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The relation of Waterman's extended boundary condition to the generalized Ewald-Oseen extinction theorem

is established. This unifies different formulations of the electromagnetic scattering. Our proof also establishes

the validity of %'aterman's extended boundary condition for an arbitrary type of material medium.

In a series of papers Waterman" has presented
a new formulation of electx omagnetic scattering.
This is based on the use of the vectorial form of
Huygens's principle' generalized in a form so as to
include the incident field. ' This formulation is
now known as the extended boundary condition
method, and has been used extensively, for exam-
ple, by Peterson and Strum in the treatment of
electromagnetic scattering from different types of
material media. "Strum' has also considered
how an analog of this principle' can be used in
quantum-mechanical scattering. In another series
of papers' "Bullough, Pattanayak, %'olf, and
Agarwal have used the Ewald-Oseen extinction

theorem a.nd its generalizations to analyze scat-
tering from a variety of situations. Pattanayak
and Wolf also treated the quantum-mechanical
scattering from the viewpoint of the extinction
theorem. In view of the vast amount of work done
on electromagnetic scattering, it is desirable to
see how the above two formulations are related to
each other. The purpose of this paper is to es-
tablish the relation of Waterman's extended bound-
ary condition (EBC) to the Ewald-Oseen extinction
theorem.

The EBC states that the incident electric field
E ' (r) at a point r inside the medium (assumed to
be linear and isotropic} satisfies the relation"

E ' (r) + —V x [n xE(r')]G, (r —r')dS'+ — n x[V' x E(r')]G, (r —r')dS' ——V n E(r')G, (r —r')dS' =0,
4n s+

(~r ~&i) elko] r r')/~ r— ko = (d/C .

The medium occupies the domain V bounded by the surface S. The fields which appear in the remaining
terms of (1) are the fields at a point just outside the medium. n is the unit normal to the surface S pointing
from inside to outside the medium. The normal component of the field which appears in (1) is usually
eliminated by taking curl curl of (1), and hence

E~'~(r) +;x fn x[V' xE(r')]] G, (r —r')dS' +—V x [n xE(r')]Go(r —r')dS' =0.

In this form the EBC involves only the tangential components of the electric field and the magnetic field.
For the case of a perfect conductor (2) reduces to

E9~(r) +- V x V x J(r')Go(r —r')dS' = 0,
(d s

where J is the surface current defined by nxH(+) =(4w/c)J. This is the form used by Waterman in his
treatment of scattering from perfectly conducting bodies.

Pattanayakand Wolf" "derived a, generalization of the Ewald-Oseen extinction theorem. Their extinc-
tion theorem is valid for an arbitrary material medium. The generalized extinction theorem reads as

El'(r)+, VxVx dS' E(r') ' (r —r') —G,(r —r')
4mko s-

-4m nV' ~ P r' +ikonxM r' — J Qo r- r') =o, 4)
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where P and M represent, respectively, the polarization and magnetization of the medium and J is the

surface current. The fields which appear in (4} are at a point just inside the medium. It has been assumed
that no external charges and currents are present. The magnetic field also satisfies a relation analogous
to the EBC and the extinction theorem. The results are similar to (2) and (4). Once the surface fields are
known from Maxwell's equations and (2) or (4), the scattered fields can be obtained from

K ()=,exvxj' x(i'xK(')]G, ( — ')ds' ~—vxf ] xz(')]G, ( — ')ss',
0 $ $

or from

(5)

E"(r)=,VxVx dS' E(r') ' (r —r') —G,(r —r') —(r')
4mk, ' en ' an

—4m nV' ~ P r' +ikon&&M r' —~ J r' Go r —r' (6)

The equivalence of the EBC and the Ewald-Qseen extinction theorem is trivial for the case of a perfectly
conducting body as E(-)= 0, P = M= 0. In this case it is easily seen that (4) and (6) reduce, respectively,
to (2) and (5).

In the more general case such an equivalence is expected to hold as both (2) and (4) describe essentially
the cancellation of the incident field with the surface fields, i.e. (2) [(4)] are the constraints on the surface
fields, which in turn determine the scattered fields via (5) [(6)]. To establish the equivalence, we proceed
as follows. We recall that the extinction theorem has been derived by a suitable application of the vectorial
form of the Green's theorem and by using the conventional Maxwell boundary conditions. This has led to the
equations" "

E "(r) +— dS'{n x[V' x E(r')] ~ G(r', r) +[n x E(r')] ~ V' x p(r', r)j =0,
47 $.

E"(r) =— dS'{n x[V' xE(r')] ~ G(r', r) +[nxE(r')] ~ V' xG(r', r)).
4m s

Here G is the free-space dyadic Green's function defined by

G(r, ')=(( ~ —,vir}G(r- ').'
0

(7)

(8)

In Eqs. (7) and (8) E and V xE are fields at points just outside the medium. On simplification (7) and (8)
lead to (4} and (6). Equation (7) is in a form which is convenient to establish its equivalence with the EBC
(1). Note that the term (nxE) ~ VxG(r, r') can be written as

{[nxE(r')]~ V' x G(r', r)), = g [nxE(r')], e,», 6)„Go(r —r')

={[nxE(r')] xV'), Go(r —r')

=-{[nxE(r')]x V), GO(r —r')

={Vx[nxE(r')Go(r —r')])»
since V does not operate on [nxE(r'}]. Next consider the term

[n x(V' x E(r')) ] ~ G(r', r) = [n x (V' x E(r'))]Go(r —r') +{[nx('V' x E(r')) ] V']V'Go(r —r'}ko

On substituting (10) and (11) in (7) we get (note that VG, =-V'G, }

(10)

E (r) +— [n x(V' xE(r'))]G, (r —r')dS' +—V x [n xE(r')]Go(r —r')dS' ——VQ =0,
4m $+ 4m $+ 4~

where

(12)

(13)Q =ko [nx(V' xE(r'))] V'Go(r —r')dS'.
$+

Equation (13) can be simplified by the application of Gauss's theorem. Since it is not clear what the value
of Q is, if the surface is at infinity, we use the Maxwell boundary conditions to express Q in terms of the
inside fields



117D G. S. AGARWAL

[ax(V' x E(r'))], =ik, [n x H(r')],

=iu, [nxH(r')] + ' J'(r')

=[nx(V'xE(r'))] -4viy, [nxlN{r')] + ' J{r'),
C

and hence Q can be written as

k 'Q = n V'~E r' xV'Go r —r' dS'+4mik~ n V'Go r —r' xM r' dS'

+ ' J(r') V'G, (r —r')dS'

n V'xV'xE r' Go r-r' dS' — n. V'& Go r-r' V'xE r' dS'
s 8

+4wik, n [V'G,(r —r')xM(r')]dS'+ ™ ~J ~ V'G, (r —r')dS',
s C

which by Maxwell's equations V xV xE =ko'D+47lv'koV XM becomes

4, G=s, p D(r')G (r-r')ds ~ f 4 S'G (r- ')ds'- ~ E[ x( G— '')r'xE(r'))ds'
s C 8

+4~ik, n. V' x M r' G, r - r' dS'.
8

(14)

The last two integrals in (14) are identically zero since div curl A =0. On using the boundary conditions
again (14) becomes

G= 4 E(r )G (.--r )SS' " 4 S'G SS 4.fSG (; r )dd,
S+ k,c

which in view of the continuity equation V J=-i~p reduces to

q = n. E(r')Q, (r —r')dS'.
s+

On substituting (15) in (12) we get

(r)+—Vx [nxE(r')]GG(r —r')dS'+ — [nx(V' xE(r'))]G (r —r')dS' ——V n ~ E(r')Q (r —r')dS' =Os. 4m

(16)

which is the EBC. Similar analysis enables us to show that the expression (8) for the scattered field leads
to

E "(r) =—V x [n xE(r')]QG(r —r')dS'+ — [n x(V' xE(r'))]GG(r —r')dS'
4m s+

n E(r')G, (r —r')dS'.
m s. (17)

It could be seen that (16) has been derived with-
out any assumption on the properties of the ma-
terial. medium and hence it is applicable to a ma-
terial medium characterized by arbitrary consti-
tutive relations. We have thus shown that the
EBC and the extinction theorem are just different
facets of the same relation (7).

lation (7).
The T matrix for the scattering can be formu-

lated in the usual way and one obtains results
equivalent to those of Waterman, Strom, and co-
workers. It is perhaps interesting to note that the
results of the above authors are directly obtained
from (7) and (8) without ever going to the explicit
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form of the EBC. This is easily seen by expand-
ing G, E, E{') in terms of a complete set of vector
eigenfunctions [(2.3) of Ref. 5b] and by expressing
the surface fields at a point just outside the medi-

um in terms of the surface fields inside the medi-
um. The latter is done via the Maxwell boundary
conditions.
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