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Frequency-modulated spectra of coherently driven systems
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Frequency-modulated spectra of coherently driven. quantum systems are calculated using the density-matrix
formulation. The modulated spectra are shown to be related to the two-time correlation functions of the polarization
operators of the system. In the limit of modulation frequencies small compared to the width of the spectral features
under study, the in-phase signal (quadrature signal) is shown to be related to the derivative of absorption (second
derivative of dispersion) in the absence of any modulation. Modulation spectra in strong fields are calculated
explicitly for two-level systems; such spectra are shown to yield useful information concerning light shifts and Rabi
splittings. The influence of laser temporal fluctuations on such modulation spectra is also discussed.

I. INTRODUCTION

Frequency-modulation spectroscopy' ' has been
recently shown to be of great use in probing the
spectral features. Relative advantages of using
the modulation at frequencies either much smaller
or much greater than the width of the spectral
features have also been discussed. For example,
it has been shown by Bjorklund that both absorption
and dispersion associated with a spectral feature
can be studied with high degree of sensitivity using
frequency-modulation techniques .

In this paper we study theoretically the frequen-
cy-modulated spectra of strongly driven systems.
We present a density-matrix formulation and ob-
tain analytical expressions for the frequency-
modulated spectra. The nature of the frequency-
modulation spectra in the limiting cases of large-
and small-modulation frequencies is discussed.
We show how the Rabi splitting of the energy lev-
els (dynamic Stark effect) could be probed by the
frequency-modulation spectroscopy. The treat-
ment we present is fully quantum mechanical and
valid generally under the. condition of weak mod-
ulation. The numerical results for the frequency-
modulated spectra are presented in Sec. III. The
effect of laser temporal fluctuations on the char-
acteristics of the frequency-modulated spectra is
treated in Sec. IV.

II. GENERAL FORMULATION
OF FREQUENCY-MODULATED SPECmA

In this section we give a general formulation of
the frequency-modulated (FM) spectra. We will
relate FM spectra to the linear response of the
system and to the two-time correlation functions
of the system. We present the results in the di-
pole approximation. The expression for the inci-
dent field modulated at frequency 0 can be written
as

+ OO

E(t)=g, P Z„(M)exp[i(&o +nQ)t]+c. c. ,

(2. l)
where M is the modulation index and J„ is the
Bessel function. We assume that the modulation
is weak so that (2. 1) can be approximated by

E(t)=E +E (2.2)

where

E = Z, (1 —iM sinQt)e'"&' = E (2.3)

=Lop —i[H, (t—)) p],
Bp (2.5)

where L, is the unperturbed Liouville operator,
giving all other coherent interactions and the in-
coherent interactions such as radiative decays,
collisions, etc. The rate of the absorption of en-
ergy from the external field is given by

dW d(P)
( )dt dt

(2.6)

Since the modulation index M is weak, we can cal-
culate the response of the polarization to lowest
order in M. It is clear that the lowest-order re-
sponse will have the structure

(P(t)) =Ae' &' ~ +Be ~ +Ce~"~ +c.c. ,

(2. '1)

where A and 8 are linear in M and C is indepen-

The interaction Hamiltonian in the dipole approx-
imation has the structure

H, =-p z(t) =-[p"'.z'-'(t)+p' 'z "(t)],
(2.4)

where P is the polarization operator with P"' de-
noting its positive- and negative-frequency com-
ponents and in writing (2.4) we have used the ro-
tating-wave approximation. The density matrix of
the system satisfies
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dent of M. On substituting (2.7), (2.2) in (2. 6), carrying out the time averaging over the rapidly
oscillating terms such exp" '"&', exp'"""I'""' and retaining only the terms to lowest order in M,
we obtain the following result for the rate of absorption of energy & from the external field:

W = i&eL (C ~ 8, —((), C*)—(OL sinQt[((', ~ (A —B M—C) + c.c.]+i(()L cosQt[g, ~ (A + B) —c.c.]
+iQ cosQt[h, ~ (A —8) —c.c.] —0 sinQt[ho ~ (A + B)+c.c.]. (2.8)

Note that the last two terms in (2.8) can be usually
ignored as u~ » Q. We ean thus write for the in-
phase (cosQt) component C and the quadrature
component 8, the following:

C(0) =i(0 [g (A+B) —c.c.]
+ iQ[((), (A -B) —c.c.],

(2.9)
S(0)= -(s)L[(()0 (A —B —MC) + c.c.]

-0[g, ~ (A+ B) +c.c.].
The coefficients A, B, and C ean be calculated
from the solution of (2. 5). The general character-
istics of the spectra depend on the strength of the
field Sp. We discuss the two eases separately.

A. Weak external field 8&

~ COB=~™ dTe-«-L-o) &[p ).g'', $(T)])2 p

Clearly we have

(2. 16a)

(2.16b)

has to be evaluated in the absence of the external
field. On using (2.3), (2.4), and (2.7), we find
that the coefficients A, B, and C are related to the
two-time correlation functions of polarization op-
erators in the following way':

C=-i d7e-'"I-' P ~ g, , P 7, 2. 16
0

(O

A= J dTe ""L'"-"([P"h~, &(T)]),

H (t) =pe'"~'H (2.10)

For weak external fields it is sufficient to solve
(2.5) to lowest order in To, . It is clear that if

B(+0)= -A(-0),

MA(0=0) =+—C,
2

BA BA

BA BA
BQ BQ)I

BB BB
BQ B(0L

BB BB
BQ' B~2 '

L

(2. 1V)

(j) ~ g &g (x)

with p' being the solution of
(&)Pgp() i[H(t)p()(t)]

(2.11)

(2.12)

then in the limit of long times, the density matrix
will have the structure

p —p + p + ~ ~ ~
(O& 0)

(2. 18)

Thus for very small modulation frequencies we
get the approximate results

and hence for very small modulation frequencies
we get the expansions

M BC Q B2C
A(0) =—C+ 0 +— +"

Bco 2 Bco .

Q2 B2C
B(0)= C —0 +-

BQPI 2 B401

It is easily seen from (2.10)-(2.12) that
C(0)=i(0LMQ (Too C —iso ~ C ),

Bcog
(2.18)

p(1) i,) dT L v' -iO(tf [H)sp (o)]
J iS St S

p

where p",, is the zeroth-order steady-state solu-
tion given by

(2. 13)

(o)I p =0. (2.14)

From (2.13) and (2.11) and using simple proper-
ties of quantum mechanical operators, we can
write the expectation values of any operator Q in
the form

(())) = pie("~' dT e ' "f'([Hy, (I)(T)]),
p

(2. 15)

where the two-time correlation function ([H&, (I)(T)])

s(0) -=- ', (S, .c g', c').
BGOI

(2.20)

Note that in the absence of the modulation (M =0),
the rate of the absorption is related to ImC $p
[cf. Eg. (2.8)J and the dispersion is related to
ReC ~ (()0, since

~ C/h, ~
effectively gives the com-

plex susceptibility of the system [Eq. (2.7)].
Therefore we have proved using the density-matrix
formulation that in the limit of very small modula-
tion frequencies, the in-phase signal is related to
the derivative of the absorption (in the absence of
any modulation) and that the quadrature signal is
related to the second derivative of the dispersion. ~'

For arbitrary modulation frequencies as is the
case discussed in Ref. 4, we have for the two sig-
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nals

C(i)) =+iM)cs f dcs'"s'sinCs
0

x ([h, P (~), ((),
* P' ']) + c.c. ,

(2.21)

S(i))=iMM, j dss-&. ()-ccsCs)
0

x([h, P(7), h', P"])+c.c.
(2.22)

The asymmetry appearing in the strucutre of the
commutators in (2.21) and (2.22) can be removed
if we recall that we have already made the rota
ting-wave approximation and hence the commuta-
tors in the above can be replaced by

&[P '() S., ~*. P"]),

(2.23)

which is the vicinity of a resonant structure at Q)p

with width I", will have the structure

p( }( ) g p(n) hs)]& ]) 5 (scop

phase signal probes the absorption, whereas the
quadrature component probes the dispersion. We
have again obtained the result of Bjorklund. Note
that our derivation is fully quantum mechanical and
the above results are valid for weak external fields
only.

B. Strong external fields

We will now discuss, the nature of the frequency-
modulated spectra when M «1, but $0 could be
strong. In such a case the coefficients A, B, C
[Eq. (2.7)] would be some general functions of 7(.}„
and their explicit forms could be calculated pro-
vided Eq. (2.5) could be solved in the limit M=O.
This will be done in the next section for the case
of a driven two-level system and it will be shown
how the FM spectra' could provide us with a
convenient method of studying the things like power
broadening, dynamic Stark splittings, light shifts,
etc. The relations like (2.21) and (2.22) for the
spectra can again be obtained by rewriting (2.5)
in a frame rotating with the frequency w~ of the
laser field:

then the in-phase and quadrature components be-
come

(P(t)) =(P"(t))~e (" 'I+(P-'(t))~ e'"J.', (2.25)

r r' (p'+( — +c))' r'+( — -s))')

(2.24)

2((0, —(gi) ((e, —(gl, +Q)
M 'Cp +(.—,) p +(.—,sc)

((s)() —(Og —Q)
I + ((d)() —(0~ —Q)

(2. 25)

If Q»l", then all the components in the frequency-
modulated spectra are well separated and the in-

~~ =L~p~ —i[H~(t), p~],
Bp (2.27)

H&(t) =—(e'"' —e-("')(P ~ ((d', —P' ~ h ~), (2.29)
2

where

Ly
——Lc+i[P gc+P hc s]+.~, (2.29)

where the dots. denote detuning terms. On follow-
ing the procedure which led to (2.15), we find that
the first-order terms in the polarization response
are

(P( )(i}) . & ) »
I d, ,([P( ) d P( ) ][ P( )( }]} -i & d ) ([P( ) g P( ) d Pl )(i}]))

0

(2.30)

and hence on comparing (2.30) with (2.V) we find that

p- ~ p(+ ~ * p-
0

B=-i dr—e' ([P' ' '10-P' ' '~q, P (7')]) ~

0

Thus the in-phase signal will be given by

c(c))=+in M f dssincs([p' ''F& —p' ''X&, ][&'p' '(c)])+cc..

(2.31)

(2.32)

(2.33)

III. FREQUENCY-MODULATED SPECTRA OF A STRONGLY DRIVEN TWO-LEVEL SYSTEM

In this section we investigate the structure of the FM spectra of a strongly driven two-level system
of frequency , . 'The unmodulated spectra associated with such a system have been studied at
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length both experimentally and theoretically. '3+ '
The density-matrix equation (2.5) leads to the fol-
lowing Bloch equations for the expectation values
of the dipole-moment operators and the inversion:

B(S . 1
Bt Tp

it2 ——(S') —2ig(l +iM sinQt)(S ),
B(S ) . 1

Bt ' T2
—i& ——(S )+2ig(l —iM sinQt)(S ),

—(S ) = ——((S ) —q) —ig(1 —iM sinQt)(S ')at'= T,

+ ig(1 + iM sinQt)(S ),
g= —d gp, (P =((dp —(dl, ), (3.1)

where pl is the equilibrium value of (S ) in the ab-
sence of any external fields. Equations (3.1}are
in a frame rotating with frequency col. of the laser
field so that the time dependence of the polariza-
tion will be

C= (S)
(S )

1
2

l 0

q(l ) g('()(Q Q)

'
(i~ —I/&, )

(-i~ —I/&. ) +»g

-I/r,

and hence in steady state
()((

)t
e((}tq(()+e l(}tq(1)

where

'0 0 1

igM—(iQ —Ap)
~ 0 0 1 g(P}(~),

(3.6)

(3.'l)

(3.8}

(3.9)

(P) = d(S )e '"& + d(S )e '"& (3.2) On using (3.2)-(3.9) and comparing with (2.V), we '

find that
where d is the dipole-moment matrix element.
In the absence of any modulation (M =0) the steady-
state solution of (3.1}is given by

(S ) =—P i(0) —+ }Pz '0 ) 1
Tf ~ T2

(3.3}
B=-A(Q- —Q), (3.11)

A = (-igM)d/[(iQ -A())j(' + (iQ -Ap))p(](t}p(P)(~)

--'(iQ -Aphp' ~A"'(") +6"'("}]],
(3.10)

(S') =—P '(0)(-2ig) —+i t
T$: T2

C =—P '(0)(-2ig)d —+ (L) .g -g . '1

Ti T2
(3.12)

1 1
P(0) = +—a'+-

T2 Tj T2
(3.4)

On substituting (3.10}-(3.12) in (2.9) and on sjmpli
fication, we find the following results for the in-
phase and quadrature components:

In the presence of modulation, the first-order cor-
rections to (S'), (S ) obey the equation

C(Q) = 4g Mn(dl, ImL(iQ) —4g MQ ReK(iQ), (3.13)

S(Q) =4Mg Q ImK(iQ)

(t}' '=A g' '+2gMsinQt 0 0 1

l 0.
(3.5)

where

—(Z'Mete —P '(0) —Re2((C}), (3.14)

z(z}=p (z}p (0)—,
"

I(z (—,
' )'+(2+ —,

'
)(z+—,') 0 +(—,')' I,

L(Z}=P '(Z)P ~(0)—02 Z+—+ Z+ —0 + —
I,

1 1 2 1

Tg T2 Tf T2
(3.15)

p(z)=(, (z+ —,')+(z+—,') z e(ze —,')' .
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Note that the unmodulated terms ~&'~ in the energy
absorption [formula (2.8)] are

~'&=a~,(C S}-h*C*)

0.02

4g ~~. - -2 =, 316
+ ~ +4g

T2 T2-

which shows the usual power broadening. " The
analytical results (3.13), (3.14) are valid for arbi-
trary values of the strength of the field g and T„
T,. For very small values of the. modulation fre-
(luencies Q«1/T„ 1/T„ it is seen from (3.15)
that

C(Q) = 8g'Mm, a(-q/T, 'T,)QP '(0)

O.OI

{a)

=MQ 'W( &((d )
8

(3.1 i)

S(Q) = -4g'MQ ~ P-'(0)
2 Q2 +

T2

(3.19)

Note that the signals C(Q} and S(Q) for 6 = 0 are
in general very small as these are proportional to
the modulation frequency Q. Such signals probe

Hence the in-phase signal for the case of a two-
level system is still proportional to the derivative
of the zeroth-order absorption, irrespective of
the strengh of the external field. Note further that
if the external laser is exactly on resonance 6 = 0,
then

T 1
C(Q&=-4g'I(( ",P '(0&, , ', , ), (3.18&

0 20 40

FIG. 2. Same as Fig. 1, but now the external field is
strong g =10&.

the dressed-atom structure of the atom for 4=0,
which corresponds to the frequencies co~+ 2g, ~~
and with widths -', (1/T, + 1/T, ) and 1/T„respec-
tively. The structure of the frequency-modulated
spectra is such that only the central frequency
w~ makes a contribution. It may be interesting to
compare this structure with the structure of the
fluorescence in the amplitude-modulated fieMs.

0OI

01-
(a)

C

0.05

S
b)

10 20
-O.OI

FIG. 1. The in-phase signal as a function of modula-
tion frequency ~ for weak fields g=0.&&, &/&2 = ('V+ V~),

1/Tg= 2y, b = 2V with (a) )(,= 0, (b) p,= 2)(, (c) V, = 5&; 2&(

being the Einstein A. coefficient for the transition.

FIG. 3. The quadrature signal as a function of ~ for
strong fields g=10'Y; other parameters are the same as
in Fig. l.
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G25-

020-

015-

0.10

shape of C(Q) and S(Q) for the strong-field case.
C(Q) [S(Q)] has the absorption [dispersion] struc-
ture. It is clear from Figs. 2 and 3 that the two
signals can be effectively used to study Rabi split-
tings. Increase of T,' reduces the peak heights
and considerably broadens the signals. This again
could be understood in terms of the roots of P(z)
= 0, which are approximately given by" (for g
» 1/T„1/T, )

15 30 45
~-i~/v

60

FIG. 4. The in-phase signal as a function of ~L, for
large modulation fequencies 0= 50y and for g =10',
1/T2= (y+y ), 1/Tf + and (a) y,=0, (b) y, =2'y, (c)
'Y,= 5'Y.

0.15 ~

0.10 ~

005

Such a modulated fluorescence is known" to have
a contribution only" from the sidebands &~+ 2g.
The signals C(Q) and S(Q) are shown in Figs. 1—5
for various values of the relaxation parameters
and the field strengths. In Fig. 1-3 we have
plotted the dimensionless quantities C(Q)T, /
(4g'&M &dziiT~), S(Q)T,/(4g'b, M&oz7iT32), whereas in

Figs. 4 and 5, we have plotted dimensionless
quantities C(Q) T,/(4g'Mv~iiT', ) and S(Q)T,/
(4g'M&e~qT', ). The signals could be studied either
as a function of modulation frequency [Figs. 1-3]
or as a function. of the laser frequency &e~ (or
equivalently b) [Figs. 4 and 5]. Figure 1 gives the
inphase signal C(Q} as a function of Q for weak
fields g«1/T, and for various values of 1/T, . It
is easily seen from (3.15}that the peaks will be at
Q = + 6 with width 1/T, . Figures 2 and 3 give the

1 1 1 1 4g——+ ————,, + i(4g'+ b')'~.
T2 2 T~ T~ 4g

Figures 4 and 5 give the shape of C(Q) and S(Q),
for the strong-field case, as a function of w~ or
the detuning parameter 4 for fixed value of G. In
the spirit of the work by Bjorklund, 4 the modulation
frequency has been taken to be very large com-
pared with the width of the structure 1/T„1/T, .
The FM spectra again yield information regarding
the Rabi splittings, cf. the peaks in Fig. 4 and the
position of the dispersionlike structure in Fig. 5.
The behavior can again be understood in terms
of the roots of P(iQ) = 0, i.e. , the value of a for
which P(iQ) = 0. The 4 = 0 peak in Figs. 4 and 5 is
not seen because of the prefab, ctor multiplying the
expressions for 8 and C. The other dispersionlike
structure in Fig. 5 and the absorptionlike structure
in Fig. 4 gives the Rabi splittings. The width of
the peak at 4-(Q' —4g~)'~' in Fig. 4 is of the order
of Q/T (Q —4g')'~- I/T, .

IV. EFFECT OF LASER TEMPORAL FLUCTUATIONS
ON THE FM SPECTRA

We finally discuss the influence of laser tempor-
al fluctuations on the frequency-modulated spectra.
The laser temporal fluctuations could be incorpor-
ated in the theory by using the phase-diffusion
model of the laser, ' i.e. , rewriting the field as

E "(f)=8 (1 iMsinQt)e '"&' ' '"
~(f) = V(f), (V(f,)V(f.)&= »,~(f, —f,), (4.1)

(p, (t)) = 0,

oa

-010-

40

(-+)/'V

80

where p, (t) is the delta-correlated Gaussian random
process. It is evident from the structure of (2.4),
(2.6), and (4.1) that we should now calculate the
linear response of the operator

P +)( &)
+f@et&)+&P )(&)hei (ot)

instead of just the polarization operator fj(i). In
place of (2.7) we now write

((P & )e i@& t) ~ P(+)e-i@-&t) ))
FIG. 5. The quadrature signal as a function of coL„

parameters are the same as in Fig. 4. =Ae""i'""+Be""&""+Ce'"~ +c c (4 2)
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where the second bracket (( )) now denotes the en-
semble averaging over the stochastic distribution
of 4. The rate of absorption of energy from the
external field is again given by (2.8). The co-
efficients A, 8, and C needed in the calculation

of the energy absorption could be obtained from
(2.12), by following the analysis similar to that
which led to (2.21) and (2.22). The final results
for the in-phase and quadrature components
are

C(i)) =iMtee f des "s' " 'sicCe([P' '(e) S,P" de])+ c c.
0

S(C)=iMs f dee ' ' .'(1 —ccsCe)([P' (e) i(„P"d', ])+c.c.

(4.3)

(4.4)

In such a case the laser linewidth simply adds to the linewidth of each structure.
The strong-field results could be obtained by using the theory of multiplicative stochastic processes. '

It can be shown using the same procedure as in Ref. 20, that in place of (3.1), one now has the equations

S((See-ie(t))) I
Bt T2

iis ——, ((S e '~"))-2ig(l i+M sinQt}((S*)),
(4.5)

—,((S*))= ——((S' —q)) -ig(l —iM sinQt)((S'e '~("))+ig(1+iM sinQt)((S e'I'")), —,=—+y, .
1 ~ 2 2

These equations have the same structure as (3.1) but with I/T, - I/T'2=1/T, + y, . In view of this, the re-
sults (3.13), (3.14) for the in-phase and quadrature components are valid in the presence of laser temporal
fluctuations provided we make the replacement

1 1 1
+

T2 T2 T2
(4.6)

The variation of the signals with y, can be obtained from Figs. 1-5 if we keep in mind (4.6). In general in-
creasing y, reduces the peak heights and broadens the signals.
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