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A self-consistent integral equation describing scattering from rough surfaces is obtained. This integral equation
automatically takes into account the discontinuous behavior of the zeroth-order fields and Green’s functions
and leads to results for various scattering and extinction cross sections in agreement with the results obtained
by other methods such as those based on the extinction theorem and the Rayleigh-Fano method.

A number of treatments of scattering from rough
surfaces have appeared recently.'™® The resultsof
different calculations agree with each other only
partially. Some of the differences in the results
have been properly explained?® while others still
persist. For example, the method, used by the
present author, ° based on the Ewald-Oseen ex-
tinction theorem leads to results in perfect agree-
ment with those of Marvin, Toigo, and Celli.* The
latter authors used Rayleigh-Fano type of per-
turbation theory. In an earlier paper Maradudin
and Mills® used an integral-equation formulation
to study scattering from rough surfaces. Some
of their results concerning p-p scattering are in
disagreement with those obtained by other meth-
ods. In this paper we discuss how the integral
equation involving rough surfaces has to be ob-
tained from Maxwell equations by proper applica-
tion of Green’s theorem to different domains and
by properly identifying the zeroth-order fields.’
We show that this self-consistent integral equation
leads to results for first-order reflected and
transmitted fields in agreement with those of
Juranek, Agarwal, Marvin, Toigo, and Celli.

For simplicity we deal with an isotropic homo-
geneous medium. Maxwell’s equations can be
used to show that the electric field E obeys the
equation

(w?/cA[en(p) + n(- p)]E=0, )

where we assume that the medium occupies the
domain p = 0 and the region p<0 is the vacuum
region, The surface of the medium is charac-
terized by p=0. Let py=0 be the smooth surface
corresponding to the rough surface p=0. We now
introduce the exact Green’s function which is the
solution

VX VXG - (w%/c®)en(py) + (= p) |G
=476(F - )T, (2

UXVXE -

subject to the usual boundary conditions at p,=0
and outgoing boundary conditions at infinity.
—>
In the region V occupied by the medium G obeys

VX VXG = (0¥/c?)eG=4m5(F - )T

- @¥/cAn)n(=p)e -G, (3)
and outside V the equation for G can be written
(¥ c®)G=4n6F - )T

+ (@Y An(= pnlod(€ = 1)G . (4)

We now apply the vectorial form of the Green’s
theorem over a volume V'’ in which the fields are
continuous, then

EF)SF - d% == 112 (%)

g
VXVXG=-

vl
+ | BE@8@, Hrav, 6
»
where
- 41Q = ~ (w¥/c® (e = 1)B[n(p)n(- po)
- 0(=p)n(py)] » (6)

o= f[ & x V' xE@) -G, P

+0 XE(I") -V'Xa(-f,, I':)]dS ) (7)

and where @’ is the unit outward normal to the
surface S. We now apply the identity (5) to four
cases—the ones in which V is taken to coincide
with the scattering volume V (p>0), vacuum ¥
(0<0) and by taking, respectively, T inside and
outside the volume under consideration. In this
manner we obtain following equati~ns:

Tev, eV

- - wz

E@)=- (1/4m= ' F)+ 1/4m)(e=1) f 1(0)
x (= p)BEF) - GF, T d™r' , ®)

fev, PeV:

0=(1/4mZ O (F,) - (1/4mMZ =)(F,) - 1/4m)(e = 1)
2
2 [ - omo)BE) B, Fyav, @

TeV, PeV:
Ef)=(1/amzF) - 1/4m= = F) - (1/4m)(e = 1)
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wa -y e o
X ?— I (= p)n(DO)E(I") -G(, I‘<) v’ s (10)
FeV. Pev:
0== (1/4MZ©F)+ (1/4m)(e = 1) — j ()

X (= p)BE@’) - CGF, T d™' , (11)

where
Z(*)(F)z j- ds[ﬁxleﬁ(Fl) '6(?', E
si

+AXE@)-¥'xGF, )], 12)

and where 11 is the unit normal to the surface p=0
pointing from the medium to the vacuum region.
The superscripts + (=) means that the values
should be taken at p=0*(0). Z‘* is the contri-
bution from the surface at infinity. It should be
noted that the surface integrals involve the tan-
gential components of the electric and magnetic
field, which are continuous across the dielectric
interface. Similarly the tangential components of
G and ¥xG are continuous across po=0. When the
surfaces p=0 and p,=0 do not coincide, then the
continuity conditions also hold because as far as
G is concerned p=0 is only some artificial surface
and hence we get

Eu)(F%):z(-)(I‘.%) . (13)

=) is seen to represent the zeroth-order fields,
for in the absence of any roughness (p=p,)

EF)=E"F,)=- (1/4nNZWF,)
== (/4N F,) = = (1/4mZ )(F,)
and thus we can identify®
- (1/4AME I FY=EOF) . (14)

On combining (8)-(11), (13), and (14) we obtain the
following integral equation:

B(E) = BO(F 1 1 w? 3,
B =EO@)+ /40~ 1) 2y [ a

x [n()n(= p) EE) -G, Fy)

- n(= Pl EG) . GEF, Ty . (15)

It is clear from the derivation of the integral equa-
tion that in the first term (second term) in (15), E
is the field inside (outside) the medium and the
Green’s function G is at points such that Ay <0

(P >0). This difference is important when one is
doing the perturbation calculation with (15). This
is our final integral equation which we will apply
for the case of roughness on a perfectly flat sur-
face, i.e., for the case when the rough surface is
described by p = z + f(x, ) =0 and the flat surface

by z=0. Then (15) becomes

2 +00
E[) = EOF)+ 1/4m(-1) -“é’? f ax' dy'

X[n(hf) 81+ n(= R 4,] (16)
where
51= ° dZ, E(F,) '8(.;,, F ) ’ (17)
-nf 2
=hf -y D -
8=~ J’ dz' E(')-G(', I‘g) . (18)
0

It is clear from the structure of 4,, 9,, that these
are at least of first order in % and hence to lowest
order in # we can write, in view of our remarks
following Eq. (15),

51=hf(x', y,)-E.(O)(x,’ y" o‘) '8(36", y’: 0_, Fz) )

(19)
% =nf(x’, y)EQ @R, 5, 07) .Gw!, v, 0% FE) .
(20)
Now using the boundary conditions
E@, 3", 00=E@, ¥, 07), i=1, 2,

EOF, 3, 07)=€cE (', ', 0%,

Gyylx’y ¥', 05 Ty) = Gyylx’, 97, 0% Ty), i=1, 2

Gs,x’, ¥, 07; Fz)=663,(x', y’, 0% 'fz) , (21)

we get

4 ==1', y)EL W, 5, 0)-G', ', 0% )

+EEQW, y, ME-CW, v, 05 Ty, (22)

which on substituting in (16) yields

EF)=E"F)+rEVE, (23)

EWE) = [ a 8P @ 7,

EDE) = J % 8DV @) R T

K=k W, K=& -wp),

We=R2e— k2, Wi=ki-«?, (24)
with
EO@) = 1P - §©)(e - DELEW - 8= %)
+€8Wz.C(-1], (25)
D@ = 1FE -7 O) (e - DEE[ER E(= %)
+8Wz.B-10)] . (26)

In deriving (25) and (26) we have assumed that the
incident field was a plane wave characterized by
RO, W [W® = (- x©2)1/2], Fine@)=&W®
xexp[ik D . F+ iW 2], and that & represents the
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zeroth-order transmitted field. The functions
— -~
G(%), g (%) are defined by

e, T, - j j d*% G exp[iX - F = T,)+iWz,]
2'=0*, (27)
8@, 7= [[ d% @@ explit- ¢ - F - iWozd,

2'=0", (28)

The explicit expressions for é"“ and é"“ can be
obtained by substituting® G(¥), '@'(x) The final re-
sults are

EP) = - ile - VFGE - FOY Ry Woe + W

xR - &) - k3w W) 18R], (29)
EO@ =ile = VFE - FO) (Woe s W)

x[(k?+ WW)E® - K (% 8)

+€8Q(Wk+ kY], K'=@ -w . (30)

The results (29) and (30) are in agreement with

the results obtained in the author’s work [Ref. 5,
Egs. (14) and (15)], where a perturbation treat-
ment using the Ewald-Oseen extinction theorem was
given. We have checked that (29) and (30) are in
agreement with the results obtained by the boundary
matching method. #*® Since (29) and (30) are used

to calculate the extinction and scattering cross
sections, we have verified that the integral equation
of the present paper leads to results in agreement
with those obtained by other methods.

We close the paper by some remarks on the
integral equation

2
% [E@) .8, &)
x{e()[n(z’ + 1) = n(z")]+ n(= 2" = hf)

- n(=2")}a%’ (31)

used by Maradudin and Mills® which differs from
the integral equation (15) in the sense that step

By =EOF)+ (1/4n)

functions appear in a different manner. Maradudin
and Mills approximation
€[n(z"+ nf) = n(z")]+ n(= 2" = bf) = (- 2")
~ (e = 1)hf3[6(2*) + 61(z")] (32)
leads, instead of (25), to
EM@) = 1FE - 7O e = DRE[ED - B(=7)
131+ )EWZ-G(-D]. (33)

Thus their results could be corrected by replac-
ing 3(1+ €98 by €82, Maradudin and Mills
argued that since the zeroth-order fields are dis-
continuous, one should replace 6(z) in the expan-
sion of step functions by 3[5(z*)+ 6(z")]. However
we see that the derivation of the integral equation
of the present paper automatically takes into ac-
count the discontinuous behavior of the fields and
hence fixes uniquely the transmitted and scat-
tered fields. 10
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lim »[VxG®, ') — ik, 7X 8F, F')]=0, #=F/r
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