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Abstract

The creeping vertical motion of a fluid sphere (drop or gas) or liq-
uid bubbles of different shapes in another immiscible fluid confined by
porous boundaries is encountered in several situations in industry and
technology. Such flows are generally multi-phase in nature. In this work,
we have considered a flow field comprising a non-Newtonian bubble re-
gion surrounded by a liquid film of Newtonian fluid. This inner region
is bounded by a permeable cylindrical medium pervaded by the same
Newtonian fluid. We have studied the interaction features of this multi-
phase flow in terms of certain practically important geometrical and
physical parameters. We have carried out an exact analysis of the gov-
erning equations in the three flow fields — Non-Newtonian, Newtonian
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film and porous regions. The effects of pressure gradient, permeabil-
ity and rheological parameters on the bubble velocity and the flow in
different regions have been discussed.

Keywords: micropolar liquid bubble, immiscible fluid, creeping motion,

bubble velocity, pressure gradient, porous medium, permeability, rheological

parameters.

1 Introduction

The theoretical and experimental studies of laminar motion of bubbles, drops

and spherical as well as non-spherical particles in different fluid media have

been a subject of exhaustive investigations in the literature (see, for instance,

[10–13, 16–18]) for several decades. Such studies have received attention of a

large number of scientists for both academic and practical interests, mainly due

to large number of applications in diverse fields. For example, it is well known

that a good understanding of the behaviour of a rising bubble in polymeric

solutions can be of great help in areas such as volcanic eruptions, decom-

pression sickness, glass manufacturing, wastewater treatment, fermentation,

metallurgical processes, to name a few. On the other hand, a sound knowl-

edge of the movement of a single liquid drop in another immiscible liquid,

e.g., a Newtonian fluid drop in another Newtonian fluid medium, a power law

fluid (non-Newtonian) drop in a Newtonian liquid, etc., may well represent an

idealization of many industrially key processes such as atomization, food pro-

cessing, liquid-liquid extraction, production of polymer blends and emulsions

in the paint and detergent industries [19].

The study of stratified flow of two immiscible fluids in the presence of

porous boundaries is another important area of investigation as it can also indi-

cate idealization of several engineering processes and applications such as man-

ufacture of foam plastics, degradation of polymer melts in membrane modules

in polymer processing, controlled release applications encountered in pharma-

ceutical and agricultural engineering processes, oxygenation of blood encoun-

tered in physiological flows, etc. For instance, in petroleum engineering, during

the application of steam-injection method for enhanced oil recovery, water and

oil (as droplets) flow simultaneously through the porous rocks. Similarly, in

the accidental spills of multi-phase systems (oil and water) and the discharge

of industrial effluents containing immiscible liquids into settling ponds, the two

phases tend to stratify and flow along the porous walls of ponds. Therefore, in

order to develop a rational understanding it is desirable to improve the design
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of such processes and/or to ascertain the extent of environmental damage in

terms of contamination of soils. Admittedly, the process here is quite complex

due to the coupling of convection and diffusion of contaminants, thermal ef-

fects, etc. The same also applies to various other processes described earlier.

Thus, a satisfactory understanding of the fluid mechanical aspects of the flow

of two immiscible fluids in the presence of bounding porous media is germane

to the modeling of the overall process involving simultaneous mass transport

of a species. However, it is always desirable to build up the level of complex-

ity in a gradual manner as seemingly simple flows with limited applicability,

frequently, provide useful insights to develop more realistic models.

The study of slow movement of a single large liquid bubble, under gravity

and laminar flow conditions, in a surrounding immiscible liquid has attracted

the attention of researchers in the last few decades. In this direction, Gold-

smith and Mason [7, 8] carried out comprehensive investigations involving both

experimental and theoretical aspects and relating their work to real life appli-

cations such as flow of emulsions through narrow capillaries, deformation of

red blood cells during the flow through the capillary system of the body, etc.

They [7] assumed that a single large Newtonian fluid bubble, surrounded by

an immiscible Newtonian fluid, was slowly translating in a narrow, infinite,

vertical rigid circular tube. It was further assumed that the diameter of the

tube was much smaller than the dimension of the undistorted bubble. They

considered the cases of bubble rising as well as falling, under creeping flow con-

dition for the flow. The solution of the governing equations for both phases,

namely, inside region of bubble and the surrounding liquid, was obtained by

solving simultaneously the corresponding equations for each region and then

using an appropriate set of matching and boundary conditions. The theoretical

counterpart of their work was later modified by Ravindran [14] to account for

non-Newtonian (micropolar) features of the bubble. Subsequently, Bhatt [2]

extended the work of Ravindran by considering a circular tube bounded by a

porous medium. He argued that such a flow configuration, in which there is

a surrounding porous medium, can be a more realistic model for the motion

of red cells surrounded by plasma in a capillary of the human body. Bhatt [2]

used Darcy law and the well-known Beavers-Joseph boundary condition [1]

to model the flow in the porous medium and the interface condition, respec-

tively. The work reported in [9] gives a good account of boundary conditions

for Darcy’s flow.

In many applications, the porous medium surrounding the tube will be not

only of finite thickness, but may also be of moderate to high permeability. In
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such cases, it is imperative to consider other equations to model the simultane-

ous flow in the surrounding porous medium. An appropriate porous medium

model, extensively used in the literature in such cases, is the Brinkman equa-

tion (see [4, 5, 11]). As is known, the use of Brinkman equation necessitates

considering a different set of matching conditions at the clear fluid-porous

medium interface as well as no-slip conditions at the solid boundary [3, 15]. In

this work, we have extended the work of Bhatt [2] by considering Brinkman

equation. The use of this equation has led to our considering simultaneous

flow in three regions: the non-Newtonian bubble region, the Newtonian film

region and, additionally, a porous region of finite thickness. As a consequence,

we need to use two sets of interface conditions: at the bubble-film interface

and at the film-porous medium interface. Our main aim in this work is to

investigate the effects of pressure gradient, permeability of the porous medium

and the non-Newtonian parameters on key physical quantities such as the bub-

ble velocity, and the fluid velocity in the porous medium as well as the entire

region.

2 Governing Equations

We use the cylindrical polar coordinates (r, θ, z) with the positive z-axis as

the downward vertical. Let the suffixes 1, 2, and 3 — used with the velocity

(q) and the pressure (p) — denote the quantities associated with the bubble,

the surrounding film and the porous medium, respectively. We denote the

thickness of the film by h1 and the thickness of the porous medium by h2 . For

the uni-directional flow in the z-direction being considered here, the vertical

velocity components in the three regions are denoted by qi(r), (i = 1, 2, 3). Let

ω(r) be the micro-rotation associated with the micropolar fluid bubble.

As stated earlier, the momentum equations of a viscous, incompressible

flow in a rigid tube were originally derived and discussed by Goldsmith &

Mason [7]. For the present problem, the governing equations for the axi-

symmetric creeping flow in the three regions are given by [2, 6, 20]

Region I – Micropolar fluid flow: 0 ≤ r ≤ a − h1

(m1 + m2)

(
r
d2q1

dr2
+

dq1

dr

)
+ m2

(
r
d2ω

dr2
+

dω

dr

)

− r

(
dp1

dz
− ρ1g

)
= 0 (1)
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m3

(
r
d2ω

dr2
+

dω

dr
− ω

r

)
− m2r

(
dq1

dr
+ 2ω

)
= 0 (2)

Region II – Newtonian film region: a − h1 ≤ r ≤ a

μ

(
r
d2q2

dr2
+

dq2

dr

)
− r

(
dp2

dz
− ρ2g

)
= 0 (3)

p1(z) − p2(z) =
β

a − h1
(4)

Region III – Porous medium (Brinkman model): a ≤ r ≤ a + h2

μ

(
r
d2q3

dr2
+

dq3

dr

)
− r

(
dp3

dz
− ρ2g +

μ

k
q3

)
= 0 (5)

dp1

dz
=

dp2

dz
=

dp3

dz
= P, a constant (6)

It may be mentioned that equation (4) follows from the Laplace capillary

equation for the pressure distribution at the bubble/film interface [7].

In the above, m1, m2, m3 are the micropolar parameters of the fluid in the

bubble, pi is the pressure, ρ1 the density of the micropolar fluid, ρ2 the density

of the fluid occupying the film and the porous region, μ the viscosity of the

fluid in regions II and III, β the interfacial tension in the bubble, a the radius

of the tube, and k is the permeability of the porous medium.

3 Boundary and Interface Conditions

The equations (1), (2), (3) and (5) need to be solved subject to a set of bound-

ary and matching conditions. Physically, these conditions can be described

as

• Microrotation vanishes at the bubble/film interface

• q1 and ω are finite on the axis (r = 0)

• Velocities at the bubble–film interface (r = a−h1) and at the film–porous

medium interface (r = a) are continuous

• Shear stresses at the bubble–film interface (r = a− h1) and film–porous

medium interface (r = a) are continuous
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• The flow is subject to the no-slip condition at r = a + h2

In mathematical terms, the above conditions, together with the continuity of

volume flux condition, can be written as

(a) ω = 0 at r = a − h1

(b) q1 and ω are finite at r = 0

(c) q1 = q2 at r = a − h1

(d) (m1 + m2)
dq1

dr
= μ

dq2

dr
at r = a − h1

(e) q2 = q3 ,
dq2

dr
=

dq3

dr
at r = a

(f) q3 = 0 at r = a + h2 , h2 = ε1h1 , 0 < ε1 ≤ 1

(g)

∫ a−h1

0

2πrq1(r) dr = −
∫ a

a−h1

2πrq2(r) dr = π(a − h1)
2W (7)

In equation (7g), W is the bubble velocity, and all other quantities are as

defined before. We also note that the condition (7g) above is physically more

realistic than the one used in a related work [16].

4 Solution Procedure

We now proceed to obtain solutions of the governing equations in the three

regions I—III using the relevant conditions given in equation (7). We shall

first obtain an equation governing the microrotation ω . It may be noted that

equation (2) is coupled with equation (1). Eliminating q1 between equations

(1) and (2), it can be shown that the differential equation of ω is

r2d2ω

dr2
+ r

dω

dr
− (α2r2 + 1)ω =

α2(P − gρ1)

4m1 + 2m2
r3 +

C1α
2

2m1 + m2
r (8)

where C1 is an arbitrary constant and α2 = m2(2m1+m2)
m3(m1+m2)

.

Equation (8) can easily be re-written as a non-homogeneous Bessel equation

of order 1, in the form

x2 d2ω

dx2
+ x

dω

dx
− (x2 + 1)ω = F (x) (9)

where

F (x) =

(
P − gρ1

2α(2m1 + m2)

)
x3 +

(
C1α

2m1 + m2

)
x, x = αr
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The general solution of equation (8), expressed in terms of the original variable

r, is

ω(r) = C2I1(αr) + C3K1(αr) −
(

P − gρ1

4m1 + 2m2

)
r − C1

(2m1 + m2)r
(10)

In the above, I1 and K1 denote the Bessel functions of first and second kind,

respectively, each of order 1; and C2 , C3 are arbitrary constants, to be deter-

mined.

Having obtained the general solution for ω(r) , we can now obtain an ex-

pression for q1(r) from equation (1), in the form

q1(r) =
m2

α(m1 + m2)
[−C2I0(αr) + C3K0(αr)]

+

(
P − gρ1

4m1 + 2m2

)
r2 +

(
2C1

2m1 + m2

)
ln r + C4 , (11)

C4 being another constant of integration. Furthermore, I0 and K0 are modified

Bessel functions of first and second kind, respectively, each of order 0 . This

completes the solution for the bubble region.

The process of finding the general solution for the Region II is straightfor-

ward. Integration of equation (3) leads to

q2(r) =

(
P − gρ2

4μ

)
r2 + C5 ln r + C6 (12)

C5 and C6 being another set of arbitrary constants.

We shall now obtain the solution of equation (5) valid in the porous re-

gion III. This equation can be first expressed as

r2d2q3

dr2
+ r

dq3

dr
− r2

k
q3 =

(
P − gρ2

μ

)
r2 (13)

Following the same procedure as in the solution of the microrotation equa-

tion (8), one can show that equation (13) too transforms to a non-homogeneous

Bessel equation of order zero, whose solution can be shown to be given by

q3(r) = C7I0

(
r√
k

)
+ C8K0

(
r√
k

)
− k(P − gρ2)

μ
(14)

where C7 and C8 are arbitrary constants.

Equations (10), (11), (12) and (14) represent, respectively, the general so-

lutions of the microrotation of the bubble in region I and the fluid velocity

in the three regions of the flow. The particular solution for the problem at
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hand can be obtained by evaluating the constants C1–C8 using the conditions

in equation (7). It can be shown that these constants are given by

C1 = 0

C2 =
0.5(P − gρ1)(a − h1)

(2m1 + m2)I1(αa − αh1)

C3 = 0

C4 =

(
P − gρ2

4μ

)
T1 +

(
P − gρ1

4m1 + 2m2

)
T2

− g(ρ1 − ρ2)(a − h1)
2 ln(1 − h1/a)

2μ

C5 =
g(ρ2 − ρ1)(a − h1)

2

2μ

C6 =

[
k(P − gρ2)

4μ

]
T3 +

g(ρ1 − ρ2)(a − h1)
2 ln a

2μ

C7 =

[
k(P − gρ2)

2μ

]
T4

C8 =

[
k(P − gρ2)

2μ

]
T5

In the above, the quantities T1–T5 are defined as

T1 = h2
1 − 2ah1 − 4k + k

[
2T4I0

(
a√
k

)
+ 2T5K0

(
a√
k

)]

T2 =
m2(a − h1)

α(m1 + m2)

I0(αa − αh1)

I1(αa − αh1)
− (a − h1)

2

T3 = 2T4I0

(
a√
k

)
+ 2T5K0

(
a√
k

)
− a2

k
− 4

T4 =
1

T6

[
2K1

(
a√
k

)
+

(
γa√

k

)
K0

(
a + h2√

k

)]

T5 =
1

T6

[
2I1

(
a√
k

)
−

(
γa√

k

)
I0

(
a + h2√

k

)]

where

γ = 1 − g(ρ1 − ρ2)(a − h1)
2

(P − gρ2)a2

T6 = I0

(
a + h2√

k

)
K1

(
a√
k

)
+ I1

(
a√
k

)
K0

(
a + h2√

k

)
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5 Bubble velocity

In this section, we shall obtain an analytical expression for the translation

velocity of the bubble. Needless to say, in applications involving the flows of

the type considered here, estimation of the bubble velocity and its variation

with quantities such as pressure gradient, is of great practical importance.

To obtain the bubble velocity, we first consider the volumetric flux condition

— i. e. , the continuity requirement for the flow — given in part (g) of equation

(7), which is equivalent to two equations. One of these equations, namely,

∫ a−h1

0

2πrq1(r) dr = π(a − h1)
2W (15)

can be easily shown to give, after detailed algebra, an expression for the bubble

velocity W , which would also include the pressure gradient P . On the other

hand, the second equation, namely,

−
∫ a

a−h1

2πrq2(r) dr = π(a − h1)
2W , (16)

in conjuction with the expression obtained for W earlier, using equation (15),

can finally be shown to yield

(1 − α1 + 2λL + λT7)P − (1 − α1 + 2λL)gρ1 − λgρ2T7 = 0 (17)

where

L =
2ah1 − h2

1

(a − h1)2

λ =
2m1 + m2

2μ

α1 =
2m2

α2(m1 + m2)(a − h1)2

[
α(a − h1)

I0(αa − αh1)

I1(αa − αh1)
− 2

]

T7 = L2 − 4k(L + 1)2

a2

[
T4I0

(
a√
k

)
+ T5K0

(
a√
k

)
− 2

]

As our emphasis in this work is on analysing the effects of pressure gradient

and other parameters on W and q3 , we have not computed P . However, an

explicit expression for P can be obtained, after some algebra, from equation

(17) in conjuction with the expressions of T4 and T5 .

Finally, an expression for the bubble velocity W can be obtained in the

form

W = W1 + W2 + W3 + W4 + W5 (18)
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where

W1 =
(P − gρ1)(a − h1)

2

8m1 + 4m2

W2 =
m2(gρ1 − P )

(m1 + m2)(2m1 + m2)α2

W3 =

(
P − gρ2

4μ

) [
h2

1 − 2ah1 − 4k + 2k

{
T4I0

(
a√
k

)
+ T5K0

(
a√
k

)}]

W4 =
g(ρ2 − ρ1)(a − h1)

2 ln(1 − h1/a)

2μ

W5 =

(
P − gρ1

4m1 + 2m2

) [
m2(a − h1)

α(m1 + m2)

I0(αa − αh1)

I1(αa − αh1)
− (a − h1)

2

]

6 Results

In this section, we shall analyze the effect of certain parameters (e.g., rheologi-

cal, permeability of the porous medium) on some flow variables of practical in-

terest. Our emphasis will be mainly on exhibiting plots of variation of the bub-

ble velocity, W, and the velocity of fluid in the porous region (0.4 ≤ r ≤ 0.5).

For the sake of completeness, we have also included a couple of graphs showing

the variation of fluid velocity in all three regions of the cylinder, at a typical

cross-section of the circular tube (0 ≤ r ≤ 0.5). It is to be mentioned that

we have included two important cases, namely, ρ1 < ρ2 and ρ1 > ρ2, for each

specific type of variation considered in this work. Both these cases are worthy

of consideration from the view point of practical applications. In all figures

presented in this section, we have taken the values of the parameters of which

the effects of variations are not sought, as fixed constants: g = 980 cm s−2 ,

a = 0.4 cm, k/a2 = 0.2 , ρ1 = 0.5 g cm−3 , ρ2 = 1.0 g cm−3 (or, vice versa,

depending on whether the bubble is falling or rising), m1/m2 = 2 , μ = 1.3 g

cm−1 s−1 , h1 = h2 = 0.1 cm, and α = 5 cm−1 .

In certain applications involving bubble motion in a surrounding fluid

medium, it is desirable to determine the influence of the pressure gradient on

the bubble velocity. Accordingly, in the Figures 1 through 4, we have investi-

gated the variation of the bubble velocity (W ) against the pressure gradient (P )

by considering the effect of permeability (Figs 1 and 2) and of non-Newtonian

parameters (Figs 3 and 4). As explained above, we have considered both the

cases — Case I: ρ1 < ρ2 (Figs 1 and 3) and Case II: ρ1 > ρ2 (Figs 2 and 4).

In the Fig 1, the plots of variation of W versus P , for the case I, have

been shown for two typical values of the permeability k of the porous medium.
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Here, the bubble can be seen to rise for the range of values of P considered,

and its velocity varies linearly with P . Barring relatively smaller values of

P , the effect of the increase of the permeability of the porous medium is to

enhance the bubble speed. However, the Figure 2, interestingly, presents a

mixed scenario of the bubble motion for the case II. Here, the bubble can be

seen to have downward motion (i.e. , a falling bubble) for smaller values of

P (≈ until 780) and then, for higher values of P , it shows upward motion.

The effect of the permeability of the porous medium is, however, more or

less similar to that observed for the case I (see the profiles in Fig 1). In the

next set of figures, Figs 3 and 4, we have considered the effect of micropolar

parameters m1 and m2 on W versus P plots by considering two specific values

of the ratio m2/m1 . In the case I (i.e. , ρ1 < ρ2), we notice that an increase

in the value of this ratio results in the reduction in the magnitude of bubble

velocity, especially for higher values of the pressure gradient. The bubble

velocity profiles for the case II (i.e. , ρ1 > ρ2), resemble the ones shown in

Fig 2. However, the effect of increase in micropolar parameters’ ratio (see

Fig 4) is generally insignificant, particularly when P values are close to 900

and beyond. Nevertheless, compared to the Fig 3 plots, the effect of the

increase of this ratio on W , howsoever small, is opposite in nature.

The consideration of the Brinkman equation, as against Darcy’s equation

to model the flow [2] in the surrounding porous medium (0.4 ≤ r ≤ 0.5) has

given rise to a variable velocity q3 in the porous medium region. In Figs 5 and

6, the variation of q3 with r (the radial coordinate) has been illustrated for the

case I (ρ1 < ρ2) and case II (ρ1 > ρ2), respectively, for a range of values of

the pressure gradient (700 ≤ P ≤ 1000). One can notice (Fig 5) that velocity

plots for relatively higher values of P (≈ 900 or more) show upward motion of

fluid in the entire region of the porous medium. However, for relatively smaller

value of P (≈ 700), the nature of flow in the porous region reverses, meaning

there is now downward motion. From the physical point of view, this change

in nature of flow can partly be attributed to opposing nature of the effects of

gravity and applied pressure gradient on the overall flow. The plots of the q3

velocity profiles in Fig 6, related to the case II, are similar, save for the change

in concavity of the profiles, to those shown in Fig 5 for corresponding (higher)

values of P (≈ 900 or more). However, interestingly, the profile corresponding

to P = 700 shows a mixed trend in terms of direction (upward or downward)

of the fluid motion in the region under consideration.

As stated earlier, we have also included plots of overall velocity across a
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typical cross-section of the circular porous tube by combining q1, q2 and q3 in

one graph. These velocity profiles have been shown in Fig 7 (case I) and Fig 8

(case II) for a set of values of P . It is worth noting that the variation of the

velocity q1 , corresponding to the bubble region (0 ≤ r ≤ 0.3), shows little, if

any, variation with respect to the radial distance in both cases. However, it is

seen that there is appreciable variations of velocity in the film (0.3 ≤ r ≤ 0.4)

and porous region (0.4 ≤ r ≤ 0.5).
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Fig 1. Variation of W with P . (ρ1 < ρ2)
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Fig 2. Variation of W with P . (ρ1 > ρ2)
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Fig 3. Variation of W with P . (ρ1 < ρ2)
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Fig 4. Variation of W with P . (ρ1 > ρ2)
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Fig 5. Velocity q3 . (ρ1 < ρ2)

P = 900 : top, P = 1000 : middle, P = 1100 : bottom
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Fig 6. Velocity q3 . (ρ1 > ρ2)

P = 900 : top, P = 1000 : middle, P = 1100 : bottom
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Fig 7. Variation of velocity in different regions. (ρ1 < ρ2)

P = 900 : top, P = 1000 : middle, P = 1100 : bottom
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Fig 8. Variation of velocity in different regions. (ρ1 > ρ2)

P = 900 : top, P = 1000 : middle, P = 1100 : bottom


