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T h e 20 05 N o b el P rize in P h y sics h as b een aw a rd ed in
th e area of o p tics, o r m o re sp ecī cally in laser p h y sics.
O n e h alf of th e p rize (th eory p a rt) h as b een given to R oy
G lau b er of H a rvard U n iversity \fo r h is co n trib u tion to
th e q u an tu m th eo ry o f op tica lcoh eren ce," w h ich b eca m e
im p ortan t so o n a fter th e in ven tio n of th e la ser. T h e
secon d h a lf of th e p rize (ex p erim en ta l p art) is jo in tly
aw ard ed to tw o p h y sicists, J oh n H all o f th e N ation a l In -
stitu te of S tan d a rd s an d T ech n olog y (N IS T ) in B ou ld er,
U S A , a n d T h eo d or H Äa n sch of th e M ax -P lan ck In stitu te
for Q u an tu m O p tics in G a rch in g, G erm an y. T h ey h ave
b een cited \ for th eir con trib u tion s to th e d ev elop m en t of
laser-b a sed p recision sp ectro scop y, in clu d in g th e o p tica l
freq u en cy co m b tech n iq u e."
In d ia h as a rich trad ition of research in op tics d atin g
b ack to th e p io n eerin g w ork of C V R a m a n (N ob el P rize
for th e R am an E ® ect in 19 30 ). In th e 195 0's th ere a p -
p eared S P an ch aratn a m 's fu n d am en tal stu d ies o n p ola r-
iza tion op tics in th e cou rse o f w h ich h e d iscov ered th e
geom etric p h ase in its ea rliest form . T h en in 1 961 ca m e
th e cry stal op tics w o rk of G N R am ach an d ra n an d S
R am asesh an . T ow a rd s th e en d of th e th eo ry p a rt o f th is
article w e w ill d escrib e b rie° y th e rem arkab le 196 3 d is-
covery o f th e D iag on a l C o h eren t S tate R ep resen tation
an d th e O p tical E q u iva len ce T h eorem , cen tral to q u a n -
tu m op tics, b y E C G S u d a rsh an w o rk in g in th e U S A .
1 . Q u a n tu m T h e o ry o f O p tic a l C o h e re n c e
T h e u n d ersta n d in g of th e n a tu re an d p ro p erties o f ligh t
h as fa scin ated h u m a n k in d for a very lo n g tim e; its p ro -
gress is an im p o rtan t p a rt of th e h istory of p h y sics. It
m ay b e u sefu l to v ery b rie° y rem in d th e read er o f so m e
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of th e m ore r̀ecen t' even ts in th is h istory, startin g w ith th e w o rk of M ax w ell in
m id 19 th cen tu ry. W ith su ch a b ack gro u n d , o n e can u n d ersta n d b etter th e w o rk
for w h ich th e t̀h eo ry p art' of th e 2 00 5 P h y sics N o b el h as b een given .
M ax w ell1 su cceed ed in u n itin g th e law s of electricity an d m a gn etism in to a sin gle
th eory, an d th en w en t o n to sh ow th a t ligh t w as a n electrom ag n etic w ave. T h u s
as a resu lt of h is w ork th ree p rev io u sly sep arate ¯ eld s o f p h y sics b ecam e on e.
A rou n d th e sam e tim e, th e ¯ eld of statistica l m ech an ics, as th e fou n d a tion fo r
th erm o d y n am ics, w a s also b ein g d evelop ed . A rou n d 190 0, h ow ever, it b ecam e
clear th at th e com b in ation of statistica l id eas an d th e classical M ax w ell d escrip -
tio n of electrom ag n etic rad iation led to a n im p asse: it cou ld n o t ex p lain th e
ex p erim en tal resu lts con cern in g b la ck b o d y or th erm al rad iation , i.e. ra d ia tion
in eq u ilib riu m w ith m a terial b o d ies a t a com m on tem p eratu re.
It w as P lan ck 's solu tio n o f th is p ro b lem th at led to th e b irth of q u a n tu m th eo ry in
late 1 90 0, th e d aw n o f th e 2 0th cen tu ry (N o b el 1 91 8). P lan ck 's w ork in v olved tw o
step s: ¯ rst, a m ath em atica l in terp olatio n am ou n tin g to in sp ired gu ess w ork th a t
led to h is fam ou s ra d iatio n form u la w h ich ¯ tted ex p erim en t b ea u tifu lly ; seco n d , a
d eriva tio n of th is form u la b ased o n th e h y p oth esis th at (electrically ch arged ) m a-
teria l o scillato rs cou ld em it an d a b so rb rad iation en ergy on ly in d iscrete am o u n ts
or q u a n ta. T h is w a s a revolu tio n ary id ea.
E a ch o f th e la ter a d van ces in th e u n d ersta n d in g of ligh t h as b een eq u a lly stu n -
n in g. In 1 905 E in stein w as ab le to arg u e from th e n o n -cla ssica l lim it of P la n ck 's
form u la th a t ra d ia tio n in its ow n n a tu re h as a lu m p y or p article-like asp ect, in
con trast to th e classical co n tin u ou s M a x w ell p ictu re. H e th en p resen ted a n ex -
p lan ation o f th e p h o to electric e® ect a s on e p iece of ev id en ce in su p p o rt of h is
con clu sio n s (N o b el 19 21 ). A few y ea rs la ter in 1 909 h e stu d ied th e en erg y ° u ctu -
ation s o f P lan ck ra d ia tion a n d d ed u ced th at rad iation sim u lta n eou sly p ossesses
th e seem in g ly con trad ictory, or d u al, p a rticle an d w ave p ro p erties. T h en in 19 16
h e p resen ted a startlin g ly n ew d erivation of P lan ck 's law b a sed o n th e p ro cesses
of em ission a n d ab sorp tion of ra d ia tio n b y m atter, a n d also sh ow ed th at lig h t
q u an ta { p h oto n s { ca rry m om en tu m in ad d itio n to en ergy. In 192 4, S N B o se
gav e yet an o th er d erivation of P lan ck 's law b ased o n a d eep u n d ersta n d in g o f
th e id en tity of lig h t q u a n ta ; th e w o rk w a s im m ed ia tely ap p recia ted a n d tak en
fu rth er b y E in stein . T h is series of even ts cam e to a triu m p h an t con clu sio n w ith
D irac in 1 92 7 sh ow in g h ow to a p p ly th e p rin cip les o f th e ju st d iscovered q u an tu m
m ech an ics to th e classical M ax w ell th eory.
1 This year marks the 175th birth anniversary of Maxwell, and is being celebrated as Maxwell Year in Scotland.Resonance featured Maxwell in the May 2003 issue.
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A s th is im p lies, th e D irac th eory of th e q u a n tised electro m a gn etic ¯ eld cam e
after a satisfactory q u an tu m m ech an ics for m a tter h ad b een d evelo p ed . T h e ¯ rst
step s h ere w ere (ap a rt from P lan ck in 19 00) a ga in ta ken b y E in stein in 190 7, in
h is th eory of sp ecī c h ea ts; an d th en b y N iels B oh r in 1 913 w ith th e th eo ry o f
sta tion ary electro n ic states in th e h y d ro gen atom (N ob el 192 2). (T h is B o h r th eo ry
w as a v ita l co m p on en t of E in stein 's 191 6 w o rk on ra d ia tio n ). T h ere fo llow ed
w h a t w a s la ter called th e p erio d of th e O ld Q u an tu m T h eo ry w h en B oh r's in itial
id ea s w ere tried to b e ex ten d ed to m o re com p lex m a terial sy stem s. B y a b o u t
19 23 th is e® o rt ra n in to sev ere p rob lem s, a n d th e situ a tio n w a s resolved on ly
w ith th e d iscovery o f q u a n tu m m ech an ics b y H eisen b erg, D irac an d S ch rÄo d in ger
in d ep en d en tly d u rin g 19 25 {26 (N ob els 1 932 , 193 3).
R etu rn in g to rad iation , after D irac th e th eo ry of q u a n tu m electro d y n am ics { Q E D
{ w as fu rth er d evelop ed b y m an y lead in g p h y sicists o f th at tim e in clu d in g H eisen -
b erg, P a u li, P eierls an d L an d au . H ow ever it w as n ow fou n d th at w h en on e w en t
b eyo n d th e low est level o f a p p rox im ation it w a s p la gu ed b y severe m a th em atical
in co n sisten cies { th e so-ca lled p rob lem of d ivergen ces. C a lcu lation s gave m ean -
in gless in ¯ n ite an sw ers for q u an tities w h ich sh ou ld h ave b een ¯ n ite. T h is w a s th e
situ ation th ro u gh m ost o f th e 1 93 0's an d early 194 0's, u n til th e d iscovery of th e
m eth o d o f ren orm alization in d ep en d en tly b y T om on aga , S ch w in ger a n d F ey n m an
(N ob el 19 65), co m p leted b y a ro u n d 1 94 7. T h e im p etu s giv en to th is e® ort b y th e
ex p erim en tal m easu rem en t o f th e L am b sh ift (N ob el 19 55) is em p h a sized in th e
secon d section o f th is article.
W ith th e arrival o f th e ren o rm a liza tio n p ro ced u re resu ltin g in a ¯ n ite Q E D , it
b ecam e clea r th a t ou r u n d erstan d in g o f th e fu n d a m en tal n a tu re o f ligh t a n d its
in teractio n w ith m atter h a d rea ch ed a level of co m p letion . A lllater w ork in cluding
w hat w ill be described below is w ithin that fram ew ork.
M ea n w h ile w ith in th e aren a of cla ssica l o p tics m an y n ew d evelo p m en ts h a d b een
tak in g p lace. T h ey co u ld b e reg ard ed as a co m p letio n of th e ea rlier elem en ta ry
treatm en ts of d i® ra ction an d in terferen ce of cla ssica l w ave am p litu d es. It w a s re-
alised th at essen tially a ll ea rlier classical op tica le® ects cou ld b e d escrib ed in term s
of th e tw o -p o in t am p litu d e correla tio n fu n ctio n ; a n d v ia th is ob ject th e co n cep ts
of p artial co h eren ce an d its p ro p aga tio n w ere b rou g h t in to th e ¯ eld . (A n a log ou s
d evelo p m en ts w ith reg ard to p olariza tion o f ligh t h ad also ta ken p la ce.) In th is
w ay th e ro le o f statistica l m eth o d s in op tics cam e to b e m u ch b etter a p p reciated .
S om e of th e ea rly n am es are th ose of F ritz Z ern ike (N o b el 1 953 ), va n C ittert,
B lan c-L ap ierre an d D u m o n tet. F rom a b o u t th e m id -1 95 0's th e w h o le su b ject
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w as d evelop ed in a sy stem a tic m a n n er largely b y E m il W o lf. A fter th e in ven tion
of in ten sity in terfero m etry b y H a n b u ry B row n an d T w iss in 1 95 6, it b ecam e clea r
th at it w as n ecessary to g o b eyo n d th e tw o -p o in t am p litu d e correlatio n fu n c-
tio n (a d eq u a te to d escrib e Y ou n g-ty p e in terferen ce p h en om en a ) to h ig h er o rd er
correla tion fu n ctio n s. T h u s in ten sity co rrelation s in v olve correlatio n s am on g a m -
p litu d es at fo u r sp ace-tim e p o in ts, or a fou r-p oin t fu n ctio n . C o rrelation fu n ction s
of all h ig h er ord ers ca m e in to p lay in th e trea tm en t b y M an d el of th e sem i-classical
p h o to electron co u n tin g d istrib u tion form u la. H ere o n e h as a ° u ctu atin g classical
ligh t b ea m fa llin g on a p h oto d etector, a n d on e w ish es to ¯ n d th e p ro b ab ilities fo r
variou s n u m b ers o f electro n s to b e em itted ov er a given tim e p erio d . T h en , from
th e ex p erim en ta lly m easu red statistical p rop erties o f th e p h oto electro n s em itted ,
on e o b tain s in form ation on th e statistical p ro p erties o f th e in cid en t ligh t b eam .
N ote th e con trast to th e origin al 190 5 E in stein ex p lan ation o f th e p h oto electric
e® ect. In th at trea tm en t it w as ligh t w h ich w as reg ard ed as p ossessin g q u an tu m
featu res, an d a q u a n tu m d escrip tio n o f m a tter w as still m a n y years aw ay. A fter
th e arriva l o f q u an tu m m ech a n ics fo r m atter it b ecam e p ossib le to acco u n t fo r
th e p h o to electric e® ect in a n altern ative sem icla ssica l m a n n er { ligh t can b e
treated a s a sta tistical ° u ctu atin g cla ssical q u a n tity, w h ile th e electron is q u an tu m
m ech an ica l. T h e k ey featu re is th a t q u an tu m id ea s a re n eed ed at least for on e o f
th e tw o p lay ers in th e p ro cess, ligh t o r electron s (u ltim ately of co u rse fo r b o th in
a com p letely satisfactory trea tm en t). In an y ca se, in M an d el's w ork th e secon d
of th e ab ov e tw o v iew p o in ts w as a d op ted .
T o give th e read er som e id ea of th e k in d s of ex p ressio n s a n d con cep ts in vo lv ed
in th is d evelo p m en t, w e p resen t in B ox 1 th e d e¯ n itio n s an d in terp retation s o f
correla tion fu n ction s in classica l statistical op tics. F or sim p licity w e ign ore th e
vector n a tu re o f th e electric ¯ eld an d treat it a s th ou gh it w ere a sca la r. (W e also
om it referen ce to th e m ag n etic ¯ eld ). T h e arg u m en ts x , y ,... a re com b in ed sp atial
an d tim e co o rd in a tes; a n d classical statistical averag es are in d icated b y an g u la r
b rackets. N o te th e sep a ratio n o f th e real to tal electric ¯ eld in to tw o m u tu a lly
con ju g ate p arts, a n d th e u se of th ese p arts in d e¯ n in g correla tio n fu n ctio n s an d
coh eren ce. A gain for sim p licity on ly correla tio n fu n ction s w ith eq u a l n u m b ers o f
E (+ )'s an d E (¡)'s are con sid ered .
T h ese tw o strea m s of w o rk { th e co m p letio n o f Q E D an d th e grow th of classical
sta tistical op tics { m erged in th e early 196 0's a n d led to th e q u an tu m th eory o f
op tical coh eren ce, m o re gen erally q u a n tu m o p tics, to w h ich m a n y b asic con tri-
b u tion s w ere m ad e b y R J G lau b er. T h e in v en tio n o f th e la ser b y th a t tim e h ad
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m ad e it clear th at th ere w as a n eed to d escrib e, w ithin the overall fram ew ork of
Q E D , states o f electrom ag n etic rad iation asso ciated w ith arb itrary, in p articu la r
n on -th erm a l, ligh t b eam s. (T h e tra d ition a l u ses of Q E D , in th e realm o f ele-
m en tary p a rticle p h y sics, h ad o n ly d ealt w ith p ro cesses in v olv in g sm a ll n u m b ers
of p h oto n s { ab so rp tio n a n d em issio n o f sin gle p h o ton s, sca tterin g of a p h oton
on an electron , a n d th e like.) T h e p h y sical p rin cip le u n d erly in g G lau b er's w ork ,
as foresh a d ow ed in th e M an d el treatm en t o f p h o to electron cou n tin g , is th a t all
con ven tion al m eth o d s of lig h t d etectio n in v olve absorption o f p h o ton s fro m th e
¯ eld b ein g o b served . (T h is is tru e ev en in th e h u m an an d an im al v isu a l sy s-
tem s.) B u ild in g on th is, G lau b er w as ab le to a rriv e a t th e m ost u sefu l m easu re o f
(p artial) co h eren ce o f th e quantised electro m a gn etic ¯ eld a t th e tw o-p oin t lev el,
an d th en to gen eralize it to correlatio n fu n ction s o f a ll h igh er ord ers. T h is w as a
sp ecī c w ay to p ass from th e com p lete classical h iera rch y of co rrelation fu n ction s
of variou s ord ers { B ox 1 { to th eir q u a n tu m co u n terp a rts. In th en d e¯ n in g an d
an a ly sin g th e con cep ts of p artial a n d o f com p lete co h eren ce, to so m e ¯ n ite o rd er

B o x 1 . C la ssic a l C o r r e la tio n F u n c tio n s fo r F lu c tu a tin g E le c tr ic F ie ld s
Real classical electric ¯eld E (x ) = E (+ )(x ) + E (¡ )(x ) ,

E (+ )(x ) = complex positive frequency part;
E (¡ )(x ) = E (+ )(x ) ¤ = complex negative frequency part: (1a)

Classical two-point correlation function = statistical average of product E (¡ )(y )E (+ )(x )
of two complex ¯eld amplitudes

= hE (¡ )(y )E (+ )(x )i : (1b)
adequate to discuss intensity measurements (y = x ) , Young type interference phenomena.
Classical four-point correlation function =

hE (¡ )(y 1 )E (¡ )(y 2 )E (+ )(x 1 )E (+ )(x 2 )i : (1c)
needed to discuss Hanbury Brown{Twiss intensity correlations (y 1 = x 1 ;y 2 = x 2 ) . Man-
del's semiclassical photo-electron counting distribution formula involves

hE (¡ )(y 1 ) ¢¢¢E (¡ )(y n )E (+ )(x 1 ) ¢¢¢E (+ )(x n )i (1d)
for all n , with y 1 = x 1 ;:::;y n = x n .
Coherence of order 2n holds if the expression (1d) factorises completely as
V (y 1 ) ¤ ¢¢¢V (y n ) ¤ V (x 1 ) ¢¢¢V (x n ) for some ¯eld amplitude V .
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B o x 2 . C o r re la tio n F u n c tio n s fo r Q u a n tise d E le c tr ic F ie ld

E (x ) = E (+ )(x ) + E (¡ )(x ); all ¯eld operators;
E (+ ) annihilates one photon; E (¡ ) creates one photon: (2a)

Two-point correlation function adequate to describe intensity measurements by photon
absorption, Young type interference:

G (1 ;1 )(x ; y ) = Trf ½ E (¡ )(y )E (+ )(x )g ;
½ = density operator of quantum state: (2b)

Four-point correlation function needed to describe Hanbury Brown{Twiss intensity cor-
relations:

G (2 ;2 )(x 1 ;x 2 ; y 1 ;y 2 ) = Trf ½ E (¡ )(y 1 ) E (¡ )(y 2 )E (+ )(x 1 )E (+ )(x 2 )g : (2c)
Higher order correlation functions:
G (n ;n )(x 1 ;:::;x n ; y 1 ;:::;y n ) = Trf½ E (¡ )(y 1 ) :::E (¡ )(y n ) E (+ )(x 1 ) :::E (+ )(x n )g : (2d)

Complete coherence ´ for all n , G (n ;n )(x 1 ;::: ; y 1 ;:::) = V (y 1 ) ¤ :::V (x 1 ) ::: for some
V (x ) ) essentially,

½ is a co h e ren t sta te:

or to all ord ers, h e d em o n strated th e great u sefu ln ess of a sp ecial set of q u an tu m
sta tes called coheren t states. T h ese states can b e d e¯ n ed b o th fo r m ateria l oscil-
lators a n d for th e free ra d ia tio n ¯ eld . T h ey h a d b een d iscovered b y S ch rÄo d in ger
in 192 7, stu d ied b y vo n N eu m an n in 19 30, an d u sed in a sp ecī c con tex t w ith in
Q E D b y B lo ch a n d N ord sieck in 19 37 . G lau b er's w ork am ou n ted to a red iscov -
ery of th eir en orm ou s u sefu ln ess in d escrib in g sta tes of rad iation in th e com p lete
q u an tu m op tics con tex t.
L et u s ¯ rst d escrib e b rie° y th e q u a n tu m co u n terp arts of th e co n ten ts o f B ox 1,
assem b led in B ox 2, an d th en tu rn to co h eren t sta tes. It is of cou rse o u t o f p lace
to a ttem p t to give h ere a n y th in g like a com p lete resu m ¶e of th e b asic stru ctu res o f
q u an tu m m ech an ics, m u ch less of Q E D . W e can d o n o b etter th an m ak e su g gestive
sta tem en ts, a n d try to get a cro ss so m e b asic id ea s. F or sim p licity w e u se th e sam e
sy m b ols E (§ )(x ) in q u an tu m th eo ry as classically. In q u a n tu m th eory, h ow ever,
th ese a re n o t com p lex valu ed n u m b ers a n y m ore, b u t operators w h ich a ct on
quan tum state vectors. E (+ )(x ) is an op erato r w h ich actin g on a state an n ih ila tes
or su b tracts on e p h oto n ; E (¡ )(x ) is th e h erm itian con ju g ate (rep lacem en t for th e
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B o x 3 . C o h e r e n t S ta te s o f S in g le M o d e R a d ia tio n F ie ld
States with de¯nite number of photons : jn i;n = 0;1;2;::: : (3a)

For any complex number z :
Coherent state jz i = superposition of states with de¯nite photon numbers

= e ¡ jz j2 = 2
1X
n = 0

z np
n ! jn i: (3b)

Some important properties of coherent state jz i:
Probability of ¯nding n photons = e ¡ jz j2 jz j2 nn ! : Poisson distribution: (3c)

Mean number of photons = average of n = jz j2 : (3d)
Fluctuation in number of photons = average of n 2 ¡ (average of n ) 2

= jz j2
= mean : characteristic of Poisson distribution: (3e)

cla ssica l com p lex con ju ga te) o f E (+ )(x ), an d a ctin g o n a sta te it crea tes o r ad d s
on e p h oto n . E (+ ) an d E (¡) do not com m ute. In th e vacu u m state th ere are
n o p h o ton s a t a ll, so E (+ ) a p p lied to th at state gives zero . S ta tes in q u an tu m
m ech an ics m ay b e p u re, d escrib ab le b y a sin g le state vector or w ave fu n ction
Ã ; or m ix ed , n a m ely a n en sem b le of several p u re sta tes Ã 1 , Ã 2 ,..., ea ch p resen t
w ith a co rresp o n d in g p rob a b ility p 1 , p 2 ,.... In th e latter ca se, th e en tire en sem b le
can b e rep resen ted b y w h at is ca lled a d en sity op erato r or d en sity m atrix ½ , th is
is th e m ost g en era l q u an tu m state. T h e en tries in B ox 2 ca n n ow b e h o p efu lly
u n d ersto o d .
T h e sy m b ol T̀ r' stan d s fo r T̀ race' a n d (alon g w ith th e p resen ce of ½ ) is th e
q u an tu m cou n terp art of classical sta tistical av era gin g w h ich w a s d en o ted in B ox
1 b y a n gu lar b rack ets. O n e p o in t to n ote w ith ca re is th at in th e d e¯ n itio n s o f
G (1 ;1 ), G (2 ;2 ),... in B ox 2 , th e E (¡ ) factors (creation o p erato rs) alw ay s sta n d to
th e left of th e E (+ ) factors (an n ih ila tio n op era tors). T h is is th e k ey featu re of th e
G lau b er d e¯ n itio n { d etectio n b y ab sorp tion of p h o ton s { a n d w e are n ot free to
in terch a n ge th e seq u en ce of E (¡)'s a n d E (+ )'s sin ce th ey d o n ot com m u te. T h e
last sen ten ce in B ox 2 b rin gs in th e coh eren t states, so w e d escrib e th em b rie° y
at th is p o in t, aid ed b y B ox 3 .
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W e lim it o u rselv es to a sin g le m o d e of th e q u an tu m rad iation ¯ eld , so a ll th e
p h o ton s h ave th e sam e sp a tio -tem p oral ch a racteristics. (T h e gen eralisa tio n s to
several m o d es or to th e en tire ¯ eld are straigh tforw ard ). F or ex am p le w e m ay
¯ x th e freq u en cy, p ro p ag atio n d irectio n an d p o la rization sta te for a ll of th em ,
so o n ly th e p h o ton n u m b er can vary. In q u an tu m m ech an ical n o tation th e state
w ith ex a ctly n p h o ton s is w ritten a s jn i: fo r n = 0 w e h av e th e va cu u m or n o
p h o ton sta te j0 i, for n = 1 th e o n e-p h oto n state j1i, a n d so on . E a ch o f th ese
is a p u re state an d th ey are m u tu a lly ex clu sive or o rth ogo n al: if w e k n ow th a t
th ere a re ex actly n p h oton s p resen t, w e certain ly k n ow th e tota l p h o ton n u m b er
is n ot n 0for an y n 06= n . G iven an y set of p u re states, w e can m u ltip ly each o n e
b y so m e co m p lex n u m b er a n d a d d th em all u p to get a n ew p u re state. T h is
is th e fu n d am en tal S u p erp o sition P rin cip le of q u a n tu m m ech a n ics w hich has n o
classical analogue. F or each com p lex n u m b er z , w e ca n p ro d u ce ex a ctly on e p u re
sta te u sin g th e ex p ression given in (3 b ) o f B ox 3. T h is is th e co h eren t state jz i
of th e con cern ed m o d e. T h u s a coh eren t sta te h as a variab le n u m b er of p h o ton s
p resen t, w ith p rob a b ilities given b y a P oisson d istrib u tio n , (3 c) o f B ox 3. T h ese
sta tes tu rn o u t to b e q u an tu m sta tes as close as p ossib le to classica l ¯ eld sta tes in
th e sen se th at th e u n avo id a b le or in escap a b le u n certain ty p rin cip le of q u an tu m
m ech an ics is b a rely o b eyed . T h ey also tu rn o u t to b e as clo se to h av in g a d e¯ n ite
p̀ h ase' { in con trast to a d e¯ n ite p h o ton n u m b er { as is p o ssib le in th e q u an tu m
fram ew o rk .
W e w ill con clu d e th is p a rt of ou r article b y d escrib in g tw o cru cial p rop erties o f
coh eren t states, ju stify in g th eir im p o rtan ce for q u an tu m op tics. E a ch coh eren t
sta te jz i is a p u re state. C on sid er n ow a m ix ed state ½ in w h ich all th ese jz i are
p resen t w ith va rio u s p ro b ab ilities, d escrib ed b y a c̀la ssica l' p ro b ab ility d istrib u -
tio n Á (z ) ov er th e co m p lex p la n e. It th en tu rn s o u t th a t th e p articu la r d e¯ n ition s
of th e q u an tu m op tical correlation fu n ction s given in (2b ), (2c), (2 d ) of B ox 2
com b in e w ith th e very sp ecia l p ro p erties o f co h eren t sta tes to lea d to a rem a rk -
ab le resu lt: each quantum correlation fun ction has the sam e form an d the sam e
value as the corresponding classical correlation function calculated for a suitably
de¯ ned classical statistical state. T h e key to th is lies in tw o fa cts: th e E (¡) fa c-
tors a lw ay s sta n d to th e left o f th e E (+ ) factors in th e d e¯ n itio n s of q u an tu m
correla tion fu n ction s; an d th e E (+ ) fa cto rs act very sim p ly on coh eren t sta tesjz i. T h is b rin g s ou t gra p h ically th e ex trem e ap p rop riaten ess o f coh eren t sta tes
in th ese p rob lem s.
N ow w e co m e to ou r ¯ n al p o in t. A g en era l q u an tu m sta te ½ can certa in ly n o t
b e reco n stru cted fro m th e co h eren t states f jz ig v ia a classical p rob ab ility d is-
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trib u tio n Á (z ), as w as assu m ed in th e p rev iou s p a ragra p h . B u t in a rem a rkab le
an d tru ly fu n d a m en tal resu lt it w as sh ow n in 196 3 b y E C G S u d arsh an th a t
every q u an tu m state ½ ca n b e form ally rega rd ed a s a g̀ en era lized en sem b le' over
th e co h eren t states jz i, ex cep t th at Á (z ) m ay n o t b e in terp reta b le a s a c̀lassi-
cal' p rob ab ility d istrib u tion ! T h is is k n ow n tech n ically as th e D iago n al C oh eren t
S tate R ep resen tation a n d th e O p tical E q u iva len ce T h eo rem . R eferrin g to th e
h igh lig h ted p h ra se in th e p rev io u s p a ragra p h w e ca n say th a t in case Á (z ) is n o t
a tru e p ro b ab ility d istrib u tion , w e h ave eq u ivalen ce o f form s b u t n ot o f valu es
for th e tw o fam ilies of co rrelation fu n ction s, q u an tu m an d classica l. F o r th e m ost
gen eral q u a n tu m state ½ , Á (z ) is n ot a fu n ction in a n y ord in ary m a th em atical
sen se, b u t a sin g u la r q u an tity, a so-ca lled d istrib u tion of a p articu la r class th a t
can b e p recisely ch ara cterized . T h is resu lt is tru ly b a sic to th e th eo ry of q u an tu m
op tics, a s it is th e o n ly w ay in w h ich w e ca n ex h ib it th e clear d istin ctio n b etw een
cla ssica l a n d q u an tu m n a tu res of o p tical ¯ eld s. S tates d isp lay in g su b -P oisson ian
p h o ton statistics or an tib u n ch in g, so-ca lled sq u eezin g an d H a n b u ry B row n {T w iss
an tico rrelation s are all tru ly q u a n tu m in n atu re, a n d corresp o n d to sin g u la r, or a t
lea st n on -p o sitive d e¯ n ite, Á (z ) in th e S u d a rsh an classī cation . O n e ca n say th a t
th e n eed to a llow Á (z ) to go b eyo n d th e co llection of p ro b ab ility d istrib u tio n s in
con sid erin g all q u an tu m states sh ow s w h y q u an tu m a n d cla ssica l th eories are rad -
ica lly d i® eren t, th e form er ov erstep p in g th e con ¯ n es of th e la tter. In fact th is is
a recu rrin g featu re of a ttem p ts to ex p ress q u an tu m m ech a n ics in th e lan g u age o f
cla ssica l p h y sics { th e ran ge o f q u a n tu m m ech an ical p ossib ilities a lw ay s over° ow s
cla ssica l b o u n d aries. It is ex trem ely u n fortu n a te th a t th is resu lt of S u d arsh an h as
n ot received th e cred it a n d reco gn itio n th at is its d u e. T h e in terested read er m ay
refer to th e a rticle, Ò n S u d arsh an 's D iago n al C oh eren t S tate R ep resen ta tio n ' b y
C L M eh ta [2 ].
T h a t a p art, th e read er w ou ld h ave a p p reciated a ll th e d evelo p m en ts th at form
th e b ack d rop to th e t̀h eo ry p art' of th e p h y sics 20 05 N o b el.
2 . O p tic a l F re q u e n c y C o m b T e c h n iq u e
L a sers h av e im p acted ou r lives in a cou n tless n u m b er of w ay s. T o d ay th ey are
fou n d ev ery w h ere, in co m p u ter h a rd d isk d rives, C D p layers, gro cery store scan -
n ers, an d in th e su rgeon 's k it. In research la b ora tories, alm o st everyon e u ses
lasers fo r on e rea son or an oth er. H ow ev er, a rgu a b ly th e g rea test im p a ct of lasers
in p h y sics h as b een in h igh -reso lu tion sp ectrosco p y of ato m s a n d m o lecu les. T o
see th is, con sid er h ow sp ectroscop y w as d on e b efo re th e ad ven t of lasers. Y ou
w ou ld u se a h igh -en erg y ligh t so u rce to ex cite all th e tran sitio n s in th e sy stem ,
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an d th en stu d y th e resu ltin g em ission \sp ectru m " as th e a tom s relax ed b a ck to
th eir grou n d sta tes. T h is is like stu d y in g th e m o d es of v ib ra tion of a b ox b y
h ittin g it w ith a sled g eh am m er a n d th en sep a ra tin g th e resu ltin g so u n d in to its
d i® eren t freq u en cy com p o n en ts. A m ore gen tle w ay of d oin g th is w o u ld b e to try
an d ex cite th e sy stem w ith a tu n in g fo rk of a given freq u en cy. T h en b y ch a n g-
in g th e freq u en cy of th e tu n in g fo rk , on e cou ld b u ild u p th e sp ectru m o f th e
sy stem . T h is is h ow you d o laser sp ectrosco p y w ith a tu n ab le la ser; y ou stu d y
th e a b so rp tio n o f ligh t b y th e a tom s as y ou tu n e th e laser freq u en cy. W h en you
com e clo se to an ato m ic reson an ce, yo u b u ild u p a ty p ica l a b sorp tion cu rve w ith
a ch ara cteristic w id th ca lled th e n atu ra l w id th .
In o rd er to b e ab le to d o su ch h ig h -resolu tion la ser sp ectro scop y, tw o th in gs h ave
to b e satis¯ ed . F irst, th e atom ic reson an ce sh ou ld n ot b e a rtī cia lly b road en ed .
T h is can h ap p en , for ex a m p le, d u e to th e D o p p ler e® ect in h ot va p ou r, w h ere th e
th erm a l velo city cau ses a freq u en cy sh ift a n d b road en s th e lin e. E v en w ith ato m s
at ro om tem p eratu re, th e D op p ler w id th can b e 1 00 tim es th e n a tu ral w id th , an d
can p reven t closely -sp aced levels fro m b ein g resolved . T h e seco n d req u irem en t
for h ig h -resolu tio n sp ectro sco p y is th at th e tu n ab le la ser sh o u ld h ave a n arrow
\lin ew id th " . T h e lin ew id th o f th e laser, o r its freq u en cy u n certain ty, is like th e
w id th of th e p en u sed to d raw a cu rve on a sh eet of p ap er. O b v iou sly, y ou can n o t
d raw a v ery ¯ n e cu rve if y ou h av e a b ro ad p en .
It is in th e ab ove co n tex t th a t th e N ob el citation m en tio n s th e w o rk o f th e tw o
lau reates in la ser-b ased p recisio n sp ectrosco p y. T h eir n am es a re q u ite w ell k n ow n
to an yo n e w o rk in g in laser sp ectroscop y. In th e early 19 70s, H Äa n sch , th en w o rk -
in g at S ta n ford U n iv ersity w ith A rth u r S ch aw low (N o b el P rize fo r laser sp ec-
trosco p y, 1 981 ), p ion eered th e u se of D op p ler-free tech n iq u es su ch a s satu ra tion
sp ectrosco p y, p a rticu larly fo r sp ectrosco p y in h y d ro gen . A rou n d th e sa m e tim e,
H all d ev elop ed m a n y tech n iq u es to sta b ilize th e freq u en cy o f lasers a n d red u ce
th eir lin ew id th . T o d ay, tw o of th e m ost p op u lar tech n iq u es fo r laser sta b iliza tion
are called th e H an sch -C o u illau d tech n iq u e an d th e P o u n d -D rev er-H all tech n iq u e,
in h on o u r o f th ese scien tists.
In 19 76, H all an d cow ork ers u sed h ig h -resolu tion laser sp ectrosco p y in m eth a n e
to ob serve fo r th e ¯ rst tim e th e recoil-in d u ced sp littin g of a lin e. In oth er w o rd s,
w h en th e m o lecu le a b sorb s a p h oto n o f w avelen g th ¸ , th e p h o ton m om en tu m h = ¸
im p a rts a recoil to th e m olecu le. T h is reco il velo city resu lts in a freq u en cy sh ift
d u e to th e D o p p ler e® ect. B u t th is is a sm all e® ect, ab ou t 2 k H z in a freq u en cy o f
10 1 4 H z, an d req u ires an ex trem ely h igh resolv in g p ow er. In th e sa m e year, H Äa n sch
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an d S ch aw low in d ep en d en tly p ro p o sed th at th e m o m en tu m of laser p h o ton s co u ld
b e u sed to co o l a tom s to v ery low tem p eratu res, a tech n iq u e th at is n ow ca lled
\laser co o lin g". T h e ¯ eld of la ser co olin g h as g row n ex p losively in th e last tw o
d eca d es, a n d tw o N ob el P rizes h av e b een aw ard ed ; th e ¯ rst in 19 97 for tech n iq u es
of laser co olin g (C h u , C oh en -T a n n ou d ji, an d P h illip s), an d th e seco n d in 20 01 fo r
u sin g laser-co oled a tom s to ach ieve B o se-E in stein con d en sa tio n (C orn ell, K etterle,
an d W iem an ).
B u t b ack to sp ectro scop y. M an y ad va n ces in p h y sics h ave b een b ro u gh t a b o u t
b y h ig h -resolu tion sp ectro scop y of a tom s. In d eed , on e m igh t arg u e th at th e m ost
ob v io u s m an ifesta tio n of q u an tisa tio n (or d iscreten ess) at th e a tom ic scale is th e
fact th a t a to m ic sp ectra sh ow sh a rp sp ectral lin es. T h e w ell k n ow n F rau n h ofer
lin es w ere ¯ rst ob serv ed in th e so la r sp ectru m a s d ark lin es u sin g a sp ectro m -
eter th at w as \h ig h -resolu tio n " for its tim e. In th e early p a rt of th e tw en tieth
cen tu ry, N iels B o h r (N ob el P rize 19 22) w as ab le to ex p lain su ch d iscrete lin es b y
p o stu latin g th a t an electro n in an atom w as allow ed o n ly certain q u an tised valu es
of a n gu lar m om en tu m . T h is led to th e d ev elop m en t of q u an tu m m ech a n ics a s a
th eory in th e ato m ic d o m a in . F u rth er m ea su rem en ts of ato m ic sp ectra at h ig h er
resolu tio n revealed th at m a n y lin es w ere actu ally d o u b lets. A co m m on ex a m p le
is th e yellow ligh t em itted b y th e u b iq u itou s so d iu m vap ou r lam p ; it a ctu a lly
con sists of tw o lin es, called D 1 an d D 2 , w h ich can b e reso lved an d m easu red
in a h igh sch o ol lab ora tory to d ay. T h e origin of th is sp littin g is th e in teraction
b etw een tw o ty p es o f electron ic an g u la r m om en tu m { o rb ita l a n d sp in . In 1 92 8,
D irac (N ob el P rize 193 3) w rote d ow n h is fa m o u s eq u a tion to d escrib e th e elec-
tron , w h ich in corp ora ted its sp in an gu lar m o m en tu m in a n atu ra l w ay. H ow ever,
even th e very su ccessfu l D ira c th eo ry p red icted th a t th e 2 S an d 2 P states o f
h y d rogen h ave th e sa m e en ergy. A p recise m ea su rem en t o f th ese lev els b y L am b
(N ob el P rize 19 55 ) sh ow ed th at th eir en erg ies a re sligh tly d i® eren t, w h ich is n ow
called th e L a m b sh ift. T h e d iscov ery of th e L a m b sh ift led to th e b irth o f q u an -
tu m electro d y n a m ics (Q E D ), fo r w h ich th e N o b el P rize w a s aw a rd ed to F ey n m an ,
S ch w in ger, an d T om on a ga in 196 5.
W e th u s see th a t im p rovem en t in p recisio n alm o st a lw ay s lead s to n ew d iscoveries
in p h y sics. In recen t tim es, on e atom ic tran sition th at h as in sp ired m an y ad va n ces
in h igh -reso lu tion sp ectroscop y an d op tical freq u en cy m ea su rem en ts is th e 1 S ¡ 2 S
reson a n ce in h y d ro gen , w ith a n a tu ral w id th of on ly 1 H z. M ea su rem en t of th e
freq u en cy of th is tra n sition is im p o rtan t as a test of Q E D an d fo r th e m ea su rem en t
of fu n d am en ta l co n stan ts. H ow ever, th e w avelen g th o f th is tran sition is 12 1 n m ,
corresp o n d in g to a freq u en cy o f 2:5 £ 10 1 5 H z. S in ce th e S I u n it of tim e is d e¯ n ed
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Figure 1. Radio frequency

to optical frequency link

using a frequency comb.

© The Nobel Foundation, 2005.

2 Hall calls this  development the dawn of a new epoch.

in term s of th e cesiu m rad io-freq u en cy tran sition a t 9:2 £ 10 9 H z, m ea su rin g th e
op tical freq u en cy w ith referen ce to th e ato m ic clo ck req u ires sp a n n in g 6 o rd ers
of m ag n itu d e! Y ou can th in k of th is as h av in g tw o sh a fts w h o se ro tation sp eed s
d i® er b y a fa cto r o f 1 m illio n , an d y ou n eed to m ea su re th e ra tio o f th eir sp eed s
accu rately. If w e u se a b elt a rran g em en t to co u p le th e tw o sh afts, th en th ere is
a p o ssib ility of errors in th e ratio m ea su rem en t d u e to p h ase slip . In stea d , o n e
w ou ld like to cou p le th em th rou gh a g earb ox m ech an ism w ith th e correct teeth
ratio so th at th ere is n o p o ssib ility of slip (see F igure 1 ). T h is is p recisely w h a t
is ach ieved b y th e freq u en cy com b .
T h e b asic id ea o f th e com b tech n iq u e is th a t p erio d icity in tim e im p lies p eri-
o d icity in freq u en cy. T h u s, if y ou take a p u lsed la ser th at p ro d u ces a series
of op tical p u lses at a ¯ x ed rep etition rate, th en th e freq u en cy sp ectru m of th e
laser w ill con sist o f a set of u n iform ly sp aced p eak s o n eith er sid e of a cen tral
p eak . T h e cen tra l p eak is a t th e op tica l freq u en cy w ith in each la ser p u lse (carrier
freq u en cy ), an d th e p eak s on eith er sid e a re sp aced b y th e in verse of th e rep e-
tition p erio d (ca lled sid eb an d s). Y o u can p ro d u ce su ch a sp ectru m b y p u ttin g
th e la ser th rou gh a n on lin ea r m ed iu m su ch a s a n o n lin ear ¯ b er. T h e la rger th e
n on lin ea rity, th e m o re th e n u m b er of sid eb a n d s. A rou n d 19 99 , th ere w a s a m a jo r
d evelo p m en t in m a k in g n o n lin ear ¯ b ers; ¯ b ers w ith h o n ey com b m icrostru ctu re
w ere d evelo p ed w h ich h a d su ch ex trem e n on lin ea rity th a t th e sid eb a n d s sp a n n ed
alm ost an o ctave2 . If you sen t a p u lsed la ser (o p eratin g n ear 80 0 n m ) th rou gh
su ch a ¯ b er, you w ou ld g et a n ea r con tin u u m o f sid eb a n d s sp an n in g th e en tire
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3  It is not necessary that the comb peak aligns perfectly with the laser frequency. A small difference between thetwo can be measured easily since the beat signal will be at a sufficiently low frequency

Figure 2. Frequency mea-

surement using a comb. τττττ
r.t

.
is the pulse repetition rate,

and F.T. is Fourier trans-

form.

© The Nobel Foundation, 2005.

v isib le sp ectru m . T h e series of u n iform ly sp aced p ea k s stretch in g ou t ov er a la rge
freq u en cy ra n ge lo o k s like th e teeth of a co m b , h en ce th e n am e o p tical freq u en cy
com b . T h e b ea u tifu l p a rt o f th e tech n iq u e is th at th e com b sp a cin g is d eterm in ed
so lely b y th e rep etitio n rate, th u s b y referen cin g th e rep etitio n rate to a cesiu m
ato m ic clo ck , th e co m b sp a cin g ca n b e d eterm in ed as p recisely as p ossib le. In
19 99 , H Äan sch a n d cow ork ers sh ow ed th at th e co m b sp acin g w a s u n iform to 3 p arts
in 10 1 7 , ev en far o u t in to th e w in gs.
T h u s th e p ro ced u re to p ro d u ce a freq u en cy com b is n ow q u ite stra ig h tfo rw ard .
O n e starts w ith a m o d e-lo cked , p u lsed T i:sap p h ire la ser an d sen d s its ou tp u t
th rou g h 20 {30 cm of n o n lin ear ¯ b er. T h e p u lse rep etition ra te is referen ced to
an atom ic clo ck , a n d d eterm in es th e com b sp acin g. T h e ca rrier freq u en cy is
con trolled in d ep en d en tly, a n d d eterm in es th e co m b p ositio n . B u t h ow d o es o n e
m ea su re an op tica l freq u en cy u sin g th is co m b ? T h is can b e d o n e in tw o w ay s.
O n e w ay is to u se a referen ce tra n sition w h o se freq u en cy f 0 is p rev io u sly k n ow n .
W e n ow a d ju st th e com b sp a cin g ¢ so th at th e referen ce freq u en cy f 0 lies o n o n e
p eak , an d th e u n k n ow n freq u en cy f lies o n a n oth er p ea k th at is n co m b lin es
aw ay, i.e. f = f 0 + n ¢ (see F igure 2)3 . T h u s b y m easu rin g n , th e n u m b er o f
com b lin es in b etw een , a n d u sin g ou r k n ow led ge o f f 0 a n d ¢ , w e ca n d eterm in e
f . T h is w a s th e m eth o d u sed b y H Äan sch in 1 999 to d eterm in e th e freq u en cy
of th e D 1 lin e in cesiu m (at 8 95 n m ). T h e m easu rem en t of th is freq u en cy can
b e related to th e ¯ n e-stru ctu re con sta n t ® , w h ich is on e of th e m o st im p o rta n t
con sta n ts in p h y sics b eca u se it sets th e sca le fo r electro m a gn etic in tera ction s an d
is a fu n d am en ta l p aram eter in Q E D calcu lation s.
H ow ev er, th e ab ove m eth o d req u ires th a t w e alrea d y k n ow so m e o p tical freq u en cy
f 0 . If w e w a n t to d eterm in e th e ab solu te valu e of f solely in term s o f th e ato m ic
clo ck , th e sch em e is sligh tly m ore com p licated . In e® ect, w e tak e tw o m u ltip les
h arm on ics
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(or h a rm o n ics) of th e la ser freq u en cy, an d u se th e u n iform co m b lin es as a p recise
ru ler to sp a n th is freq u en cy d i® eren ce. L et u s say w e align on e p eak to 3:5f , an d
an o th er p eak th a t is n com b lin es aw ay to 4f , th en w e h ave d eterm in ed

4f ¡ 3 :5f = n ¢ ;
w h ich y ield s

f = 2n ¢ ;
so th at w e h ave f in term s o f th e com b sp acin g . In 200 0, H Äan sch a n d cow ork ers
u sed th is m eth o d to d eterm in e th e freq u en cy o f th e h y d rog en 1S ¡ 2S reso n an ce
w ith an u n p reced en ted accu ra cy o f 13 d igits. T h is w as th e ¯ rst tim e th at a
freq u en cy co m b w a s u sed to lin k a rad io freq u en cy to a n op tical freq u en cy.
C u rren tly, on e of th e m ost im p orta n t q u estio n s in p h y sics is w h eth er fu n d a m en tal
con sta n ts of n a tu re are rea lly co n stan t, or a re ch an g in g w ith tim e. F or ex am p le,
is th e ¯ n e-stru ctu re con stan t ® con stan t th rou g h ou t th e life of th e u n iv erse o r is
it d i® eren t in d i® eren t ep o ch s? N ow , if you w an t to m easu re a very sm all rate o f
ch a n ge _® (= d ® = d t), th en y ou can d o it in tw o w ay s. Y ou can tak e a la rge d t so
th at th e in tegra ted ch an ge in ® is v ery large. T h is is w h at is d on e in astro n om y,
w h ere lo o k in g at th e lig h t from a d istan t star is like lo o k in g b a ck m illion s o f years
in tim e. Y ou can th en com p are atom ic sp ectra fro m d istan t sta rs to sp ectra tak en
in th e lab o ratory to d ay. A ltern a tely, if y ou w a n t to d o a lab o ratory ex p erim en t
to d eterm in e _® , th en you h av e n o ch o ice b u t to u se a sm all d t. T h erefore, you
h ave to im p rove th e a ccu ra cy o f m ea su rin g ® so th at even sm a ll ch an g es b ecom e
m ea su rab le. T h is is w h at h as b een d on e b y H Äan sch a n d h is g rou p . B y m easu rin g
th e h y d rogen 1S ¡ 2 S reson a n ce over a few yea rs, th ey h ave b een ab le to p u t a
lim it on th e va ria tio n of ® . S im ilar lim its h av e b een p u t b y o th er grou p s u sin g
freq u en cy -co m b m ea su rem en ts of oth er op tica l tran sition s. T h e cu rren t lim it on
_® = ® fro m b o th a stron o m y a n d a tom ic p h y sics m ea su rem en ts is ab ou t 1 0¡ 1 5 p er
year.
In th e la st few y ea rs, sev era l op tical tra n sition s h ave b een m ea su red u sin g fre-
q u en cy com b s. T h e p rim ary m otivation is to ¯ n d a su itab le can d id ate fo r an
op tical clo ck to rep lace th e m icrow av e tran sition u sed in th e cu rren t d e¯ n ition .
A n o p tical clo ck w ill \ tick " a m illion tim es fa ster, a n d w ill b e in h eren tly m ore
accu rate. H ow ever, sin ce th e cesiu m a tom ic clo ck h a s an accu ra cy o f 10¡1 5 , o n e
h as to m ea su re th e can d id ate op tical tra n sition to th is a ccu ra cy to m ak e su re it
is con sisten t w ith th e cu rren t d e¯ n itio n . T h e race is o n to ¯ n d th e b est ca n d id ate
am on g several altern atives su ch as la ser-co o led sin gle io n s in a tra p , u ltra cold
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Figure 3. Improvement in

the accuracy of clocks over

the last millennium.

© The Nobel Foundation, 2005.

n eu tral a tom s in a n o p tical lattice, or m olecu les. A s sh ow n in F igure 3 , th e a ccu -
racy o f clo ck s h as in creased b y sev era l ord ers of m ag n itu d e in recen t tim es. T h e
ap p lica tio n s fo r m ore p recise clo ck s of th e fu tu re ran ge fro m teleco m m u n ication s
an d satellite n av iga tio n to fu n d am en ta l p h y sics issu es su ch a s m easu rem en t o f
p u lsar p erio d s, tests o f gen eral rela tiv ity, a n d va ria tio n of p h y sical co n stan ts.
In con clu d in g th is a rticle, on e of th e a u th ors (V N ) w ou ld like to sw itch to th e ¯ rst
p erso n sin gu lar a n d m a ke som e com m en ts on th e m otivation s th a t u n d erlie w o rk
in ex p erim en ta l p h y sics. I recen tly atten d ed a sm a ll recep tio n in h o n ou r of J oh n
H all a fter h e w o n th e N ob el P rize. In h is sp eech , h e m en tio n ed th at th e th in g
h e en joyed m ost ab ou t b ein g at N IS T w as th at th e m an a gem en t a llow ed h im
com p lete freed o m to p lay w ith th e latest \ toy s a n d g ad g ets", p leasu res th at h e
h as carried from h is ch ild h o o d . I rem em b er th a t, as a ch ild , I to o w a s fa scin a ted
b y m ech a n ical an d electrica l ga d gets, a n d th e p recisio n w ith w h ich th ey w ere
en gin eered . I th in k m an y of u s tak e to ex p erim en ta l research p recisely fo r th is
reaso n , th a t it a llow s u s to take ou r ch ild h o o d p leasu res of p lay in g w ith toy s in to
ad u lth o o d , a n d even m ak e a liv in g ou t of th is en joy m en t! I can n ot th in k of a
greater ad v ertisem en t for th e you n g rea d ers of th is jou rn al to tak e u p a fu l̄ llin g
career in research .
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Errata:  Resonance, Vol.11, No.2, February 2006.

Page 90: TIO � Solution to �On a Use of Normal Distribution�
Equations (10) and (11) should read as

Page 99: Classics � Suggested Reading [1] should read as
[1]  C E Shannon, A mathematical theory of communication,  Bell Sys. Tech. J., Vol.27,
        pp.379-423, July 1948.
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