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Analytical solution for the spectrum of resonance fluorescence of a cooperative system of two
atoms and the existence of additional sidebands
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The analytical solution for the spectrum of resonance fluorescence from a collective system of two atoms
is presented. It is shown that the spectrum is a decreasing function of frequency in the neighborhood
co —coL ——+20 (0 is the Rabi frequency) for moderately large 0 and exhibits resonant structure only for
extremely large 0-100@. For moderately large 0 the resonant contributions at co —coL = +20 are
destroyed by the nonresonant contributions; hence the additional structures at +20 can be resolved only by
filtering the nonresonant contributions.

Recently the structure of the spectrum of reso-
nance fluorescence of a cooperative system of
atoms has been studied in detail' ' and several
different authors have reached different conclu-
sions. The master equation which describes reso-
nance fluorescence from a collective atomic sys-
tem. has not been solved analytically, ' however
very careful numerical studies" for two, three
and, five atoms show that the incoherent part of
the spectrum in the limit of large Rabi frequen-
cies 0, consists of the peaks at co =co~, v~+ 0. Nu-
merical computations als'o show that in the limit
of large 0, the spectrum for a cooperative situa-
tion is identical to the single-atom case' except
for a scaling factor. This scaling factor has also
been discussed by Amin and Cordes. ' Mavroyan-
nis has done a Green's-function calculation and
has reached a similar conclusion for the two-atom
case. A recent paper by Senitzky" also examines
this equation, however Senitzky has found that the
spectrum of a cooperative system would consist
not only of the usual peaks but also of additional
sidebands at the harmonics of the Rabi frequency.
Senitzky has arrived at this conclusion by using a
certain decoupling approximation. One might ask,
are these additional sidebands merely an artifact
of the decoupling approximation' or a reality, and
if they really exist, how the earlier numerical
studies missed them. It can, of course, be argued
that the numerical studies might not have been
accurate enough to see these weak additional side-
bands. In view of these differences, we have re-
examined the cooperative system of two atoms
and we have obtained the analytical solution for the
master equation, valid for all values of the laser
field strengths. For moderately large laser field
strength(Q= 50y), the analytical solution shows no

additional sidebands at ez+ 2Q(Senitzky's argu-
ment when used for the two-atom case only shows
two additional peaks). The approximate form of the
analytical result is also examined. The approxi-
mate form shows the resonant structure at +1
+ 20. However, there are also nonresonant con-
tributions which kill these additional resonant
structures so that the resultant approximate form
shows no additional peaks at &~ + 20. For ex-
tremely intense fields (Q &100y) the analytical
results show well-defined additional sidebands in
the r esonance fluorescence spectrum. Our analyti-
cal results shed new light on the range of 0 values
for which additional sidebands are present and also
indicate why in the early numerical work such
bands were missed.

We follow the development of Paper I very close-
ly and use the same notation as in Paper I. The
master equation describing the atomic dynamics
for a cooperative system under the influence of
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FIG. 1. Spectrum 3S{&)as a function of v for p =10,
20, 50 in the neighborhood of & =4P: the solid and dotted
curves correspond respectively to exact results lEqs.
{9)and {12)l and approximate result I.Eq. {13)].
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the laser field is given by

BP—= -sg[S'+S p]+2y(S pS' ——,'pS S
Bt

——'S+S p), (1)
where p is in a frame rotating with the laser fre-
quency e~ which is taken to be on resonance with
the atomic frequency. 2y is the Einstein-A coef-
ficient and 2g is the Rabi frequency 0; S' are the
collective operators. It has been shown in Paper
I (Appendix A) that in the representation

~j,m),
j = 1, m =+ 1,0, Eq. (1) can be written in the matrix
form as

—=Ay,dx
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7 =2yt
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(3)

(4)

Using Eqs. (2)-(5), one can write the time dependence of the dipole moment as

e "(S'(g ))dT

1 A A=;K}+V2-C" - C'2)
~2

=1 5

[(z -A), X, (o)+(z-A), X, (0)] — Q [(z —&),,'@;(0)+(z—&). C, (0) —(z —&),,'z-'I,
—(z —a);,'z-'I, .].

Using the quantum-regression theorem and the steady-state solutions of Eqs. (2), and (3), viz. ,
Xi = X2=X3=0

4, =2g"/D, C, =-2g'(1-g")/D, C, =2g"/D, C, =g"/D, @,=-g"(1-g' )/D,

D=3g -2g +1 9

we obtain the form of the steady-state correlation function

f'd'(z) =f dv d "lim( S( +l}7S(l))
0 g-+ oo

p4 2 4 2
[(z —B)s2'+ (z —a)22'] 1 —-„+———~ + (z —B),,'+ (z —B),,'

1
+ —,[(z -a);,'+(z-a);,' —(z -a);,' —(z -a);,'+(z-A);,'+(z-A);,']

+ (z —A),,'+ (z —A), ,' + (z —A),,'+ (z —A.),,'

A straightforward but long algebraic manipulation reduces Eq. (8) to

g" N(z) (z+1)(2z+5)+1+Bp'
D D(z) (z + 2)(z + 1)'+2P'(2z + 1)

X(z ) = (z + 3)(z + 1)(z + 2)' + 4p'(4z '+ Bz + 6) —z (2z + 3)(z + 2) —16p'(2z + 3)

+ [(1+4/z) + 1/P'(1+ 1/z)][(z+ 2)'(z + 1) + 4P'(4z'+ llz + 8)],
D(z) = 4P'[z(z+ 1)'+8g(2z+ 3) ]+ (z + 1)'(z + 2)'+ 2P'(z +2)(8z'+ 1Vz + 8) .

The spectrum of resonance fluorescence is defined by

S(v) =ReI' &"(i ((u —&u~)/2y), )d = (u —(u~/2y.

(8)

(10)

(12)
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A plot of the spectrum, which follows from Eq. (9), in the neighborhood of v= 4P for P = 10, 20, 50 is shown
in Fig. 1. We find that (i) for moderately large Q the spectrum consists of the usual three peaks at &u= &u~

a Q, co~. The extra peaks expected at &u= &u~ +2Q are absent. (ii) For extremely large Q &100y, the spec-
trum shows well-defined sidebands. We now present the approximate form which follows from Eq. (9) and

which is valid for large S. A careful perturbation analysis of Eq. (9), in the inverse powers of P, leads to
the following expression for the incoherent part of the spectrum:

-'(1 —1&40') -'(1 —1/4P') (1 —1/1 ~P')
(~ —2())'+ (l)' (~+ &()'+)(l)' ~'+ l (8()' (~ —4())' (l)' )

(~-2())'+(-')' (8((' (~-)())'+(.)' )' (13)

The first three terms in Eq. (13) represent the
usual three peaks, the next two terms of (13)
represent the additional sidebands as discussed
by Senitzky, and the remaining terms of E(l. (13)
are the nonresonant contributions which hitherto
have not been obtained. Expression (13) as such
shows the additional resonant structures at p= +4P.
However, the nonresonant contributions in Eq. (13)
take over the resonant ones in the region v-+4P,
as a result the complete expression (13) shows no
additiona/ peaks at v=+4(3, forS-10. Theresonant
structure at v =+4P can thus be studied only if one
can suppress all the nonresonant contributions.
Expression (13) is plotted in Fig. 1 for P =10, 20, 50
in the neighborhood of 4P. For very large values
of P (Q= 200 y) the additional sidebands do appear.

We have thus shown the following: (i) For mod-
erately large 0, the analytical expression for the
spectrum of the resonance. fluorescence from a

cooperative system of two atoms shows no addi-
tional peaks besides the usual three peaks. The
approximate expression shows only an apparent
resonant structure at & —&~ =+2Q, which is wiped
out by the nonresonant contributions. (ii) For ex-.
tremely large 0, the additional sidebands are clear-
ly resolvable. We expect this tohappen in general
for an arbitrary number of atoms, and we are de-
veloping a new technique, for the solution of the
master equation' based on the principle of detailed
balance and deviations from it, which should en-
able us to calculate all the resonant and nonreso-
nant contributions.
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