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Quantum electrodynamics in the presence of dielectrics and conductors. VI.
Theory of Lippmann fringes
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A quantum-theoretic treatment of Lippmann fringes is given using the response-function formalism of part I of
this series of papers. It is shown that the field emitted by the excited atom in the presence of a dielectric
mirror possesses first-order coherence, and the absorption of such a field by the unexcited atom leads to the
interference fringes. The nature of the emitted field is also examined from the point of view of excitation of
surface modes. The causal character of the absorption process is also briefly commented upon.

Fermi in his classic paper' showed how Lippmann
fringes can be explained in terms of the quantum
theory of radiation. Lippmann fringes are produced
when an atom (referred to as atom 2) located near
a mirror absorbs the radiation produced by an ex-
cited atom (referred to as atom B) far from the
mirror. Classically, such fringes can be explained
easily since atom A essentially sees the standing-
wave field formed due to the reflection of incident
plane waves. Incident waves can be regarded as
homogeneous plane waves since the excited atom
is far from the mirror. In Fermi's treatment, the
mirror was regarded as a perfect conductor, and
hence the radiation field was quantized in the semi-
infinite domain bounded by the mirror at z =0.
The purpose of this short paper is to rederive
Fermi's result and present several generalizations
using the response functions of paper I and some
of the results on spontaneous emission from paper'
IV. These generalizations are: .(a) we describe
the mirror by a dielectric function e,(e) with the

dispersion of e, included and (b) the atom need not
be in the far zone. We examine the field produced
by atom B from the point of view of excitation of
surface modes. It is also shown that atom A is in-
teracting with a field which has first-order co-

~- herence. ' In our treatment of Lippmann fringes,
the role of the field coherence is quite apparent.
It should be noted that the process of absorption
by atom A. of the field emitted by atom B is a
second-order process, i.e., the probability of ex-
citation of A is prop'ortional to the fourth power of
the electronic charge. We will throughout this
paper consider only the dipole transitions.

We have studied in paper IV the spontaneous
emission from an atom in the vicinity of a dielec-
tric. We will first recall a few results from that
paper, and then we shall establish the coherence
character of the field emitted by the atom. The
positive-frequency part of the electric field opera-
tor is given by [Eq. (IV 5.10)]
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where we have assumed that our two-level atom
described by the pseudospin operators is located
at the point b, and Be is the dipole matrix element
connecting the two states of the atom B. The field
given by Etl. (1) is exact, i.e., no approximation
has been made as to the strength of the interaction.
In the far zone and in the long-time approximation,
Eg. (1) can be approximated by [Eq. (IV 6.5)]

E &+ (r, t) =E,B'(r, t) + +de„g 8„»(r,b, ~s)S-,

(2)

where X denotes the asymptotic value of X in the
far zone, and cu& denotes the energy separation be-

tween the two levels of the atom. The field as
given by Eq. (1) is not an analytic signal, » whereas
the asymptotic field of Etl. (2) is; i.e., the asymp-
totic field E~ ~ has contributions only from positive
frequencies. The two-time correlation function
of the dipole moment operators is given by [Eq.
(IV 6.19)]

(S"(t )S (t')) = exp[- y~(t+ t') + is&~(t —t')], (3)

where y~ denotes the damping of the two-level
atom. On making the rotating-wave approximation,
it is clear from Eqs. (1) and (3) that the normally
ordered correlation function of the electric field
operator is given by
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A radiation field which satisfies property (4) is
said to possess first-order coherence. ' The field,
however, has no higher-order coherence, as there
is only one photon present. Hence, atom A will
interact with a field which is coherent only to first
order. This is.to be contrasted with the result
found in paper III that a classical field produced by
external charges and currents leads to a coherent
state of the radiation field, i.e., to a field which
is coherent to all orders. The field produced by
atom B is thus quantum mechanical in nature. The
Laplace transform of Eq. (5) is

1
V g(r, p) = (P+ye+i-ius) '

xQ dan Jt diu(p+i&) XBvsz(r~» iu) ~

V 0

Rep~ 0, (6)

where P denotes the Laplace variable.
The explicit form of VB depends on the nature of

the dielectric and the geometrical arrangement.
For the case of a dielectric occupying the domain
z & 0, the response functions' are given by Eqs.
(IV 3.6) and (IV 3.7). We assume here for simplicity
that both r and b are along the z axis; then the
nonvanishing response functions (for z& 0) are

(0) (y)Xiii@(
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X ~~re(r, b, iu) =
~

XI", (u, v, iu)e' ' ",
2 7T a Q)

The response functions contain contributions both
from homogeneous and evanescent waves, since
for u'+v'&O'„ I) is pure imaginary. The response
functions contain a resonant denominator (see, +iv, ),
the vanishing of which gives dispersion relations
for surface modes. ' Such modes are possible only
if the dielectric medium is surface active, i.e.,
if ep takes on negative values. In the present
problem, excitation of such modes also takes
place due to the evanescent waves emitted by the
atom. The contribution to Va due to the excitation
of surface modes can be written as

v' (,P)=.(P y.. -

xg d» diu (P +i iu) 'X'g„)s(r, b, iu),

(8)

where the integration is over those frequencies
for which eo(iu) & —1 [since it is known6 that for
the geometrical arrangement considered here,
surface modes occur only for frequencies such that
e,(iu) & —1], and where X

"i ~ denotes the surface
polariton contribution to X". For a simple model
of e, such as e, =1 —iu~/iu', the integration in Eq.
(8) will thus be over frequencies iu & iu~/P2. The
surface polariton contribution to X" is easily ob-
tained from Eq. (7) by using the properties of the
resonant denominator, and is found to be [cf. Eq.
(IV 9.6)]
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where Kp and 00 are defined by the dispersion re-
lation

Xs~,"(u, v, (u) = —(u'+v') -' —-',
0 0

iso =eo/(co+I), o', =ii2O —1 = —1/(go+I) . (10)
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k =(u, v, ut) . (7)

On substituting Eq. (9) in Eq. (8) we will obtain the
surface polariton field. It is obvious from Eq. (9)
that such fields exist only in the close neighbor-
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hood of the surface.
We now comment briefly on the causal character

of the fields emitted by the atom. For the case of
a perfect conductor (letting the conductivity ap-
proach infinity, i.e., e, -~), the response func-

tions ( I) simplify considerably. Then on taking
the Fourier transform, one finds that the space
and time dependence of the response function is
given by

X(ass(r r t) =2 ~ d&X&yss(r r
277 4

"&(ct)' &xex, R
+ 6, 1 —26,),+

c~ ~
x i~ ~J~

8 8 5(t -R/c) 8' &' 5(t -R'/c)
~' 8(ct)' sx, ex,'

ass(r r, t)+X ss(r, r, t), R=r —r', R'=x-x', y -y', ~+~',

which clearly displays the causal character of the
response functions. The first term in Eq. (11) is
nonzero only for times t&R/c, whereas the sec-
ond term is nonzero for t& R'/c. Thus, both terms
will contribute for t~ R'/c. We recall that Eq.
(11) can be given a simple image-charge interpre-

tation. The second term essentially gives' the
field produced by a dipole placed at the image po-
sition (x', y', —z'). The dipole moment of the image
dipole will have components (-p„, -p„p,), where
the p s are the components of the dipole placed at
(x', y', z'). We rewrite Eq. (6) as

and now it can be shown [cf. our discussion follow-
ing Eq. (IV 6.4)] that the second term in the above
equation makes a negligible contribution in the far
zone, and hence the field Vs in the far zone can be
approximated by

VB(r P) tg ds (p+rs+t+8) X8 ss(r b tP)

(12)

where y™ denotes the asymptotic value of X. The
causal character of the field acting on atom A. lo-
cated at r =a will follow on combining Eqs. (11)
and (12). Atom A will interact with the field Va
only for times t&R/c; however, for R/c & t&R'/c,
only the direct term X~'~ acts; i.e., the effect of
the dielectric will not be felt. It is only for
t s R'/c, that both terms in Eq. (11)will make a
contribution. For such times, Eq. (12) can be
further approximated by

VB(r, P) = —t Qds„(P+y, + t(ds)-'X, „ss(r, b, ~, ) .

(13)

In the general case, one must be careful in using
the causality concept which is essentially based
on the velocity of propagation of the electromag-
netic fields. The concept of velocity has unambi-
guous meaning only for waves of a simple type,
such as plane waves (cf. Ref. 4, p. 11). In the as-
ymptotic region it can be shown that y is essen-
tially a plane wave. To show this, one can use the
asymptotic expansion of the angular spectrum of
plane waves to obtain the results (recall that in
this asymptotic expansion one lets the distance R
go to infinity in a fixed direction)

P,s)s(r, r', (()) = P)(kosin8cos(I(), k,sin8siny, m),

X,ss(r, r', (u)

ikOR
'

X()(k,sin8'cosy', k, sin8'sin(p', (d),

(14)

where 8, y (8', y') are the polar coordinates of the
vector R (R'). Hence we will speak of causality
only in the asymptotic region. It is obvious from
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Eq. (14) that &= (I —IR I )'(I + [4IRI /(I —IR I )']»n'(x —~)j,
(20)

X("w0 for t) R/c,

X
~"

W 0 for t )R '/c,

and therefore, for t) R'/c, atom A will see the
incident field [X

' ] as well as the reflected field
[Xt'']. The approximate expression for the field
is obtained on combining Eqs. (13) and (14).

We now calculate the probability that atom A

makes a transition to the upper state. We first
assume that the transition is of the electric dipole
type. We have presented in paper III the general
result for the transition probabilities in a non-
stationary field such as a coherent field. The ex-
pression (III 4.5) remains valid even for transitions
in a field which is coherent only to first order.
The probability that the atom makes a, transition
to the upper state in first-order perturbation
theory and in the long-time approximation is, from
Eq. (III4.5),

P = p d&SVa(a, —2 id~)
8

(16)

which, on using Eq. (13), becomes

i2

P =[ra+(id~ &a) ] ~ deeda Xa aa(a b +a)
n a I

(17)

where we assumed that atom A. is in the far zone
of atom B. The transition probability depends on
the orientation of the dipole moments. To simplify
our considerations, we assume that the dipole mo-
ments of each atom are randomly oriented. Qn
carrying out the averaging over the random orien-
tation of the dipole moments, one reduces Eq. (17)
to

x=k,a, ko= ada/c,

where IPI and 5 are rel: '.".d to the cia,ss ' r'fl=-c-
tion coefficient

R =IRle-"'=,', ' "
eo (ada) + 1 (21)

P P;„E-,„E;„2IR-l

Pmax+Pmin Pmax+Pmin I +I RI
(23)

The visibility is unity in Fermi's case and also
when the frequency &~ is in the region where op ls
negative. In general, F oscillates between (1 —IRI)'
and (1+IRI)'. The positions of the maxima and
minima are given by

x,„;„=5+na, x,„=5+ (n+ 2)ir,

tan25 = —2I col't'/(I col —1), n = integer,

where we have assumed that ep is real. Thus,
the position of the minimum and maximum depends
on the dielectric function. " In the special cases,
one has for the phase difference 5

The quantum-theoretical formula. (19) has the ob-
vious classical interpretation: the fa,ctor I is just
the square modulus of the sum of the incident
wave e "0' and the reflected field(ego ' —1)e"0'/
(e',t'+I) (as obtained from the classical Fresnel
formula). The appearance of the I.ippmann fringes
depends on the oscillatory character of I'. Fer-
mi's' result is regained by assuming infinite con-
ductivity:

P =Qkol dal I dal'[ra+ (&xi~ —u&a) ] b sin (koa) .

(22)

We can also introduce a visibility index (cf. Ref.
4, Sec. 10.4.1) by the relation

P =-',
I dpi'I dal'[ra+(isa- ~ea)'] '

X Bof+g ap b
p GLlg (18)

5 = 0 for perfect conductor, (25a)

= —,'ii for c,(ada) =0, longitudinal excitation,

(25b)

=-', kol d~l'
I dal'[ra+ (ia„—iua)']-'b 'P, -(19)

We also assume for simplicity that each atom is
located on the z axis, and that b»a. Finally, on
using Eqs. (7) and (14), we obtain for the transi-
tion probability

for e, (&da) = —1, surface excitation.

(25c)

We note in passing that if the dielectric were ab-
sent, the probability of exciting atom A would be
given by Eq. (18) with X replaced by Xi'); i.e.,

—,'Id&I'I dal'[ra +(isa —isa)'] 'Zlzz"»(a, b, ~a)I'=0 «r «Ib —al/c

=9k',Id„l'I dal'[ra+(ia„—isa)'] 'b ' for t)
I b —al/c,

(26)
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which is the standard result of the light propaga-
tion in vacuum. "

We next consider the case when atom A. makes a
magnetic-dipole type of transition. It is easy to
show, following the same procedure which led to
Eq. (18), that the probability that atom A makes a
magnetic-dipole transition is

tardation. In the treatment given above, we have
included the retardation. We now establish the
connection of our treatment with the usual treat-
ment. " The radiation field emitted by the atom
can also be expressed as [cf. Eq. (IV 6.2)]

E z' (r, t ) -E,
& (r, t ) + g ds„X8„»(r, b, (us)S

& --',
I d~l'I dpi'[rB+(~A ~B)'] '

x Zlxg „s(a, b, (u, )l'. (27)

(r, b (d) ~

The magnetic field response function y 8„» is re-
lated to y8» by (30)

8 ~l
P X

I(t

(28)

For the purpose of calculating the transition prob-
ability, it is sufficient to work with the total field,
which, according to Eq. (30), will be

where e 8&, is the completely antisymmetric tensor.
The relation (28) is simply a consequence of the
Maxwell equation

H(r, &u) = (1/iko) &x E(r, e) .
In the special case when both the atoms are located
on the z axis, we obtain, on combining Eqs. (7),
(14), (27), and (28), the result

-', ~', I d&I'I dsl'[r s+ (~~ —~s)'] '& '(1 —I&I )'

+Qds [X& ss(r, b, vs)S +H.c.].

The transition probability will therefore be

P ~ Xr ds~d~8XB„ss(a, b, (us)

(31)

x fl + [41&l/(I —I&l )'] cos'(x —6)j, (29) I

Q dsnd~8X 8(xss(aq bi( (dB)
ng

(33)

which again shows the interference fringes. The
position of the maxima for the magnetic-dipole
case corresponds to the position of the minima for
the electric-dipole case, and vice versa.

We close this paper with a few remarks concern-
ing the transition probability of the exciting atom
A when atom B is in the near zone of A. . This case
is usually referred to as the energy-transfer
problem, "and is usually treated by ignoring re-

since in the near zone the dominant contribution
comes from the real part of y ~». It is interesting
to note that the surface polariton modes will con-
tribute to the transition probability of Eq. (33). If
in Eq. (33) we substitute the free-space response
function, then we will obtain the well-known results
of the energy transfer. ' Finally, the result (33) is
easily generalized for higher-order multipole
transitions.
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