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Absorption spectra of strongly driven tvvo-level atoms
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An analysis of the well-known absorption spectrum of a strongly driven two-level atom, in terms of the
response of the individual mode of the atomic system, is given. It is shown how the response of a given mode
leads immediately to the dispersionlike behavior of the absorption spectrum for frequencies in the
neighborhood of the Rabi frequency.

The absorption spectrum of a strongly driven
two-level atom is known to have several anoma-
lous features. '~ For example (see Fig. 1), one
finds that there are regions of frequency in which
absorption is negative, i.e., instead of absorbing
energy from the probe field, the atom emits into
it. This can also be viewed as a parametric pro-
cess, in which the incident signal is amplified.
Another important feature of the spectrum is that
for frequencies close to the Rabi frequency, the
spectrum behaves like the real part of the dielec-
tric constant in the usual dispersion theory' (Fig.
2). This feature is quite anomalous as normally
one would think that the absorption spectrum

should behave more like the imaginary part of the
dielectric constant (Fig. 2), which is indeed the
case for low driving fields (Fig. 1).

In this paper, we examine the response of the
individual "mode" of the atomic system and com-
pare this response with the response of an oscil-
lator to a driving field. A comparison of the two
response functions shows why the absorption
spectrum in the vicinity of the Rabi frequency
shows the dispersionlike behavior.

The absorption spectrum of a strongly driven
two-level atom with energy separation cqo is given
by (cf. Refs. 2, 3, and 6)

f (z) = [(z+ T,' —i h)(z+ T,'+ i h)(z + T,') + 4n'(z+ T,')] '

[2a'+ (z+ T 2'+ i&)(z+ T,') —2n2(i 6+ T2') '(z+ T,'+ i n) j, g = (g —(o (2)

where 2n is the Rabi frequency and other symbols
have standard meanings. Figure 1 shows the be-
havior of S„(&o) for a, weakly driven (n =,—'o y) and a
strongly driven (n = 10&) two-level atom for the
radiative relaxation of the atom (T,'=2y=2/T„
W"'= --,'), and for the case when, the driving field
is at resonance (6=-0). In order to understand the
behavior of S„ in the vicinity of 2n, we examine
the response equations for an oscillator for ap-
plied frequencies close to the resonance fre-
quency, and response at ~:

and hence

x(&) = '6 &o(&o —(u —2i&oy) ~

=n &,(-»~,) '[y+ i((o, - (o)]-'

=0&,(2~0) 'y((o, —(u) for &u-(uo.

Therefore for u&
—&u„Eq. (3) can be approximately

reduced to

x+ yx+ i+ox=g 8 (f) (-2iu)0) '.

x+2yx+uPx=q&(t), g(t) =q, e '"', (3)
The well-known behavior of the real and imaginary
parts of y(~) is shown in Fig. 2. It is clear that
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FIG. l. Absorption spectra Sz() as a function of frequency, in units of &, for the radiative relaxation of the atom and

for (a) G. = ~ y, (b) G.'=10'.
%0

the real part of x((d) [solution of Eq. (5)] has the
dispersionlike behavior, whereas the imaginary
part has absorptionlike behavior. T-he form of the
coefficient multiplying 8 is crucial for the analysis
of the response equations for the strongly driven
two-level atom. The equations giving the linear
response of a two-level atom are

0 0

g = (Ao+A, ) g+D, Ao= —— 0 1 0
T2

0 0—T2

1

where (I) represents the linear response of the
variables (S'), (S'):

with (1)(to) denoting the equilibrium values of the
variables (S'), (S ), and (S') and a, denoting the
couplingwiththeweakprobefieM. When o. =0, then
the driving term in the equation for (F), is purely imagi-
nary, since g(o) is real, and hence the usual sit-
uation prevails, i.e., the expected absorption
spectrum is obtained. When e is small but not
zero, a straightforward second-order perturba-
tion theory with respect to e shows that

0 0 2

A, =in 0 0 -2 (6)
(I), =- —T,'g, +i», (I),

' 'e'"'+2ia P'

D= 2jo', ~

y(o)etot
3

$(o )e tot-
3

y(o)e tot —c.c.

where rg(t) is the linear response to first order in
a, which is now known and is real by definition.
The above equation shows that the driving term
is purely imaginary, and hence the expected be-
havior of the absorption spectrum is obtained.
For large values of e, we have to use a nonper-
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equation=@ satisfiesThen the matrix

~

g + A)C'+ &
~Bp+ 1 (10)

«~ sin ~&~4~2 &| 3

«) ]Qte(0) gos Qt+ 2 1X) =ms=~* 2~3 ~~, (4.2 Qs

(p) fQ t)2 2
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The column matrix 5), on using the form of /to',
reduces to

-4W2 sinQtn, g,'"

v 3 n, cosQt 2i(,"' 1—
2T~O' T~+

v 3 n, cos Qt -2iq,"' (I+
gr(0)

Tan

—W3 n~W'

T, n

0

(13)

The response of (S') near ~ —&u~=2n will be (S')

(12)
Equation (10) gives the response of each "mode"
with frequencies 0, -2n, 2n. In this equation the
terms involving B, are counter-rotating terms as
n is large, and therefore, for strong driving
fields the coupling of C, to C, etc. can be ignored,
as one is justified in making the rotating wave
approximation. Moreover, for strong fields
(,' '-0, and therefore,

' W"'cosQt
QT~

(14)

It is important to note that the driving term in
(14) is real, i.e., the effective field driving the
mode is nozg out ofphase by a factor of —,'w as
compared to the field in Eq. (5), and this is the

- crucial point. We have seen earlier that the
driving term in Eq. (5) was purely imaginary. It
is therefore clear that the imaginary part of C,
will behave like the real part of x. This explains
why the absorption spectrum of a strongly driven
two-level atom shows the dispersionlike behavior
for frequencies close to the Rabi frequency.

3 4 3 as o'. is large and henc e othe r com-
ponents 4» 4, will contribute negligibly small
for ~ —~~= 2~. Since the absorption spectrum is
proportional to the imaginary part of the response
function and hence near ~ —v~ =2m, the absorption
spectrum will essentially be given by the imagi-
nary part of the response of 43. The equation of
motion for C, from Eqs. (10)-(13) is

1 1 1)4 = — 2io. +— —+—~ C
2 T, T )
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