with several ap-
pendices, wherein we discuss a number of disper-
sion characteristics of the anticommutators of the
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II. MASTER EQUATION FOR THE REDUCED DENSITY
OPERATOR OF THE ATOMIC SYSTEM AND THE

RELATIONS AMONG LIFETIMES, FREQUENCY SHIFTS,
AND RESPONSE FUNCTIONS

The lifetimes and the shifts of various states can
be easily obtained using the first-order perturba-
tion theory. We, however, follow a different route.
We will obtain the master equation for the reduced
density operator corresponding to the atomic sys-
tem. This will enable us to discuss both kinemat-
ical and dynamical aspects of spontaneous emis-
sion. Consider the interaction between two quan-
tum-mechanical systems S and A. We write the in-
teraction Hamiltonian as

H =Hs+Hz+Hgs ~

tt = p f Gt"'(r)dtt(r)d'r (2.1)

where II~ and H~ are the unperturbed Hamiltonians
of S and R, respectively, and G~] (G[s]) is a system
(reservoir R) operator. We will assume that the

field operators at different space-time points and
their evaluation. We also comment on the spon-
taneous emission from a harmonic oscillator in
the presence of an interface and the effects of the
anisotropy of the dielectric function on the shifts
and widths of the states. As in the previous papers
of this series, we will assume that nonlinear inter-
actions inside the dielectric are not important.

system A is large enough so that it can be treated
as a reservoir, i.e. , the unperturbed spectrum of
g is quasicontinuous. In our problem the radia-
tion field acts like a reservoir. We are specifi-
cally interested in the evolution of S due to inter-
action with R. We assume that the initial state of
the total system is such that (p standing for the
density operator)

p(t = 0}= p„(0}p~(0), (2.2)

and that p~(0) represents the thermal equilibrium
state of R, i.e. ,

(0) s- BHg/Tr(e BHR]f (2.3)

Let p~(f) be the reduced density operator for the
system S. It is obtained from the total density
operator by taking trace over the reservoir vari-
ables, i.e.,

p ,(f) = »,p(f) .

p(t) satisfies the usual Liouville equation:

= -i[H, p] -=-imp, 2-=[H, ] .Sp

(2.4)

(2.5)

We also assume that the initial state of the reser-
voir is such that

Tr„(p„(0)G's'(f)) = O, (2.8)

where G[s](t) is the operator G~~] in the interaction
picture. On using Eqs. (2.1)-(2.6) and the standard
procedure, "we find that p~(t) in the Born, Markov,
and long-time approximations satisfies

d'~, d'x, d7 G ry 7 Gg r„o G r„t, G& r„t -7. , p~ t

+ ([G "(r„r), G [] '(r„o)])[G '(r„ t), (G g (r„ t —7), p ~(t)j]], (2.7)

where p~(t) is the density operator in the interaction picture. The brackets (~ ~ ~ ) in (2.7) denote the
ensemble average with respect to p„(0), ie.

(G "(r„7)GBs (r„o))—= Tr~(pz(0)G "(r„7)G8 (r„o)j . (2.8)

Equation (2.7) can be expressed in terms of the response function X [](r„r„r)which is the linear response
of the reservoir variable G["](r,) to an external perturbation of the form

H,„,= —g Jl G[s](r, t)f„(r, t) d'~. (2.9)

The fluctuation correlation ((G[sI(r„7),G[8s (r„o)/) is related to ]t 8 via the fluctuation-dissipation theorem
We rewrite (2.7) as

f d'r, d'r f dt[S r(r„r„r)[t: (r„t r[G ()', t tt—rtt), p (t)]]

+X~(r„r~, r)[G[s](r„t), (G8 (r„ t —r), pz(t)}]), (2.10)

where according to the fluctuation-dissipation theorem (l 2.10), the Fourier transforms of S and X" are
related by
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S 8(r„r„(d))= coth(]8(d)/2))t" 8(r„r„(d).
From (2.10) it follows that the change in the system variable Q i.s given by

P f f d'r, d'r, f dv[s, s(r„r v)„([[G, G,v*v(r„t)], Gvsv(r„s —v)])
a8 0

+x".8(r„r2, T) (f[Q, G'"('1 t)l G'8"('2 '- T»)]

(2.11)

(2.12)

H = —QP (t)E (b, t), (2.13a)

where P„(t) stands for the atomic polarization and

Equations (2.10)-(2.12) are valid generally. We
now specialize to the problem of the atomic or
molecular system interacting with the radiation
fields. We consider only the dipole transitions.
The method, of course, is also applicable to mag-
netic dipole as well as to higher multipole transi-
tions. The interaction Hamiltonian in the dipole
approximation has the form"

b denotes the position of the atom. For the two-
level atom case we will write

P„(t)=d„(S'e' '+H. c.) =d P,
and for the multilevel case

u, (t) =- g d."Ii)«I,

(2.13b)

(2.13c)

where the d" are the dipole moment matrix ele-
ments. In (2.13b) the S' are the spin-angular-
momentum operators corresponding to spin- —,'. On
substituting (2.13b) in (2.10), we obtain

d ds f dv[()':s(b, b, v) [(v (S), [(v (V —v); )v (V) ]] ' X".s (b, b, v) [S(S), [S() - v), Sv (S )i I ] ,
Cf 8

(2.14)

where we have introduced the following notation
in this series of papers:

On using (I 2.20) we can write (2.18) in terms of
the response function as

$~(r„r„v)=-,'(fE„(r„T),E8(r„0)j),
X" 8(r„r„r)=-,'([E (r„~),E[](r„0)]).

(2.15) y(5, ~) = g d d 8 coth(Ptu/2) Im)t []]]E(b,b, ~) .
(2.20)

Using (2.12) and (2.13), we obtain a similar equa-
tion for (Q). It is clear from (2.12) and (2.13) that
(S ) obeys the equation

dS
+[i((u+Q) +y](S ) =0, (2.16)

y(b, ~) = g d d8$[eI](b, b, cu),
Cf8

(2.18)

where in deriving (2.16) we made the rotating-wave
approximation; i.e. , we ignored the rapidly oscil-
lating terms. y and 0 are defined by

r(b, ve) ~ in(6, +)=2 Ld ds f dv e' 'Svvs(b„, b, v),
(2.17)

and cu is the energy separation between two levels
of the atom. We have discussed the dispersion
characteristics of the one-sided Fourier trans-
form, like the one appearing in (2.17), in Appen-
dix A. From Eqs. (A7) and (A9) it follows that

It is clear from (2.16) that 0 represents the effec-
tive shift in the energy separation of the two lev-
els. We mill refer to 0 as the frequency shift of
the tm'o-level atom. Moreover y represents the
width of the excited state: It is the inverse of the
lifetime of the excited state. It is interesting that

y is determined in terms of the symmetrized cor-
relation function 8,, rather than the normally or-
dered or antinormally ordered correlation function
as was the case with the transition probabilities
[cf. Eqs. (III 3.17) and (III 3.18)]. It should be noted
that y, in general, is temperature dependent (field
dependent). We have thus been able to express the
shifts and widths in terms of the appropriate re-
sponse functions. The energy shift of the ground
and excited states can also be expressed in terms
of the response function. We have shown in II [Eq.
(3.12)] that the energy shifts 5E' and 5E of the
excited and ground states are related by (restrict-
ing ourselves to the zero temperature cas-e)

G(b, &)= ——& f d, r(b, ,)fi&, —&) '
0

—(~, +(d) '].
(2.19)

6E' = — 5E +Be d dax p, b, (d

and that by definition we have

(2.21)
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(2.22)

6F ' = Tp 0 b, (d + Be d~dgx~IcI~ b) b, (d

(2.23)

On substituting (2.19), (AS) in (2.23),

(2.24)

which is equal to —, the usual Einstein A coefficient.
On substituting (2.28) into (2.19) and (2.24), we will
obtain various energy-shift terms which are to be
renormalized. Moreover on combining (2.27) and

(2.14) we will obtain the usual master equation
[cf. (6.75) of Ref. 17].

HI, V(IDTHS AND SHIFTS OF THE ATOMIC LEVELS IN THE
PRESENCE OF A DIELECTRIC INTERFACE

imXae~(5~ b~ ~0) ~ (2.25)

= ——g d'„'d'8'[ReX„0»(b, b„co„)
fx8l

+ImQ 8~s(5, b, ~„.)J, (2.26)

where Eqs. (AS) and (All) have been used. In

(2.25), d'„'is the jl element of the dipole moment
operator. The result (2.25) can be obtained from
the master equation (2.14) by using the same pro-
cedure which led to Eq. (15.8d) of Ref. 17.

Having expressed all the dampings and shifts
in terms of the response functions, we now pro-
ceed to study the effect of the dielectric and con-
ducting surfaces on lifetimes, energy shifts, etc.
Before we do that, we demonstrate how (2.14)-
(2.26) lead to the usual results for the case of an
atom emitting in the entire free space. " For sim-
plicity we consider only the case of zero tempera-
ture. gq~~@ 18 Qow ldentlcal to the translatlonally
invariant response computed in Sec. IV of I [cf.
(I 4.7)]

2 82 t(~/c)lr -r
I

c '~ 8& 8&. lr —1'
(2.27)

The case of a multilevel atom can be treated simi-
larly. For a multilevel atom whose spectrum is
Qondegenerate and unequ1dkstant one finds that the
Lamb shift of the jth level is given by (restricting
ourselves to zero temperatures)

m, . = ——Q P J d~, (w, w„) 'd"dl~'
r~x8

(3.1)

y, (5, u) =
I
d

I

' Imx „» (b, b, e) . (3.2)

The translationally invariant part y" of the re-
sponse function would lead to the usual value y".
e denote by y~'~ the surface-dependent contribu-
tion

(3.3)

We now use the general formalism of Sec. II to
obtain the lifetime of an atom, assumed to be a
two-level atom, and the frequency shift in pre-
sence of a dielectric characterized by the dielec-
tric function ~,(~). For the sake of simplicity we
assume the following geometrical arrangement.
The dielectric occupies the semi-infinite domain
-~ ~z ~0 and the atom is located in vacuum at the
point b with 6„=b, = 0, b, = b. The shifts and widths
depend on whether the dipole transition is parallel
to the interface or perpendicular to the interface.
Parious physical entities will carry the subscript

II or i depending on the orientation of the dipole
moment. Moreover we assume, in the parallel
case, that the dipole moment is randomly oriented
in the x-y plane, and hence we will also carry out
an averaging over its orientation. We will through-
out this section be restricted to the ease of zero
temperature. From Eq. (2.20) we obtain

Assuming that the orientation of the dipole moment
is random, we obtain from (2.20) and (2.27)

(,) IdI' s(u', sin((u/c) Ir —r'I

&",
,
'(b, ~) = —,

'
Id I'Im Q x',.',.'s, (b, b, ~),

y~,"(b, ro) =
I
d I

' 1m X~,'~» (b, b, &u) .

(3.4)

(3.5)

2 IdI'(u'
3 C

(2.28)
The response functions needed to evaluate (3.4) and
(3.5) are given by (II 3.3), (II 3.4), viz.

X,.
'.ss(r, r', u&) = —— X,(u, v, u&) exp[iu(x —x') + iv(y —y') +im(z +z ')],

~2 $2~ p2 M)2 y2~ y2 Q2 M2 +~2
It~ k, = (u/c, (3 6)
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with square roots defined so that Imw~ 0, Iree, ~ 0
and with

X„(u, v, ~) = X..(v, u, ~)

f00 W EC 2% E

y'(b (v) =-',y' Re (((' —2)e'"*
II

0 V

oo 3
y(i)(6 ~) sy(o) Re

K K ei((»
(} p,

(3.11)

(3.12)

QV 2zoE'

X»(u, v, (()) = X»(u, v, &u) = ——1—
Note that when K +1, then p, is pure imaginary and
hence

QW ZU E'0 $006
X&o(u& v, o)) = -X3&(u& v, o)) =—,(3,7)

y"„)(b, (d) = —,y(') (((' —2) cos }),x,
0

(3.13)

VK KC0 —%06
X»(u v o)}=-X»(u v &o) =

k(( u&eo -u)oe2

X»» u, v, R)= ——
CP)+ f280

' K3dK
y("(6, (v) = -',y(' cos}(,x,

0

which on evaluation leads to

(3.14)

We have actually modified the response functions"
given by (II 3.3) by assuming that the region 0 ~z
& ~ is occupied by a dielectric characterized by
dielectric function e((»)). We will need these modi-
fied response functions at the end of this section.

On combining (3.4), (3.5), (3.6), and (3.7) with
e =1, and after making trivial change in variable
of integration, we find that

y"(b te) = -'y'&((e f " e'e*
0

x K — —2(p —}),o) (eo —1)2p, K 2 1

E0P +PO

(3 8)
oo 3

yh)(b ~)»y(o) R
(( (( e(((» &~o })o (3 9)

P. Q. E0+ P, 0

where

}), =1 —K
&

}),o
= E o((

&
x = (2()/c)&f) ~ (3.10)

Equations (3.8) and (3.9) are our final expressions
for the damping coefficients. Surface-dependent
shifts can be obtained by substituting (3.8) and (3.9)
into (2.19). We next discuss a number of special
cases.

We first consider the case when the atom is
emitting spontaneously in the vicinity of a perfect-
ly conducting surface. On taking the formal limit
of infinite conductivity, (3.8) and (3.9) reduce to

y, ((b, (»)) = -~2 ———, sinx+(y) ~ 3 (0) 1 1 ~ cosx
(3.15)

sinx cosx
(I J (3.16)

There exists a close relationship between the sur-
face-dependent damping coefficients for the case of
a conductor and the free-space response functions.
We have, in Appendix B, presented explicit ex-
pression for X',.", and y',.", as well as the one-sided
Fourier transform of $,.~(r, r', t —t'). From Eqs.
(3.15), (3.16), and (B2), we find that

y t('(» (d) =-2 ldl'Im Q x"'zs(» -6 o)) (3 17)
k=1

y(i"(6 (d) =&ldl'ImX(;,),s (6, -6, o)). (3.18)

Note that b and -b are mirror images of each other
since b„=b, =0. Equations (3.17}and (3.18} show

that y~') is essentially determined from the free-
space electromagnetic-field fluctuations at the
points b and -b. For very small distances x «1,

(»-y«»( 1+jx2) y(&)-y«)(1 (x») (3 19)

The frequency shifts can be obtained by substituting
(3.15) and (3.16) into (2.19) and calculating the re-
sulting integrals. We can also use the results of
Appendix B in view of the relationships (3.17) and

(3.18). We find from (B10) and (B11) the following
results for the frequency shifts:

0'~'~ (b, (v) = (3y ' /)() [1/x'+ (sinx Cix —cosx Six) (1/x' —1/x) —(1/x')(cosx Cix + sinx Six)],

&~ (6, o)) = (6y')/)() [(1/x')(sinx Cix —cosx Six) —(1/x')(cosx Cix+sinx Six)].

(3.20)

(3.21)

For the harmonic-oscillator model (discussed in
Appendix C) the frequency shifts can be obtained by
using (C5) and the response function (3.6). For the
case of a perfect conductor such shifts can be eval-

uated in closed form and can also be related to the
free-space response functions by using (3.17) and

(3.18). The results of such a calculation are
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Q
))

' (b, &u) = -—,
'

I
d

I

' Re g z;»(b, b, (L))

=-', Idl' Re g X(,.',.'»(b, -b, ~)

-3y"' sinx coex cosx
2 x2 + x3

—
x

Q', '"'(b, &u) = —
I
dI' Rex",,'» (b, b, (u)

= —IdI' Rex~,",» (b, -b, (d)

sinx cosx
+x' x (3.23)

tained by substituting (3.20)-(3.23) into (2.24).
We next consider the case when the frequency co

happens to coincide with the frequency of one of
the elementary excitations of the dielectric. These
excitations are of three types": (i) longitudinal,
(ii) transverse, and (iii) surface excitations. In

such cases it is easy to obtain the expressions for
the damping coefficients. The expressions for the
shifts are more involved, as one has to put in the
dispersion of the dielectric function. We will also
ignore the damping. When v=()), (one of the trans-
verse excitations) then the damping coefficients are
given by (3.17) and (3.18). When e =&a, [longitudi-
nal frequency e(v, ) =0], then (3.8) and (3.9) lead to

The close relation, as exhibited by (3.22) and

(3.23), between the shifts for the oscillator model
and the first-order dispersion forces between two
atoms in free space should also be noted. For
short distances (3.20)-(3.23) reduce to yh)(b ~ )

&y(o) R
K dK e'"", (3.32)

y",
,
'(b, ~,)= ',r"Re I -e'"*(Sp.' —) —2)v~),

0

(3.31)

Q(~~~(b, ())) —(By('~/)() [-lnx+ const + O(x)],

6 (0)
Q"'(b, (d)— (3.24)

which on simplification reduce to

y ', (b, &d, ) = —,')(' [J,(x) + Z,"(x)]

f(x) = -', 7(cosx+ (Cix sinx —cosx Six),

g(x) = —,'7(sinx —(Cixcosx+sinx Six),

we ca.n rewrite (3.20) and (3.21) a.s

(3.26)

3 «)-1
Q("(b, (u) = Q ' (b, ())) + —,+ —,——f + —,

(3.27)

Q' "(6, (u) —-3 "/2x' Q '(b (u)- -3 '/x'

(3.25)

which show how different the behaviors of 0' and
0( ' " are at short distances. On introducing'aux-
iliary functions, defined by"

3 (p) COSX 1 3+-,y' 3 + ———sinx, (3.33)

(y)i i n (p) slnx cosx
)) 0 3 2 (3.34)

It is interesting to note that y(,' (b, (d, ) = -y~~ (b, v, ).
For short distances one has

y'"(b ~ ) o y"'(» ) -y"'(1 —-'x') (3.35)

When &)) = (d& [the surface plasmon frequency given
by c(&))z) = —1; such surface modes exist only in di-
electrics which are finite in extent], we find that
(3.8) and (3.9) lead to

1

y(I)(b & )
— 3y(D) d [(1 +2)2

6y(0)
))'(b, w)=)) ~'(b, (u)+ —,+ —,),

and since for large distances"

1 2t 4tf(x)-- 1 ——;+—,'

x x' x'

(3.28) —p. (1+p, ')(2 —y. ')'~'sing, x],
(3.36)

1

y~ (b, (d ) = --,'y' dp. [(1 —g')'cos p, x
0

g(x) - —1 ——'+ —'
~

x' x' x4 (3.29) + p (1 —p')(2 —p')' 'sinpx].
(3.37)

(3.30)

The surface-dependent contribution to the Lamb
shift of the excited and ground states can be ob-

hence it is clear from (3.27) and (3.28) that the
large-distance behavior of 0 is dominated by the
terms 0 (' and 0 ' i.e. ,

Q
)) (b, ~)-Qi) '(b, &u) +12y'/~x',

Q "(b, ~) -Q~'" (6 ~) +12y'"/7(x'.
(3.38)

In the general case, Eqs. (3.8) and (3.9) have to
be integrated numerically. We defer all the nu-
merical work to a later paper in this series. A

It does not seem possible to do these integrals in
closed form. To have some idea of the behavior
of y('~(b, &u~), we quote the limiting values for x-0

y), (b, ~,)- ,y, y (b, -~-,)---,y(x) 2 (0) (X) 4 (0)
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few numerical curves are presented in our earlier
communication. 4

We have so far considered the case when the
atom was outside the dielectric. One could ask
what happens if the atom mere embedded inside the
dielectric. This ease is also covered by our for-
malism. We assume the following geometrical ar-
rangement: The atom is located at r =b inside the
dielectric e(&u) which occupies the domain 0&x& ~
and the region -~ & z &0 is the free space (vacu-
um). The translationally invariant response is
now

e~uI r -r'~

The surface-dependent contribution is given by
(3.7) with e„=1. We consider a special case when
cu=~s [e(~s) =-1], then from (3.1)-(3.7) we have

and (—ld»f8 I -) were identical and hence the I/O'
term did not appear in O'. This is in accordance
mith mhat is well known: that the frequency shifts
associated with a multilevel atom show a very
different behavior from those for the tmo-level
atom. "'" For large distances it is clear from
(3.30), (3.22), (3.23), and (2.23) that 5E!!-I/x4,
whereas M'(' will have the same asymptotic be-
havior as 0! which is different from a 1/x' be-
havior. Similarly, the large-distance behavior
of the surface-dependent energy shifts of a multi-
level atom will be dominated by that of
X», zz(b» b» ~).

It is easily shown from (2.10) (cf. derivation in
Ref. 17) that the diagonal matrix elements of p
satisfy a Pauli-type equation,

(3.44)

7~(b (ug) = —l»fl ko(I ——x+'-'x /2! )

ko exp( —
» x) . (3.41)

y „(b, co~) shows a similar behavior. "
We now make a few remarks concerning the en-

ergy shifts and lifetimes associated with the states
of a multilevel atom. We have seen [Eq. (3.24)]
that in presence of a conductor 0"I, has a logarith-
mic behavior (Q!,' -1/x') in contrast to 0 '"~ which
has a 1/x' behavior for small distances. The en-
ergy shift of each level will have a 1/x' behavior
as is obvious from (2.23), (3.24), and (3.25). The
energy shifts for a multilevel atom will also have
the 1/x' behavior as is clear from (2.26). The
leading term in {2.26) can be written as (consider-
ing only the surface-dependent part)

(3.42)

and hence

»f/&(I —g2)~ 2 exp[ x(1 + g2)~» 2]

(3.40)

If we compare (3.40) with (3.37), we find that when
the atom is embedded inside the dielectric then y
is a decaying function of x (no oscillatory depen-
dence) in contrast to the case when the atom is out-
side whence the dependence is also damped but os-
cillatory. For short distances, {3.40) reduces to

(3.45)

y»b, = g d'„d'8"*X '~'z~(b, b, e,.»),
0;8

(3.46)

and where allomed transitions correspond to ~,-„
)0, d, »&0. It is clear from (3.46) and from our
explicit calculations for a two-level atom that the
lifetimes of different states of a multilevel atom
undergo different types of changes. For instance
it may happen that the lifetime of one particular
state goes up whereas that of another state goes
down. Relative changes depend on the relative
orientations of the dipole-moment matrix elements
connecting different states.

So far we have considered a dielectric medium
which is nonmagnetic. We can similarly consider
spontaneous emission in presence of a magnetic
body, characterized by the permeability p, . We
treat only the case of nonelectric bodies, c =1,
as me can use the response functions already com-
puted in paper l. This folloms from the duality of
Maxwell equations {in the absence of surface
charges and surface currents), i.e., Maxwell's
equations are invariant under the tr3nsformations
E = H, P = M, e ~ p, , k0 = -k0. Hence the response
funet. ion y,-,.z~ for a magnetic medium is identical
to X„»for a dielectric medium if we make the
replacements e- p, , k0--k0. We now have, in
place of (I 5.43), (I 5.44), the equations

(3.43)

showing that the frequency shift between ith and
jth levels in general shows a 1/5' behavior. For
the two-level model the matrix elements (+Id d~l+)

[~ III -~o(kll Pll)]
0 0

(3.47)

(3.48)
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1U2 = (d&/c& —k2 bv2 = ((p2/c&) p, —k2 (3.49) (3.50) and (3.51) are modified to

for the geometrical arrangement: the magnetic
body occupies 0 ~z (~, the atom is located at r
= (0, 0, -b) in vacuum (the region -~ (z (0). The
surface-dependent contributions to the damping
coefficient of a two-level atom are obtained on
combining (3.47)-(3.49), (3.4), and (3.5), the re-
sults being

y(l) & (o) PyJ 2y

K dK 1 Q —i X', (X —X e))
A. o A.oj + A. X+A.,C

K dK A, —~0~ i&

Ao A, +X0E

(3.54)

(|) 3 (p) K dK Xp l) )imp(A A p)
y II 4y

0 0 0 0

3 A
(l) 3 (o) d ~ o

A. A. A.0 0 0

(3.50)

(3.51)

Finally, spontaneous emission in presence of an
anisotropic dielectric body is discussed in Appen-
dix D.

IV. LIFETIME OF A TWO -LEVEL ATOM IN PRESENCE
OF TWO CONDUCTING MIRRORS

where

)(.', =I —((', )(.'= p. —a', &= (2(p/c)b. (3.52)

(l) (0) sinx cosx
yJ y

(3.53)

On comparison with (3.15) and (3.16), we find that
the change for the case of a magnetic conductor
is opposite in sign to that for an electric conduct-
or. This was, of course, expected since the
boundary conditions at the interface a=0 are now

very different. When e &1, it is easily shown that

These expressions compare very well with (3.8)
and (3.9) for the case of a nonmagnetic dielectric
medium. For the case of a magnetic conductor
(3.50) and (3.51) reduce to

(l) 3 (0)" 1 1 ~ cosx
y = ~ ———slnx+

x x' x'

As another problem in spontaneous emission in
presence of surfaces we consider the change in
the lifetime of a two-level atom placed between two
perfectly conducting mirrors. We will see how
Fabry-Perot modes contribute to the lifetimes.
We assume that the conductors (with plane sur-
faces) are placed at z = —d and z =0 and the atom
is located at r=5 (b„=b, =0, b, =b) in the space
between the two conductors, which is assumed to
be free space (vacuum). We again consider the two
cases separately, namely, the dipole transition is
(i) parallel to the interface, and (ii) perpendicular
to z axis. We again assume, as before, that in the
first case the orientation of the dipole moment in
x-y plane is random. The damping coefficients
would be given by (3.4) and (3.5). The response
functions which appear in (3.4) and (3.5) can be ob-
tained from Eqs. (I 5.33)-(I 5.37) and Eqs.
(III 2.10)-(III 2.14):

X"' (b»)=—~2 dQ ck lk 2(2 +e2l pb +iie 2 biio2piwpd)
egEE 0 II

0
(4.1)

(a) (b b (i))
Z dQ d'U

D '(k'+bp') (e"ap'+ e "ap' "ap' —2)iiEE 0 0 0
i=1 0

(4.2)

with

D (1 e 2iMlp
) (4.3)

We have already discussed in paper III [following
Eq. (III 2.17)] the sense in which integrals of the

I

type (4.1) and (4.2) are to be interpreted. In the
limit of both conductors receding to infinity, (4.1)
and (4.2) should vanish. On combining (3.5) and
(4.1) and making a change of the integration vari-
able, we obtain for y(d'(b, &u)

&(i)(b &) &&(P) It ~b)(1 e-2i adbp)-i (2 + ebiabbp+ e-biabp(b+ )
) (4.4)

= 2y' de 1 —n' 1+cos2buk, eai"""0~—y('),
0 OQ

which on using Poisson's summation formula" leads to

(4.5)
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where N is the largest integer less than dko/w.

Similarly, on combining (3.4) and (4.2) we find that

e~(b )
' N~Re f re((+e')0 e " ") '(e" ' +e "" '* —2).r

0
(4.7)

01 7r 7m=-'y(')
i( du(1+u ) sin2(buk, ) ~ 6 u ——-yo,~ k0d dk0

(4.8)

and hence

y (b (1)) y
(0) + y(1)(5 (0 )

(4.9)

results obtained in Sec. IIL One has for example
from (4.9) in the limit d- ~

1

y, ((b, (1)) = 2y(') du (1 + u') sin'(b uk, )
0

If the orientation of the dipole moment were com-
pletely random, then

1
= y"'- —.'y"' du (1 + u') cos(~),

0

y"'(b, 0)) =~2ldl21m Q x;;~~(b, b, ~)

= -'y ' (b u&) + -'y ' (b 0&) (4.10)

x =2bk, , (4.12)

which is identical to (3.13). For b-0 (or -d),
yii-0, and

Hence on combining (4.6), (4.9), and (4.10) we
have

() 7r () 7r n 257m
y(b, (0) =2k d

y'+k d
y' g 1 —d,k, cos

d0 0 1 0

yi(t), 0))

7r2

y )+ y N 1 —,(N+1)(2N+1)) .
0 0 0

(4.13)

(4.11)

Equations (4.6}, (4.9), and (4.11) are our final
expressions for the damping coefficients" (inverse
of the lifetimes) for the case of a two-level atom
placed between two mirrors. It is easily verified
that in the limit d-~, (4.6) and (4.9) reduce to the

Equation (4.13) shows that for kod-)(, y~- 2y(0,
whereas for k0d» 7r, y~

- 2y
To obtain the damping coefficients for the case

of a magnetic conductor, we use the duality of
Maxwell's equations and Eqs. (I 5.38}-(I5.41).
We now have for the electric-field response func-
tions the relations

' D. '([k((&.-. (k(( p(()le '""' '"-[k((&.+. (K(( p(()le '"'")=~.h"
0

(4.14)

(K(( &'))') = -2('OC'= ' Do'1[k((&~ -2()0(K(('P((}l & "' "—[k((P~+0(K(('P(()l' '"' ")
0

2
2

(K x (()(-)) 0 D r(K xp )(e
—iKo ' ro+(y —'Ko ro 2(N)0~)

0

(4.15)

(4.16)

2

(K X he(+)) — 0 D-1(K Xp )(e iK0 ro+ 8 iK0 '
ro)

0
(4.17)

and hence

(b b (e)) =— — — k 2 (2 e+2(~ob e»N)ob 2()bo)r)
~E dw dV

zzEE & & 27r ~ D II

0 0

2
(1) (b b ~) — (k2 2) (2 + e2(N)ob + e 2(N)ob-2(N)od)

XiiEE r ~ g+ 3 0 0
i = 1 0 0

(4.18)

(4.19)

On simplifying (4.18) and (4.19), we obtain for the damping coefficients

37r ( ) 37r ( ) ~ 7r n 2 /7m:li =4k d y 2k d y M 1+k,d, cos'
d0 0 1 0

(4.20)
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(4.21)

For b-0 (-d), we have, from (4.20) and (4.21),
y~-0 and

3& (,) 3& (,) i('(N+1)(2N +1)
4k d 2kpd 6A'd'

(4.22)

free fields or some combination of the two. " We
have elsewhere" discussed the interrelations be-
tween free fields and the radiation-reaction fields.
In the present section we discuss the form of such
fields when the atom is emitting in presence of
dielectrics.

The positive and the negative frequency parts of
the electric field operator E are, in the Heisen-
berg picture, given by

E '(r, t) = exp(i St)E'(r, 0), (5.1)

V. RADIATION REACTION FIELDS

A very interesting concept in connection with
spontaneous emission is that of radiation-reac-
tion fields which have a c-number nature' or an
operator nature" "depending on the theory under
consideration. It is the field seen by the atom.
Such fields have a long history and have been com-
puted by a numbe r of authors' " "for the case of
an atom emitting spontaneously in free space (i.e. ,
in the absence of dielectrics and conductors). The
spontaneous emission has been considered to be
totally due to the radiation-reaction fields or the

where the Liouville operator Z is given by

Z=[H, ]=[H„]—Q [p E„(6,0), ] (5.2)

= Zp+ 2, .

t
cist eieQi y dyeing~(ig )eigQ(t-T)

1
0

we obtain

(5 4)

(5.3)

%e have assumed that the atom is located at b and
have denoted by p the atomic polarization. Or
using the identity"

E(8+&(r, t) =E(+8~(r, t) —i+ d~e'«[p„(0)z, „(6,0), z(', ~(r, t —~)], (5 5)

where we have replaced E(b, o) by E,(b, 0) as the
two are identical in the SchrMinger picture. In
(5.5), E, is the "free-field operator, " i.e., the
electric field operator evolving according to the
unpe rturbed Hamiltonian

E,"(r, t ) = e' o'E ("(r,0) . (5.6)

We note that p„(0) commutes with E,(r, t ) and
hence can be taken outside the commutator. More-
over the commutator [E,(b,o), Eo('~(r, t )] is a c
number and is related to the response function in
the following manner [cf. (IlI 5.15)]

[E,', (R, t ), E,i(r, r)]e' ' '~ d(t —r)
= 2l(,", (eRs, r, (0)q((o), (5.7)

and hence

[Eo(,+ ~(R, t —7'), E„(r,0)]

p CO

d(d)(,"ice(R, r, (o)e ' (' 'l. (5.8)
w 0

In view of the above remarks, e' ' in (5.5) acts only
on p„(0) giving rise to p„(v) (atomic polarization
in the Heisenberg picture) and hence

( t
Z',+ ~(r, t ) =E(;~(r, t )- i, dT gp„(~)[z~(6,0), Z(", (r, t —7)] . (5.9)

Finally on combining (5.8) and (5.9) we have

i oo

E((i~(r, t) =E(;(I(r, t)+ — dT gP„(T) d&uXe'~ee(r, b, v)e ' (' '~.
0 a

(5.10)

From (5.10) it follows that the field at the position
of the atom is given by

(5.11)E'8 '(b, t) = E~'~i(6, t) +E(„'i 8(6, t),
where E« is the radiation-reaction field operator
defined by

t
E~~~~ 8(b, t) = —Q d7 p (t —v)

a

x '8„ee(6, b, &u)e
' 'd(d.

0
(5.12)

In view of the fact that the response function is
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usually a sum of two contributions: the transla-
tionally invariant part and the surface-dependent
part, we would have

where E~~ &
is the usual free-space contribution

whose value can be found from Refs. 33-35. The
surface-dependent part is given by

~
t t

0
d7 QI) (t —T)t(X8' se(6, b, r)

+@8 (b, b, v)j.
(5.17)

state-dependent contribution. A simple argument
also enables us to rewrite (5.14) as

iEg', (6, t) = -' d~ g p„(t —~)
0 a

x
0

The total radiation-reaction field will be

i
~'48(6 t}=—, d&QP (t —&)

0 a

(5.14)

The exact expressions are quite involved, and
as usual we assume that the interaction is weak
and that the retardation effects can be ignored;
then (5.17) leads to a manageable expression. For
the case of a two-level atom [t) (t) = d (S'e'
+H.c.)], (5.17) reduces to

F(') (+) (b t) = -|(Q ' + Q (~
) S

(Q —Q 1)S+—i 1 S( )

b, b, ~e ' '
0

—)((8'),",(6, 6, ~)e'"],
which on using the symmetry property (A1) re-
duces to

and (5.16) leads to

I Z~" (b, t) = iy")(S —S') —-Q(-"»(S'+S-)

(5.18)

(5.19)

d')R 8(b, t) = — dT Q p „(t—7')
v

x d X(~)lt b (5.15)

where Q( ) is defined by (C1), Q by (2.19) and y
by (2.18), with T =0 (P= ~). The usual QED results
can be obtained by using (5.18). The neoclassical
results'" for the case of atom emitting in pre-
sence of a dielectric can be obtained by using

(d . E(» (b t)) ty(»(S S+) Q(-)(1)(S+ +S-)
=2i d7 p~ t —7 yg'~'~~ b, b, v .

0 C

(5.16) as the reaction field.

(5.20)

The expressions (5.14)-(5.16) are exact, i.e.,
no approximation has been made as to the strength
of the interaction. We have expressed radiation-
reaction fields as a, linear functional of the atomic
polarization. All the above results are valid for
any geometrical arrangement —all one has to do is
to feed in the right response function. It is clear
from (5.16}that the expression for the total radia-
tion-reaction field is relatively simple. It should
be noted that the radiation-reaction fields arein-
dePendent of the initial state of the radiation field
because these are determined in terms of X" which
for the radiation problem does not depend on the
state of the field. The free-field terms lead to the

VI. FAR-ZONE BEHAVIOR OF THE RADIATION FIELDS

In this section we discuss how the fields behave
in the far zone and calculate some of the normally
ordered correlation functions of the field opera-
tors, as these are the entities measured by a
photodetector placed in the far zone. We have a,l-
ready obtained in Sec. V an exact expression, Eq.
(5.10), for the positive-frequency part of the field
operator at any point. We now specialize to the
case of a. two-level atom, ignore the reta, rda, tion
effects, make the Born approximation, and take
the long-time limit. Then (5.10} reduces to

E(8)(r, t)-E(;8)(r, t)+i g d X8' »(r, b, (d)S +—g d du&, )((')' ee(r, 6, &u,)[((d, +u&) 'S'+((d, —&u) 'S ],
0

(6.1)
which on using the relation (AS) can be written as

E(8)(r, t) =E(o'8)(r, t)+ g d )(B„ee(r,6, u)S +(S' —S ) —g d du, X8' »(r, b, (d,)(&u, +u&) '.
7T 0

(6.2)
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Next we use a relation which can be proved by using an analysis similar to that which led to (II 1.3):
ao

d (v, Xs' »(r, b, (v,)((v, +(d)) '=(v dxXs„»(r, b, ix)(x'+(v') ',
Jo 0

(6.3)

to express (6.2) as

stx'(r, t)=st'x(r, t)++d rx„(r, b, tx)s +(s' —s )Q d f d r xt(r, )t, tx)(x'xtx')
CX n

(6 4)

The structure of the last term in (6.4) is similar
to what one encounters in the theory of dispersion
forces [cf. Eq. (II 3.5)], and it is known from the
work of Casimir and Polder" that this term will
make negligible contribution in the far zone. Hence
in the far zone (6.4) can be approximated by

E(s ~(r, t) - E(0'z~(r, t) + g d X s ss(r, b, &u) S

I

angular spectrum (3.6) (assume @ =1)

(1) —2 W GV
X;,»(r, b, (v) =2 X(d(us v) (&)

x exgiux +i v y + iu) (s + b )},

(6.5)
z)0. (6.10)

where X denotes the asymptotic value of X. A sim-
ilar formula holds for the magnetic-field opera-
tor:

The asymptotic expansion of the angular spectrum
is well known. " We keep b fixed and let x go to
infinity in a fixed direction. Then

H(&+l(r, t) -H,'s)(r, t) + g d
X s„»(r, b, (t)) S

(6.6)

XI »(»br (t))
e iso(y +b cos 0)

x X, , (k, sin 8cos(p, k, sin 8 sing, u&),
where X«» denotes the response of the variable
B8 to an applied polarization.

For the case of emission in free space, we have
as is seen from (2.27) that the asymptotic expan-
sion of X ', for fixed b, is given by

ei((u/cXr-b @os 8)
Xs'»(r, b, ~) = —,(5 s ~sr„)-'

(6.7)

where r is the unit vector in the direction r. On

substituting (6.7) in (6.5), we find that (letting 5 =0)

(d ei(~la) r
E~s l(r, t) E(0'sl(r, t) +—-2 [d s —rs(c( ~ r)] S

(6.8)

(6.11)
where y, 0 are the polar coordinates associated
with the vector r. It is clear from (6.7) and (6.11)
that the power radiated in the far zone will show
an interference pattern with respect to the distance
of the atom from the interface.

In a recent experiment" the fields were mea-
sured in the left half-space. So we need to calcu-
late X

' for z(0. This calculation is done using
E(ls. (I 5.4), (I 5.9), and (I 5.42)-(I 5.44), and we
quote the result:

2 "f duc&3-
r, b, ~)= 2,' — X,.J (27 g

which is the standard result obtained in Ref. 17 by
a different method. In that reference E6) as de-
fined by (6.4) was also evaluated and found to be"

d E' =d ~ E(0' +i(y, , +iQ, ,)S

+[(S' —S )/s]d ~ rr xvx [(d/ref(k, r)],
where

x exp(iux + ivy —iu)p+i u) t)),

(6.12)

(6.9)

where f is the auxiliary function defined by (3.26)
and y,„Q,, are defined by (8.2) with r, , replaced
by r Again sin.ce in the far zone f -1/x [E(I.
(3.29)], the last term does not contribute and (6.9)
reduces to (6.8).

For the dielectric problem (Sec. III) the re
sponse function has been expressed in the form of

X. »& (u, v, ~) = X „&(v, u, (v)

y2 ~2
= 2'w

20+SO 6 ZU + ZU 6

X „&(u, v, ~) = X „&(v, u, ~) =
6 Zg+n) 6
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2Qz6~
X „&(u, v, ~) = X „&(v, u, ~) =

ZU + %06

or decaying depending on whether 0& 0, or 8& 0,
where 0, is the critical angle defined by

s in'8, = 1/c, . (6.15)
= ~' X„&(u,v, ~)= ' X„&(v,u, ~),

2kll K
X 33& ( p 1 )

0 0
(6.18)

The asymptotic expansion of (6.12) will be (@&0)

exp[i kr+ik, b(1 —e, sin'8)'~']
Xt J»

k' =k', eo, cos8 =a/r (6.14)

where we have now assumed that &0 is real and put
e =1. The last exponential in (6.14) is oscillatory

On combining (6.5) and (6.14) we find that the posi-
tive-frequency part of the electric-field operator
in the far zone (z &0) is given by

kx ky 1

xexp[ikr+ik, b(1 —e, sin'8)'~'] .
(6.16)

We now discuss the connection with the classical
calculations of Carniglia, Mandel, and Drexhage. "
In that work a polarizer was placed so that only the
p component of the field was detected, and it was
assumed that r lies in the x-z plane so that v =0
(y =0). Moreover since the vector d itself lies in
x-y plane, Eqs. (6.13) and (6.16) lead to

~f Itr 2K k2pE ' -E ' +S d, exp[ik b(1 —e sin'8)' ']
0

Hence the normally ordered correlation function will be given by

d~' K(E, '(r, t)E,' (r, 0)) = 2,' (S'(t)S (0))(4k', ) ', (8&8, )
0

(6.1V)

1 0(S'(t)S (0))(4ko) ' exp[ —2bk, (e,sin'8 —1)'~'], (8& 8,).
0

(6.18)

The free-field terms do not contribute to (6.18)
as the field is initially, in vacuum state. We have
also carried out an averaging over the orientation
of the dipole moment. The atomic correlation
function can be obtained from (2.10}(cf. with our
proof for the case of emission in free space"):

(s'(t)s-(0)) =exp(i&t-yltl ), (6.19)

where + now represents the renormalized fre-
quency. The intensity will be given by

2 d ~2k4 Ki(8 t) r' (w +u' )'0

2d 'k'" exp[- 2yl t
l

—2kob (e sin' 8 —1)' ']

8)x o g&g.
ul20+ ul 2 (6.20}

The result (6.20) for the intensity is identical to
the one obtained in Ref. 18 using a classical anal-
ysis, except for the factor e 2&" . The radiation
damping effects were ignored in that work. We
also comment briefly about the nature of the radia-
tion emitted by the atom. It is known from the
work of Lalor and Wolf4' concerning the reflection

and transmission of electromagnetic waves on a
medium whose dielectric function exceeds unity
that (i) in any direction 8& 8, the transmitted wave
is homogeneous and the incident wave is also
homogeneous, (ii) in any direction 8,& 8& w/2 the
transmitted wave is homogeneous whereas the in-
cident wave must be an evanescent wave with
1 &sin'8, „,&e„(iii) for incident angles such that
sin28;„, & &0 the transmitted waves are evanescent in
nature. Hence it is clear that for 8& 0„I is en-
tirely due to the homogeneous waves emitted by
the atom whereas for m/2~ 8~ 8, the contribution
is due to the evanescent waves emitted by the atom
such that 1 ~sin'8, „,&(p.

For the case of the atom embedded inside the
dielectric (which we assume to be occupying right
half-space), we have from (6.12) (for c, =1)

X„.»(r, b, ~) = —exp[ikor+ibko(e —sin'8)' ~']

xg&&&, , m, g &0,

(6.21)

and hence if the frequency of the atom is in the
range in which & is negative, then
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g,»s(r b, (d) = —exp[ikey' —bk, (lel +sin'8)'~']

k, x ~ky

(6.22)

y(5, ~) = g d, d, Sass'(b, b, ~)

&(0)+ g d.d g&sl&s)(5 b (s)), (7.2)

which show a decaying amplitude with respect to b

for all directions in the left half-space.

VII. COHERENCE IN THE PRESENT MODEL VERSUS
THE DICKE MODEL

We have seen how the presence of a dielectric or
conductor leads to an increase or decrease in the
lifetime of the excited states depending upon the
dielectric function and the distance of the atom
from the interface. This might be compared with
Dicke's superradiance. " Dicke found that the
radiation rate from a collection of identical atoms
or molecules confined to a region whose dimen-
sions are small compared to a wavelength, can
be proportional to N' (N being the number of
atoms) depending upon the initial excitation. We
wish to point out that the coherence in the present
model is due to the coherence PxoPexties of the
radiation field in the new environment whereas in

Dicke model it is due to atomic colsexevce.
In the Dicke model the radiation rate is given by

I (8, t) =i, (-,
' N+m)(2iV- m+1), I, = ldl'a', /~,

where S~ ' is the extra contribution to the field
coherence due to the presence of the dielectric.
Such a contribution has already been computed in

I. Thus there is a basic difference in the origin of
coherence in the two models, though it is true of
both models that the change could be positive or
negative. From the point of view of radiation-
reaction fields, it is true that in both models the
atom sees a different field. In one case the change
in the field is due to the dipole fields radiated by
the other atoms. In the other case the change is
due to the fact that the field radiated by a given
atom is reflected from the dielectric interface
and acts back on the atom. However, the operator
character of the radiation-reaction fields is very
different in two cases. Similar remarks can be
made in connection with the far-zone behavior of
the fields. We first note that the intensity of emis-
sion in. the free space for the Dicke problem"
(small sample) using perturbation theory will. be

I =2(s)y~ol g (S;S,)

=ss" ~ Q(s,'s;)+ g(s,'s,.)),
i i "j (7.1)

where y ' is the free-space value of the damping.
The radiation rate now depends on the mean value

, (S&"S,&. Thus enhancement or suppression
depends on the atomic correlations. In the present
model the effective damping (which is proportional
to the radiation rate) is given by

where it is assumed that the atomic system was
initially excited to the Dicke state l-,X, m& . I,
denotes the intensity due to a single atom. The
enhancement property is a property of the initial
state of the atomic system. For the dielectric
problem the corresponding expression is given by
(6.20), the enhancement property in the dielectric
case being the property of the initial state of the
radiation field. In general, as we have shown in
III [E(I. (III 3.16)], the transition probability per
unit time is given by

(r„o)ly, &&y,lf'„„(r„O)le;&Ix"„»(r&, r~;, )+~i„l(r„r„~;,)l.
mfa

(7 4)

Here the terms in the square brackets depend on
the coherence properties of the electromagnetic
field and the restof the terms on the atomic co-
herence and thus, in general, both the atomic cor-
relations and field correlations affect the transi-
tion probabilities. One can also discuss Dicke
type of superradiance in presence of dielectrics,
and it is clear from (7.4) that one will have large
changes in transition probabilities. The combined
effects of atomic and field correlations on y&; will
be discussed elsewhere.

VIII. METHOD OF IMAGES IN THE CALCULATION OF
SHIFTS AND WIDTHS

In this section we discuss how the method of
images"' "has been used in the computation of
lifetimes and Lamb shifts in presence of con-
ductors and also discuss some of the inadequacies
of this method. We first recall a few results con-
cerning the spontaneous emission from a collection
of N two-level atoms. " The reduced density op-
erator for the atomic system satisfies the follow-
ing master equation":

= —ig [S', , p] —i g A, &[S, S, , p] —P y;& (S, S, p —2S& pS, +pS,'. S,. ),
i i&j i j

(6.1)
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where each two-level atom is described by the
appropriate spin angular momentum operators.
The parameters y;, and O, ~ are given by"

corresponds to the energy-shift terms. The mean
values of &, in the states (8.4) and (8.5), are
given by

y~;+'~u = —Q d~"pa8zs (r* ~ rp ~

ne
&ii =-.Idl'Re g XI;sl~(5, -b, ~), (8.9)

—p sf & S;& = g 2y;; & S,'S, ) -=2y, (8.3)

which of course depends on the initial state of the
system.

We first consider how the image method has
been used for a single two-level atom in presence
of a conductor. One replaces the effect of the con-
ductor by an image atom located at (0, 0, —5). The
state of the combined system is taken to depend on
the orientation of the dipole moment. The initial
state of the two atom system is taken to be

q (0)=(182 )(I+-&- I-+&), (8.4)

if the dipole moment is parallel to the surface
z =0 and is taken to be

4. (o) =(I/~2 )(I+-&+I —+) ), (s.5)

if the dipole moment is perpendicular to the sur-
face z =0. Thus the emission from a two-level
atom in presence of a mirror is taken to be equiv-
alent to that from a system of two atoms with ap-
propriate initial state. On substituting (8.4) and

(8.5) in (8.3), we easily obtain

y(o) + y(1) (8.6}

y, =y"'+Idl' imp,",sl, (b, -b, ~)

y(o) y(1) (s.v)

where (8.2) has been used. The results so ob-
tained coincide with the results (3.17) and (3.18)
obtained by using QED. Thus the above ad hoc
assumptions (8.4) and (8.5) are good enough to
compute the damping coefficients. The Lamb
shift is, however, an entirely different matter.
We see from the master equation (8.1}that the
term

a = g n, ,S,'. S;.
Z+g

(8.8)

(8.2)

where X
' is the translationally invariant response

function. yii is nothing but y ' . The frequency
which appears in (8.1) is already renormalized.
It is clear from (8.1) that the rate at which the
system dissipates energy is given by

&, = —Idl' Rex,',~, (b, —b, &), (s.lo)

which on comparing with (3.22) and (3.23) lead to

g( -) (1) ~ g(-)(1)
II

—
II (8.11)

IX. SURFACE POLARITON CONTRIBUTION TO THE
WIDTH OF THE EXCITED STATES

We have calculated in Sec. IV of the lifetime of
the excited state of a two-level atom in presence
of two conducting mirrors. We found that the ra-
diation damping was essentially due to the Fabry-
Perot modes. The response functions (4.1) and
(4.2) contain the resonant denominator, the vanish-

which are very different from the frequency shift
terms (3.27) and (3.28). We thus see that though
the image method leads to the right value for the
damping coefficients, it yields incorrect values
for the frequency shifts. Hence the image argu-
ment fails for the shift terms which are due to the
intrinsic nature of the spin-& operators (S S'
+S'S =1 in the present case). One would have
expected right from the start that the image argu-
ment will fail since the master equation involves
the parameters (for i 0j) which appear in the total
reaction field whereas the Lamb shift is something
which is determined" from the positive and nega-
tive frequency parts of the reaction field. There
is, of course, as such no a Priori justification for
taking (8.4) and (8.5) as the initial state of the
equivalent system. Moreover, it is not clear how

the image method could be generalized to the case
of dielectrics. Quantum electrodynamic calcula-
tions in a sense partially justify (8.4) and (8.5) as
far as the calculations of the lifetimes are con-
cerned. It is clear that the equivalence cannot be
complete. We have already seen the problems
which arise in connection with the Lamb shift.
What one really hopes to achieve in the image
method is to replace the coherence characteristics
of the field in the changed environment with the
coherence characteristics in the old environment
but with the atomic correlations changed. From
Eqs. (8.6)-(8.11) it is clear that the above task
can only be partially accomplished.

Similar remarks apply to the case of an atom
emitting spontaneously between two conducting
mirrors. Again our quantum electrodynamic re-
sults (4.6) and (4.9) justify the results obtained
in Ref. 21 by the image method.
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ing of which gives the dispersion relations foi the
Fabry- Perot modes:

D —0 ~ )o n7f/d-—(bo ba )»2 (9.1)

I 3P 3 &(P)
K3 QK

e ~ "~"Im " ' ' . (9.4)~e, +~, '

In view of the resonant character of the denomina-
tor p. ~p+ pp one can show that

Im ""
pe, 0, , (e, —1)(E +))' ' )'

(9 5)

where «o is given by (9.2). On combining (9.3)-
(9.5) we obtain

r; =(I/2l~, l )r;
)).y(o) «4 e o" (l col +1) (le I

] )
g' = «o —1 . (9.6)

It is clear that 2I"~ is identical to the transition

where n is an integer. Only modes with n&k d/))
contributed to the radiation dampings. One has a
similar situation in dielectrics. In a dielectric,
which is finite in extent, both surface modes as
well as bulk modes could be excited. The modes
of a dielec)tric are usually referred to as the
polariton modes" (plasmon modes in the context
of a metal). As discussed in Ref. 2, the response
functions contain a resonant denominator, the
vanishing of which gives the dispersion relations
for bulk and surface modes. "'" The dispersion
relations for the surface modes depend on the
geometry under consideration. For the geometry
considered in Sec. III, the surface polariton modes
are given by

i)e, +y, ,=0~«'+ p p,,=0~«'=eo/(so+I) . (9.2)

It is clear from (9.2) that such modes occur at
frequencies for which &p- —1 and p. , p.p are pure
imaginary («&1, co assumed to be real). Hence
for the excitation of surface polariton modes to
take place, the energy separation between the
two levels of the atom should be such that eo(o))
& —1. From now on we assume that eo(&) &-1.
The expressions (3.8) and (3.9) for the dampings
involve integrations over K from zero to infinity.
We break the integration region in two parts,
0& «& 1, ~& «&1. It is clear from (9.2) that the
surface polariton contributions, which we will
denote by I"", come from the part 1 & K & ~. We
will focus our attention only on this part. From
(3.8) and (3.9) we obtain

K dK

&oP+Po

(9 3)

r"=-,y' Re e' o" ' ' ' . (9.8)
A. A q, ~A.

The surface polaritons occur at frequencies and
wave vectors such that"

(9.9)

We ignore the damping from the dielectric function
and then it is clear that surface polaritons occur
at frequencies for which &, is negative. There are
two types of surface polaritons depending on the
sign of e,: (i) If e, is negative, then (9.9) can be
written as

le, l (le, l+I)
(9.10)

(ii) and if e, is positive, then

e,(le, l +1)
le, l e, +I (9.11)

In case (ii) one should have e, &1 and 1 & «'& e, .
A simple analysis shows that

2))le, l e, (e, —1)= ( — .) (l', l,
' '1), , a (),

(9.12)

probability per unit time for the atom to decay to
the ground state with the excitation of a surface
polar iton.

To have some idea of the order of magnitude of
the surface polariton contribution to the widths,
consider I'~~ for the case of the free electron mod-
el of a metal, eo(oo) =1 —o)2~/&', and for ~~/&
=1.5. In this case r,') /y ' -100 exp(- -', boo~ /c)
=90 for 2bs)~/c =0.075. Let us denote by ft() (J()~}
the integrated probability R)) = fo" db r)')o(b); then

«'o( I col + I) ' . (9.7)
Sv y"'

2 op 4

This integrated probability can be obtained from
an experiment of the type done by White and Tolk"
as it is closely connected with the probability that
the atom escapes to infinity without radiationless
deexcitation. We have checked by computer cal-
culations that the contribution of the integral fo'

in (3.8) for eo(o)) &-1 is negligible compared to
r'~.

One can similarly consider the surface polariton
contribution to the damping in presence of a uni-
axial crystal. We have obtained in Appendix D the
full expressions for the damping coefficients. We
have, for example, from (D12) the following ex-
pression for the probability that the atom decays
with the emission of a surface polariton,
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where K, is the root of (9.10) and (9.11). On sub-
stituting (9.12} in (9.8) we obtain, for the surface
polariton contribution, the following expression:

(9.13)

where

(9.14)

We will now consider the surface polariton con-
tribution with the spatial dispersion of the dielec-
tric function included. For simplicity we will
ignore the retardation effects for the reason that
the dispersion relations for the surface polaritons
with k'--dependent dielectric function are extremely
cumbersome ' when retardation is included. For
the case of the spatially dispersive dielectric oc-
cupying —~ - z ~ 0 and the atom in the free space
0 ~ z & , the response function was found to be
[cf. Eq. (I 6.30)]

y, ,'.» (r, r„~)=— t t exp[iu(x —x,)+iv(y —y, )+i2v, (z+z,)].
211 Bx;Bx 1v +1 (9.15)

The form of g depends on the model of the dielec-
tric function and the assumed behavior at z =0.
For the electron gas in the hydrodynamic approxi-
mation and diffuse type of boundary condition g is
given by Eq. (II 5.13). We depart from our earlier
treatment and assume specular reflection at z =0.
The expression for g in this case is simple and
can be obtained following the work of Ritchie and
Marusak. " It is found to be

I

there exists only one branch of the dispersion
curve:

—1 cY
K

)+1 '„— ' —i~I', ' (9.2i)

= llm Re

From (9.20) one has the relations (cf. Ref. 51}

/+1 =0 . (9.17)

It follows from (9.16) and the dispersion relations
for e(K, 111) that

The surface polariton dispersion relation is given
by

( —1
~2 P I
' = —lim Re

Re)(K, &„)+1=0,
Imp(K, &)

(S/S~) Ref(K, 1d)

and hence

(9.22)

(9.23)
0(K, i~) -1, (9.i6)

which is of importance in the considerations of the
nature of dispersion forces. In paper II we found
the following expression for the dispersion force
between a spatially dispersive and a spatially non-
dispersive body [Eq. (II 5.12)]

2n&K, K,'e '"o' dK,
2 d~„

0

(9.24)

d&
27' Jp &P

+' &+' 82" 1
e2 —1 g —1

(9.19)

On assuming a dielectric function of the form

e(k, 1v) =I+ k2k2 —p2 '

The dispersion force, as given by (9.19}, is al-
ways attractive in view of (9.18) and the inequality
e2(i&}&1,though the first term in the expansion of
E in powers of (effective mass) ' ' is repulsive
in nature.

The probability that the atom decays with the
emission of a surface polariton will now be given
by

(9.20)

Q)2 Q3 2

(vz is the Fermi velocity) and specular reflection
at z =0, we find that

KO=2 0 (1+61), E1 ——1 —g/P. =1 —&~/K

(9.26}
and

We now approximate (g —I)/(/+I) by assuming that
P3I K2 e 2Kob

J. 4~3 p (9.2V)
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In obtaining (9.26) and (9.27) we have ignored the
damping of the dielectric function and thereby the
damping of the surface polariton mode. The ex-
perimentally observable number will be

(9.28)

The result (9.24) is similar to the one obtained by
Tzoar and Gersten, "who used the quantization of
the surface polariton field. The results (9.6) and
(9.13), for the case when retardation is included
can also be obtained from an explicit quantization
of the surface polariton field. We would present
this elsewhere~ as in this series we have avoided
the explicit quantization of the electromagnetic
field.

Finally the contributions to the Lamb shifts due

to the excitation of surface polaritons can be ob-
tained by substituting (9.6), (9.13), (9.24) in (2.25).

APPENDIX A: DIGRESSION ON SOME PROPERTIES OF THE

ANTICOMMUTATORS OF THE FIELD OPERATORS

AT TWO DIFFERENT SPACE- TIME POINTS

Here some properties of the anticommutators
of the field operators at different space-time
points are presented. Such properties are useful
in the text [for example in the derivation of Eqs.
(2.18) and (2.19)]. Recall that since E is a,n even
variable under time reversal, X" satisfies the
symmetry relation

X&~zz(r r ~) = —)tl,zz(r r, -&)

be the one-sided Fourier transform of 2g~,.&', i.e.,

Q&&zz(r, r', e) = 2 d7 e' 'g~) (r, r', r)

Q;,.zz(r, r, a&) = h;& (r, r', &u)

and

(AS)

Q,",zz(r, r', (o) = ——
t d~' ((g' (g)-'

7T Q

xQ;', zz(r, r', (o') . (A8)

On combining (A5), (A7), and (A8), we obtain

oo

1T Jp

x[((u' —co)
' —((o'+(o) '].

(A9)

The relations presented above are valid for arbi-
trary stationary fields described by time-reversal-
invariant ensembles. For thermal fields, (A9) be-
comes on using (I 2.20)

Qf» zz(r r '&)

= Q,',zz (r, r ', e) + i Q(] zz(r, r', (u),

(A6)

where Q' and Q" are, respectively, the real and
imaginary parts of Q. It is clear from (A5) and
(A6) that

= X,"zz(r', r, ~) .

The real part of X is related to X" by

(Al)
7T Q p

d&o' coth(2P&u') Im)(;&zz(r, r', &g')

oo

g,',zz(r, r', u) = — du'(&u' —e) )t,",zz(r, r', (u'),
oo

(A2)

which on using (Al) can be written as

&[((u' —(u) ' —((cr'+(o) '] .

At zero temperature (A10) reduces to

(A10)

g%8)P ~re
) [g(8)(r ri ~)] g

On combining (A4) with the relation

g P&)(r, r', u) = 8 P,. (r, r', —v),

(A4)

(A5)

obtained from time-reversalinvariance, we see
that gp)(&u) is a real function. I.et Q;»z(r, r', &o)

)i,',.zz(r, r', &u) =— du&' Im)i;, zz(r, r', &u')
J 0

x[((g' —(g)-'+(~'+(o) '] .

(A3)

The symmetrized correlation function 8 &,. ~ defined
by (2.15), is real and hence

Q,",zzo(r, r'., e) = —— d&u' Imy;&zz(r, r', u')
7T o

&&[((o' —&u)
' —((o'+(o) '],

(A11)

where the additional subscript indicates the tem-
perature. In view of the interpretation of Q", as
the frequency shift, we will write (A10) as

Q' zz(r r ~) = Q' zzo(r r &)+Q ,zzr(» r ~)'

(A12)

where Q,",zzr is the temperature-dependent part
of Q given by
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Q,"»»(r, r ', &u)

the temperature. Furthermore Q,",.», will in gen-
eral show a very different behavior than X&,.~~.

2P
1T gp

d~l (e tkd 1) 1
APPENDIX B COMPUTATION OF QjjE~(I 'r (d ) FOR THE

CASE OF ENTIRE FREE SPACE

x Imp„~s(r, r', (u') [((u' —(o) ' —((o'+ (v) '] .

(A13)

It should be noted that in our problem of electro-
magnetic field fluctuations X', X"are independent of

Here we calculate the real and imaginary parts
of Q for electromagnetic fields in the entire free
space. The response function yI,'.ss(r, r', &u) is
given by Eq. (2.27) and 8&~) (r, r', &u) is obtained
from (2.11) and (2.15). On carrying out all the
differentiations in (2.27), we obtain for the re-
sponse function"

sink, R coskP - - cosk,R
}(&&

' (r, r', u&) =-k' (5;& —3R~R&) k, ~ +
k3 ~ -(5&&-R;R&) (Bl)

(0) 3
- - sink, R 3

- - cosk,R sinkpB
(r, r', &o) =k, (5; R,R ) -k +(& —3R;R )

0 k.R k.R
(B2)

and the symmetrized correlation function

($) ~ ~I 3 1 slnkog coskoR slnkoR8;,(r, r', (u) =kocoth(zp(u) (5&) R(R)) k-R +( &p
—~R&Rp) k2R2 ksRS y

0 0 0

where R; denotes the ith component of the unit vector R/R =(r —r')/(r r'~. Fo-r R-O, (B2) and (B3)
reduce to

(B4)

diverges as R-O, the meaning of it is discussed in Appendix C. We first calculate Q,"~»,(r, r', &o).

On substituting (B2) in (All) we obtain

2k, "" k'dk - - »nkR 3- - coskR sinks',
Q~~j»pt, r', u&) = — ' P kz k2 (5&j -R;R, )

kR
+ (;& — R; R& )

&0 0

2k - - 1 a' 1
'(5;~ -R,R, ) , —[sin(k—,R) Ci(k, R) —cos(k, R) Si(k,R)]

+ '(5;,. —3R&R, ) —,[cos(k,R) Ci(k, R)+ sin(k, R) Si(k,R)]2ko

'(5,
&

—3R,R&),[sin(k, R) Ci(k, R)- cos(k, R) Si(k,R)], (B5)

where Ci and Si are cosine and sine integrals defined by
'

k '
got k

On using the relations

8 . SinQ. 8 . cosa 8 . cos~ 8 . slnQ| 1
Si(o.)=, , Si(o.) = —

2 sinn, Ci(o. )=, , Ci(o. ) = — —
2 coso. ,

~ Qf Q ~ Q (X Qf ~ Q tX 8A CM Qf

(B5) reduces to

2k ~ + 2k 1 + + 1 + A

Q,",.»o(r, r', &u) =—,'(5;,. -R;R~) — o —,(5;,. —3R,R, ) ——(5,~ -R;R&) (sinxCix —cosx Six)

(B7)

2k
+ o (5;,. —3R; R&) (cosx Cix+sinx Six), x =k,R . (BS)
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Let us now consider two points r and r' which are mirror images of each other with respect to z =0, i.e.,

1 =X, J, Z, r'=x, y, -z, R=0, 0, 2z. (B9)

For such points we have from (B8) for diagonal elements

2k 30 1. . . 1 jI. 19„"„»,(r, r, ~) = Q,",», (r, r', &d) = — ' —.+ (sinx Cix —cosx Six) —,—— ——.(cosx Cix+ sinx Six)1,
—x" X3 X XR

4k', 4k',
Q,",»,(r, r', &u) =,' (sinx Cix —cosx Six) —,' (cosx Cix+ sinx Six), x =2k0z .

(B10)

(Bl1)

Also for such points (Bl) leads to

(0) I ~I (0)'Xxx»(~i r i ~) =Xyy» (~~ r
~ &)

slnx cosx cosx= —k0 ~ +
x x x

(0)I ~I 3 SlnX COSX
@s(r r (d) = 2k — +

x

(B12)

(B13)

The expressions (B8)—(B13)will be useful in our
discussion of Lamb shifts and frequency shifts in
presence of conductors in Sec. III. We emphasize
once again that all the above results have been de-
rived using the txanslationally invariant response
functions. Any other response function would yield
different results for Q. The evaluation of Q', »r
is much more involved and will not be discussed.

APPENDIX C: HARMONIC OSCILLATOR VERSUS A
TWO- LEVEL ATOM

Spontaneous emission from a system of harmonic
oscillators has been discussed in detail in Ref. 45.
Here we discuss some aspects of harmonic-oscilla-
tor emission in presence of a dielectric. There
are fundamental differences between the emission
from a harmonic oscillator and a two-level atom.
By following similar analysis as that of Sec. II
and using the boson commutation relations, it is
easily shown that the damping yi &(b, v) and the
frequency shift Ql l(b, e) (change in the energy
separation between any two adjacent levels) are
given by

y' '(b, (u) + i 0'l '(b, (u) = —i Q d„d ~X s»(b, b, (u),

(Cl)

y(b, (u)+ iQ(b, (o) = Qd„d8g„sss(b, 5, (o) . (C2)

From (Cl) and (C2) and the relations (A6) and
(A'I), we have

y (b, +) = Im Q d„d q X„q»(b, b, +), (C3)

y(b, ~) =1m coth(~p~)gd„dsX„~s(b, b, v),

which shows explicitly the dependence of the damp-
ing on the temperature. At zero temperature
y =y. For the frequency shifts we have from
(A3) and (Alo)

which shows that the damping and the shift are
determined from the response function itself. The
response function X~»E is essentially the mean
value of the commutator of 8 at two space-time
points, and since this commutator is a c number,

X BEE does not depend on the initial state of the
field. Therefore the oscillator does not possess
any field dePendent shi-fts and widths. The corre-
sponding shifts and widths for the two-level atom
problem were determined from the anticommutator
of the field operators and hence are field depen-
dent,

G~ '(5, (o) = —Qd„d8X'See (b, b, &u) =-—Q, d(u'd„d8X„"8» (b, b, Iu')[((u' —(o) '+((o'+a)) '],
7T g 0

O(b, (u) =-—Q I
d(o'd„decoth(2P(u')X„"e» (b, b, (o)[((o' —(u) ' —((u'+(o) '] .

0

(C5)

(C6)

Relations (C5) and (C6) show that the frequency
shift Q~ ~(b, ar) is very different from that g(b, ~)
[cf. our explicit expression for the case of a con-
ductor Eqs. (3.22), (3.23), and (3.25)], whereas
dampings as given by (C3) and (C4) are simply re-

lated y/y~ l = coth(2P&u). The harmonic oscillator
is closest to a classical system. The differences
in the two models are again reflections of the dif-
ferent nature of the commutation relations for
bosons and the atomic systems.
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APPENDIX D: DAMPING COEFFICIENT OF A TWO-LEVEL
ATOM IN PRESENCE OF AN ANISOTROPIC,

NONMAGNETIC MEDIUM

i) i~igs 61 E'2 4 63 (Dl)

As shown by Lalor, "the general solution of the
Maxwell equations, subject to outgoing boundary
conditions at infinity, can be expressed as

+ oo

E(r, (u) = dudve'""""'

x[e,(u, v)e' &'+e, (u, v)e' s'],

zo0 (D2)

We now discuss how the anisotropy of the medium
affects the damping coefficients. We assume that
the anisotropic medium, occupying the domain
0 & z «, is characterized by a dielectric tensor of
the form

In the limit e, = e„(D6) and (D7) reduce, respec-
tively, to (I 5.43) and (I 5.44). The amplitudes e,
and e, are found to be

2iw, k',v (K~~ xp~, )e '"o'o
2

2~~0&tt 0+1
2iwo~l [k~~P~ -w, (K~~ p~, )]e
2i 1T$P 063 +'0~1++3

(D8)

(DB)

In the absence of an applied probe only e, exists
provided the frequency u and the propagation vec-
tor are such that

ggpC1 +A/3 = 0
q (D10)

which is the well-known surface polariton disper-
sion relation4~ for an anisotropic nonmagnetic me-
dium.

Using (D6), (D7) and (3.4), (3.5) the surface-de-
pendent contributions to the damping coefficients
are found to be (the atom is now assumed to be lo-
cated at z = —b)

where

0 z k(l & ws kohl ( 1/ 3)kl( &

K AII"

y (b, e) = «y Re e'"o"
"0 ~0

eg = 0 (k]~ e~)= 0 ey = ey(l u/v 0) (D3) 2 ape, —Z3

A.p+ A.1 A,Pe1 + A.3

(Dl1)

where

+ —
(k Df —(, k„VE 5)e

(D4)

(D5)

In order to obtain the response functions we solve
the boundary value problem as we did in paper I.
The result of such a calculation is that the equa-
tions (I 5.43) and (I 5.44) should be replaced by

The angular spectrum representation essentially
involves two unknowns, e„and e„which are to
be fixed by the boundary conditions at z =0. The
asymptotic expansion of (D2), for e, and e, real
and positive, is given by"

E —2wik e'~' —~ e, (k,Je, —,k Re, —)a"

A.,'= e, —(e,/e, )g', g = 2k, b .
(D13)

We can now use (D11) and (D12) to obtain the re-
sults in special cases, i.e., when u corresponds
to one of the natural modes of the medium. The
relations (D8), (DB), and (65) can be used to cal-
culate the normally ordered correlation functions
for the field operators in the far zone. In an ex-
periment of the type carried out by Carniglia,
Mandel, and Drexhage, "where y component of the
field was detected and r was in xz plane, the in-
tensity in the far field will again be given by (6.20)
with cp replaced by e, . The wave e, makes no con-
tribution. However, if observations are made in
y-z plane, then only e, contributes. The result
analogous to (6.17) will now be

@{+) &(+)+ 2 0S dk
02

oo 3
(&)(b +) —& (o)Re e&x & Q 1 8 (D12)

Ap A0C1 +A3
where

A.p
= 1 —/P& ~1 ~1 K2= 2 2=

2g ZU0 8)0+
(D6) xexp[ik, Me, $r + i bk, (1 —$'e, sin'8)'~']

~,'~'cosa 2u~,
2

wocg +wa
(D14)

=Kpg g q 100 —kp —k))
(-) 2 2 2 (D7) On comparison of (D14) and (6.17) we find that the
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results of observation, say of intensity vs 8, in
the x-z plane and in the y-z plane will be very dif-
ferent. This is also true of an isotropic medium;
however the critical angles are different. The
critical angle 6, (in the sense that the amplitude
is an oscillating or decaying function of b) for ob-
servations in the y-z plane depends on the relative
magnitudes of e, and e, and is given by

2 st —l~t -4(ei —s3)j
2(s, —s, )

[st +4(sq —tt)]
2L'~, —~, ~

(D15)

subject to the restriction that sin'8 so defined cor-
responds to a physical angle.
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