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Abstract. We review here some conventional as well as less conventional as-

pects of the time-independent and time-dependent Hamilton-Jacobi (HJ) the-

ory and of its connections with Quantum Mechanics. Less conventional aspects
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quantum HJ theory, HJ problems for general differential operators and the

HJ problem for Lie groups.
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1. Introduction.

1.1. A Recollection of Preliminary Notions. The Hamilton-Jacobi formula-

tion of Classical Dynamics is usually presented [2, 3, 10, 11, 16, 18, 26, 32, 41, 47,

51, 55] as the search, for a Hamiltonian system with a possibly time-dependent

Hamiltonian on the cotangent bundle T ∗Q of some configuration manifold Q (with

dimQ = n for some n), for a canonical transformation that is able to ”reduce the

system to equilibrium”.The Hamilton-Jacobi (HJ) equation for the generator S of

the transformation, also known as ”Hamilton’s principal function”, is well known

to be then:

H

(
q;
∂S

∂q
; t

)
+
∂S

∂t
= 0 (1)

where: H = H (q; p; t) is the Hamiltonian of the system and, if a complete integral

S = S (q;Q), i.e. a solution depending on as many additional parameters Q1, ..., Qn

as the number of degrees of freedom in an essential way, i.e. such that:

det

∣∣∣∣
∂2S

∂qi∂Qj

∣∣∣∣ 6= 0 (2)

is available, then, the canonical transformation: (q, p) → (Q,P ) defined by:

pi =
∂S

∂qi
, Pi = − ∂S

∂Qi
; i = 1, ...n (3)

does the job of reducing the system to equilibrium.

For a time-independent Hamiltonian, and hence for a conservative system, de-

noting by E the total energy, the assumption:

S = W − Et (4)

yields instead the time-independent HJ equation:

H

(
q;
∂W

∂q

)
= E (5)

for ”Hamilton’s characteristic function” W , with the energy entering as one of the

additional parameters on which the principal function has to depend. However,

even in this case, the most general solution of Eq.(1) need not be linear in t.

The HJ equations come from the search for a canonical transformation on the

extended phase space R2n × R such that:
(
pidq

i −Hdt
)
−
(
PidQ

i −Kdt
)

= dS (q,Q; t) (6)

with the additional requirement that K ≡ 0, i.e. that, in the sought-for new

coordinates:
d

dt
Pi =

d

dt
Qi = 0 (7)

or, more generally:
d

dt
f (P,Q; t) ≡ ∂f

∂t
(8)

be the ”model dynamics” we would like to relate with our starting one, i.e.:

d

dt
pi = −∂H

∂qi
;
dqi

dt
=
∂H

∂pi
(9)
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Of course, we might consider other ”model dynamics”. For example, we might

require that: K = K (P ) =
(
P 2

1 + ...+ P 2
n

)
/2, in such a way that the ”model

dynamics” would be:
d

dt
Qi = Pi;

d

dt
Pi = 0 (10)

Clearly, other models could be implemented. For instance, we might require:

d

dt
Qi = νiPi;

d

dt
Pi = −νiQi (11)

and hence: K =
∑
i νi(

(
Qi
)2

+ (Pi)
2
)/2. The associated partial differential equa-

tions would be:

H

(
q,
∂S

∂q
; t

)
+
∂S

∂t
=

1

2

(
∂S

∂Q

)2

(12)

or:

H

(
q,
∂S

∂q
; t

)
+
∂S

∂t
=

1

2

∑

j

νj

[
(
Qj
)2

+

(
∂S

∂Qj

)2
]

(13)

While the first two cases are strictly local, the third one is ”less local”, it identifies

some equilibrium points, say Qi = 0, Pi = 0, which are also stable ones.

The conditions for solvability of these PDE’s are quite strong. For instance,

the first one requires: dPi/dt = dQi/dt = 0, i.e. that the system be maximally

integrable. the second one requires the system to be completely integrable, while

the third one requires not only complete integrability, but also that there be stable

equilibrium points.

Thus, the HJ problem in this generalized form would solve not only a conjugacy

problem, i.e. how to transform a given dynamical system into another one with

a preassigned form, but one would find also the required transformation to be

generated by a function S.

¿From a geometrical point of view, the first case requires the original dynamics

to define a fundamental vector field of the natural foliation of the contact manifold

after we have removed possible equilibrium points. In the second case the phase

space is foliated by invariant cylinders, while in the third case the dynamics will

preserve a foliation by tori.

As already noticed, the conditions for the solution of the various problems are

quite stringent, and one should expect that global solutions can be found only very

rarely. Nevertheless, this more general perspective may be interesting because it

could provide the Hamilton-Jacobi theory with a wider range of applications. For

instance, it might be applied to the study of scattering problems, where now K

would be the ”comparison Hamiltonian” and H that of the system one is analyzing.

It might be also applicable in Field Theory and General Relativity. In particular,

one might consider applying it to Quantum Mechanics going beyond the usual

WKBJ approximation.

Remark 1. Let us observe that if we define, keeping the additional parameters

fixed:

pi =
∂W

∂qi
= pi (q) (14)
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and we form [14] the vector field:

X (Q) ∋ X =
∂H

∂pi
(q, p (q))

∂

∂qi
(15)

it is immediate to show, using Eq.(5), that if: q = q (t) is an integral curve for

the vector field X, then: (q (t) , p (q (t))) is in turn an integral curve for Hamilton’s

canonical equations. Thus, Eq.(5) describes in a unified manner one particular

family of the phase-space equations of motion.

It is worth stressing that, already at this rather well-known level, the Hamilton-

Jacobi theory establishes a deep connection between first-order partial differen-

tial equations (PDE’s) and systems of first-order ordinary differential equations

(ODE’s) [13].

1.2. The HJ Equation and the JWKB Method. Quite similar connections

appear when one investigates the short-wavelength limit of ”wave-like” equations

(including also the Schrödinger equation) such as Hamiltonian optics as the short-

wavelength régime of wave optics (the eikonal approximation [12, 54], but see also

Ref.[36] for applications in Field Theory) and classical mechanics as the short-

wavelength régime of wave mechanics [43].

In taking this limit, one starts with some differential operator of hyperbolic

type on some manifold Q, passes through a Hamilton-Jacobi-type equation (the

characteristics equation [35]) for a function S and, by substituting covectors (the

”p”’s) for the first-order derivatives, arrives at a some Hamiltonian function on the

cotangent bundle T ∗Q which yields also the dispersion relation of the wave motion.

The associated Hamilton equations give rise, by projection on Q of the solutions,

to the bi-characteristics [35] of the original differential system. Rephrased in an

”optical” language, the characteristics describe the propagation of wave fronts, while

the bi-characteristics describe that of rays. Note that ”substituting covectors for

first-order derivatives”, in the case in which the differential operator is homogeneous,

is just a down-to-the -earth way of saying that we deal with what is known as the

symbol [22] of the operator.

Also, the JWKB method 1 [22, 23, 43, 45, 52] is widely used both in wave

optics and wave mechanics to investigate several physical problems in the short-

wavelength régime which, in wave mechanics, amounts to a leading-term expansion

in powers of the Planck constant ~. It is also closely related to the saddle-point

approximation (plus one-loop corrections) in the path-integral approach to problems

in Field Theory [2], Quantum [27] and Statistical Mechanics [31].

In this context, and concentrating for the sake of definiteness on the motion of

a particle of mass m in a potential V (x), one represents the wave function (in

Gaussian form) as2 :

ψ (x, t) = A (x, t) exp {iS (x, t) /~} (16)

1This method was first introduced in the discussion of problems in wave propagation by lord

Rayleigh back in 1912 and then applied to wave mechanics by H.Jeffreys in 1923 and, later on and

simultaneously, by L.Brillouin, H.A.Kramers and G.Wentzel in 1926.
2Many authors [42] prefer to incorporate the prefactor A into the definition of S, writing then:

ψ (x.t) = exp(iS (x, t) /~, where the S of Eq.(16) is replaced by S − i~ lnA and is no more real.
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(with both A and S real). Substituting into the Schrödinger equation, one ends up

with the (exact) coupled equations [22]:

1

2m
|∇S|2 + V (x) +

∂S

∂t
=

~2

2m

∇2A

A
(17)

and:

∇ (ρv) +
∂ρ

∂t
= 0 (18)

where: ρ = ρ (x, t) = A2 (x, t) and: v = v (x, t) = ∇S/m. Neglecting ”quantum

correction” proportional to ~2 on the r.h.s. of Eq.(17) yields the HJ equation (1).

If S solves the time-dependent HJ equation, it is possible to show (see,e.g., App.4B

of Ref.[22] and Ref.[23]) that Eq.(18) is solved by3:

ρ =

∣∣∣∣∣det

(
∂2S

∂xi∂xj0

)∣∣∣∣∣ (19)

where the xj0’s are the initial coordinates, and hence the JWKB solution is:

ψ =
√
ρ exp (iS/~) (20)

As discussed in Ref.[22], Eq.(20) yields the JWKB approximation to the prop-

agator (or Green function) for the Schrödinger operator, and the result becomes

exact for quadratic Hamiltonians. Similar conclusions hold [2, 31, 33] in the path-

integral formalism, where the saddle-point approximation4 also becomes exact for

quadratic Hamiltonians (or Lagrangians).

1.3. A Geometrical Setting for the HJ Theory. A useful geometrical formu-

lation of the HJ theory can be given as follows. Consider a symplectic manifold:

M = T ∗Q with symplectic structure ω0 = dpj ∧dqj . With any symplectomorphism:

φ : M → M, φ∗ω0 = ω0 (21)

(φ (q, p) =: (Q,P )) we may associate a ”graph” Σφ, i.e. a submanifold in the sym-

plectic manifold M × M, the second factor being equipped with the symplectic

structure −ω0:

Σφ = {(m,φ (m)) ⊂ M × M} (22)

by requiring it to be Lagrangian w.r.t. the symplectic structure on M×M provided

by:

dpj ∧ dqj − dPj ∧ dQj =: ω0 ⊖ ω0 (23)

By using the fact that: M × M = T ∗Q × T ∗Q ⇄ T ∗ (Q×Q), we can consider

those Lagrangian submanifolds in T ∗ (Q×Q) that can be written as graphs:

dS : Q×Q −→ T ∗ (Q×Q) (24)

When Σφ projects onto Q × Q we may consider it as the graph of a generating

function S.

3The determinant on the r.h.s. of Eq.(19) is the well-known [27, 31] Pauli-Morette-Van Vleck

determinant.
4In this case the Pauli-Morette-Van Vleck determinant is replaced by a functional determinant,

whose definition requires careful regularization procedures [27, 56] that will not be discussed here.
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In many cases M may admit of many alternative cotangent bundle structures,

i.e. we may identify ”alternative” submanifolds Q′ such that: M = T ∗Q′, with Q

and Q′ possible alternative ”placements” of some external configuration space Q.

A typical example is provided by: M = R2n, where any identification of an affine

subspace Rn is a possible placement of an ”abstract” Rn.

¿From this point of view, if we start with φ and Σφ we may look for a particular

placement of Q in M that makes Σφ projectable (a submersion onto) Q×Q.

Remark 2. The usual ”colloquial” classification into ”four possible sets of indepen-

dent canonical variables” usually encountered in textbooks on Classical Mechanics,

say (q,Q) , (q, P ) , (Q, p) and (p, P ) are exactly different identifications of the ”con-

figuration space” over which one constructs the cotangent bundle structure. There-

fore we would have the corresponding symplectic structures: d
(
pjdq

j − PjdQ
j
)
,

d
(
pjdq

j +QjdPj
)
, d
(
PjdQ

j + qjdpj
)

and: d
(
qjdpj −QjdPj

)
respectively.

When the graph dS : Q×Q→ T ∗ (Q×Q) is viewed as a map: dS : Q×Q→ T ∗Q,

i.e. the second factor Q is considered as a family of ”parameters”, we may obtain a

regular foliation of T ∗Q. Then we may say that S is a ”complete solution” of some

associated HJ equation, and in this case the Hamiltonian flow associated with the

Hamiltonian K would preserve the foliation induced by S on T ∗Q. On the open

dense submanifolds on which: dS : Q × Q → T ∗Q provides a diffeomorphism we

would have equivalence between the Cauchy problem in terms of initial data (q0, p0)

and the boundary value problem in terms of (q0, Q). We notice that in this case:

(dS)
∗
ω0 =: ωS =

∂2S

∂qi∂Qj
dqi ∧ dQJ (25)

is a symplectic structure (cfr. Eq.(2)) on Q × Q, and hence it would allow for a

Hamiltonian formulation on the space of ”boundary data” rather than of the ”initial

conditions”. The inverse image of the one-parameter group of evolution on T ∗Q

would provide the ”propagator” on the configuration space.

By using the geometrical formulation of Quantum Mechanics a similar picture

can be considered also for Quantum Mechanics in the Schrödinger picture.

Let us restrict for convenience to a finite-dimensional Hilbert space H. Again a

transformation:

Φ : H −→ H (26)

will be associated with a graph:

ΣΦ = {(ψ,Φ (ψ)) ⊂ H × H)} (27)

If we consider on H × H the pseudo-Hermitian form:

〈(ψ1, ψ2) | (ϕ1, ϕ2)〉 =: 〈ψ1|ϕ1〉 − 〈ψ2|ϕ2〉 (28)

and noticing that, on ΣΦ, ϕ1,2 = Φ (ψ1,2), we find that ΣΦ will be isotropic w.r.t.

the pseudo-Hermitian form (28) iff Φ is a unitary transformation.

By considering the realification of H, the Hermitian product decomposes into

a real and an imaginary part, the former providing an Euclidean product and the

latter a symplectic product.
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As for the symplectic part, we have a situation similar to the one we considered

previously, i.e. we may consider a generating function of the canonical transfor-

mation and require afterwards that this transformation should preserve also the

Euclidean product. In a somewhat simplified notation we may write then:

Im (ψ∗dψ − ϕ∗dϕ) = dSΦ (29)

and then we require, in addition:

〈dψ|dψ〉 = 〈dϕ|dϕ〉 (30)

The resulting transformation would be a Kählerian transformation derived from

the generating function SΦ. For: ϕ = Uψ, ϕ∗ = ψ∗U∗, S (ϕ∗, ψ) = −ϕ∗Uψ:

dϕ∗ ∧ dϕ− dψ∗ ∧ dψ = −d (ϕdϕ∗ + ψ∗dψ) (31)

For example, a Hadamard gate:

U = UH =
1√
2

∣∣∣∣
1 1

−1 1

∣∣∣∣ (32)

has the generating function:

SH (ϕ∗, ψ) = −ϕ∗
1ψ1 − ϕ∗

1ψ2 + ϕ∗
2ψ1 − ϕ∗

2ψ2 (33)

1.4. Quantum HJ Equations. In the Heisenberg picture, one may devise a di-

rect approach to the HJ problem by replacing classical variables with Hermitian

operators. Indeed, shortly after the advent of Quantum Mechanics, various efforts

were made [19, 21] to formulate both the theory of Canonical Transformations and

hence also the Action Principle [50] and the Hamilton-Jacobi equation in operator

terms from the very beginning5.

Following, e.g., the scheme of Eqs.(1) to (3), one might be tempted to ”promote”

these equations to operator equations defining a (quantum) canonical transforma-

tion as:

p̂i =
∂

∂q̂i
S
(
q̂, Q̂, t

)
, P̂i = − ∂

∂Q̂i
S
(
q̂, Q̂, t

)
(34)

and a (quantum) HJ equation as:

H

(
q̂,
∂S

∂q̂
, t

)
+
∂

∂t
S
(
q̂, Q̂, t

)
= 0 (35)

Due to operator-ordering problems, these equations are obviously ambiguous.

According to Jordan [29, 30] and Dirac [19, 20] the ambiguity should be resolved

by requiring S and the operators in Eqs.(34) and (35) to be ”well ordered”, i.e.

by requiring all the ”uppercase” operators (the Q̂’s) to stay to the right of the

”lowercase” ones (the q̂’s). This implies that the ”generating operator” S should

be of the general form [46]:

S
(
q̂, Q̂, t

)
=
∑

α

fα (q̂, t) gα

(
Q̂, t

)
(36)

5See Ref.[50] for a systematic exposition of this approach.
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for suitable functions fα and gα. The ”well-ordering” procedure must be applied

also, using when necessary the commutation relations, to the Hamiltonian operator

H in Eq.(35).

The authors in Ref.[46] have devised a procedure for converting the operator

equation (35) into a c-number equation that we will illustrate here on a simple

example6, namely that of a (non-relativistic) 1D particle of mass m subject to a

scalar potential V (q). The Hamiltonian is then:

H =
p̂2

2m
+ V (q̂) (37)

and the (operator) HJ equation becomes (S = S(q̂, Q̂, t)):

1

2m

(
∂S

∂q̂

)2

+ V (q̂) +
∂S

∂t
= 0 (38)

Sandwiching between eigenstates7 |q〉 and |Q〉 of q̂ and Q̂ respectively, the ”well

ordering” prescription leads to:

〈q|S
(
q̂, Q̂, t

)
|Q〉 = S (q,Q, t) 〈q|Q〉 (39)

i.e. to a (uniquely defined and not necessarily real) c-number function S(q,Q, t).

Sandwiching between the same eigenstates the quadratic term on the l.h.s. of

Eq.(38) is a bit more complicated. Explicitly:

〈q|
(
∂S

∂q̂

)2

|Q〉 =
∑

β

〈q|∂S
∂q̂

∂fβ
∂q̂

gβ(Q̂)|Q〉 (40)

Now, the standard canonical commutation relations imply, for any function G =

G(q̂) :

[G, p̂] = i~
∂G

∂q̂
(41)

Using then the first of Eqs.(34) (i.e.: ∂S/∂q̂ = p̂) one finds [46]:

∂S

∂q̂

∂fβ
∂q̂

=
∂fβ
∂q̂

∂S

∂q̂
− i~

∂2fβ
∂q̂2

=
∂fβ (q̂, t)

∂q̂

∑

α

∂fα(q̂, t)

∂q̂
gα(Q̂, t)− i~

∂2fβ(q̂, t)

∂q̂2
(42)

which is again a ”well ordered” expression, and hence:

〈q|
(
∂S

∂q̂

)2

|Q〉 =

[(
∂

∂q
S (q,Q, t)

)2

− i~
∂2

∂q2
S (q,Q, t)

]
〈q|Q〉 (43)

Dropping then the common factor 〈q|Q〉 one obtains the c-number equation8:

1

2m

[(
∂

∂q
S (q,Q, t)

)2

− i~
∂2

∂q2
S (q,Q, t)

]
+ V (q) +

∂

∂t
S (q,Q, t) = 0 (44)

which is completely equivalent to the operator equation (38).

6Referring to Ref.[46] for a more general discussion.
7

R

dq |q〉〈q| = I, 〈q|q′〉 = δ (q − q′), and similarly for bQ.
8As Eq.(44) (as well as the classical equation (1)) contains only derivatives of S, any solution

will be ambiguous by the addition of a constant term. This ambiguity, which is totally irrelevant

at the classical level, will turn out instead to be useful in what follows.
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Eq.(44) is precisely the equation that results [26, 46] from the Schrödinger equa-

tion (in the variables (q, t)) by expressing the wave function ψ as (see footnote

2):

ψ (q,Q, t) = exp

{
i

~
S (q,Q, t)

}
(45)

It provides then a solution of the Schrödinger equation depending (in an essential

way) from the additional parameter Q, just as the propagator K (q,Q, t) [22, 49],

which obeys the same equation, does. The propagator is known [22, 31, 49] to obey

the boundary condition: K (q,Q, t) → δ (q −Q) as t→ 0 and, in order to complete

the identification, one has to check (the equation being first-order in time) that

there is a solution of the form (45) which does the same. For example, from the

well-known9 result [31, 49] for the propagator of the 1D harmonic oscillator with

mass m, proper frequency ω and Hamiltonian:

H =
p̂2

2m
+

1

2
mω2q̂2 (46)

one can check directly that:

S =
mω

2 sin (ωt)

[(
q2 +Q2

)
cos (ωt) − 2qQ

]
+
i~

2
ln

(
2πi~ sin (ωt)

mω

)
(47)

does indeed solve Eq.(44) with the appropriate boundary condition10. It is then

immediate to see that the ”well-ordered” solution of the operator equation (36) will

be:

S =
mω

2 sin (ωt)

[(
q̂2 + Q̂2

)
cos (ωt) − 2q̂Q̂

]
+
i~

2
ln

(
2πi~ sin (ωt)

mω

)
(48)

Remark 3. When substituting from Eq.(48) into Eq.(36) we need to square the

derivative: ∂S/∂q̂ = mω(q̂ cos(ωt) − Q̂)/ sin(ωt). This brings about terms that

are not ”well-ordered”. Bringing them in the correct order [46] requires using the

(exact) commutation relation:
[
q̂, Q̂

]
= −i~ sin (ωt) /mω. The time derivative of

the last term in Eq.(48) (see also footnote 8) does then the job of compensating for

this operation.

The short-time limit of Eq.(48) is:

S ≈
t→0

m

2t

(
q̂2 + Q̂2 − 2q̂Q̂

)
+
i~

2
ln

(
2πi~t

m

)
(49)

which is the same as for the free particle. The harmonic potential does not con-

tribute to this short-time limit. As remarked in Ref.[46], the same will happen more

generally for any nonsingular potential V (q̂). So, the result (49) will have a more

general significance, going slightly beyond the case of quadratic potentials.

9As for any quadratic Hamiltonian.
10In the limit ω → 0, insertion of Eq.(47) into Eq.(45) reproduces of course the kernel for the

1D free particle.
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1.5. Comments and Plan of the Paper. Going back now to our general dis-

cussion, the attempt to recover the original PDE from the equations of motion of

the ”rays”, i.e. Hamilton’s equations, is what is usually called the ”quantization

problem”.

This interplay between PDE’s, associated first-order PDE’s (HJ-type equa-

tions) describing the propagation of ”wave-fronts” and the corresponding, ”ray”

ODE’s (Hamilton’s equations) has been widely investigated in various branches of

theoretical Physics. Moreover, because of the Hamiltonian-Lagrangian correspon-

dence, also the calculus of variations appears in this interplay.

¿From all these remarks it should be clear that the HJ theory is very rich in an-

alytic and geometric ideas, and that it unifies apparently diverse topics like higher-

order PDE’s, first-order PDE’s, ODE’s and the calculus of variations.

In this paper we will try and use some of our experience with Quantum Mechanics

to formulate and give a geometric presentation of many problems which, born in

a quantum setting, are of more general validity in the framework of the Hamilton-

Jacobi theory. Besides many original papers on this vast subject, we shall rely on

some work by A.Vinogradov [53], some more recent work by Grabowski and Poncin

[25], a previous paper of ours [38] and recent paper on the Hamilton-Jacobi theory

in a Lagrangian setting [14]. We shall discuss the following topics:

-Reviewing briefly how the HJ problem can be formulated in geometric terms

on the cotangent bundle T ∗Q of a smooth manifold Q, we shall discuss how the

same problem can be formulated on the tangent bundle TQ, hence in a Lagrangian

setting.

-How one can pose a generalized HJ problem for differential operators of any

order, giving another coordinate-free characterization of the HJ equation.

-We shall try and discuss to which extent, instead of differential operators acting

on functions, one can consider differential operators acting on sections of vector

bundles, thereby obtaining ”wave-like” equations that are not scalar, like the Pauli

and the Dirac equations.

-Just as in Quantum Mechanics one poses a joint eigenvalue problem for two (or

more) observables, we shall discuss how one can pose a ”joint HJ problem” for

more than two functions on the cotangent bundle, and, finally,

-After ”revisiting” briefly the geometrical formulation of the time-dependent

Hamilton-Jacobi theory, whose proper setting [38] is on the cotangent bundle T ∗ (Q× R),

we shall discuss how one can obtain generalizations thereof when the action of the

Abelian group R is replaced with that of a general Lie group G (a ”HJ problem on

a Lie group”, then).

2. A Geometrical Setting for the Time-Independent Hamilton-Jacobi

Theory on the Cotangent and on the Tangent Bundles.

2.1. Preliminaries. Let us begin by recalling [38] some preliminary notions. The

cotangent bundle T ∗Q carries with it the canonical (exact) symplectic structure:

ω0 = dθ0 (50)
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where, in local coordinates: θ0 = pidq
i, and hence: ω0 = dpi ∧ dqi.

Let then α ∈ X∗ (Q) be a one-form on the base manifoldQ. Again, in coordinates:

α (q) = αi (q) dq
i (51)

With the one-form α we can associate the map (the graph of α):

ϕα : Q→ T ∗Q by : Q ∋ q 7→ (q, α (q)) ∈ T ∗Q (52)

The image of α, Γ [α] will be defined as: Γ [α] = ϕα (Q). Of course: dimΓ [α] =

dimQ = n. It is clear from Eq.(52) that:

π ◦ ϕα = IdQ (53)

where: π : T ∗Q→ Q is the canonical projection. This shows that ϕα gives a global

section of T ∗Q. Γ [α] will be therefore an n-dimensional transversal [38] submanifold

of T ∗Q and ϕα will be an embedding [41] of Q into T ∗Q. Also, α can be recovered

from the canonical one-form θ0 via the pull-back:

ϕ∗
αθ0 = α (54)

We can consider also the map:

ψα =: ϕα ◦ π : T ∗Q→ T ∗Q by : T ∗Q ∋ (q, p) 7→ (q, α (q)) ∈ T ∗Q (55)

which is a base-invariant translation along the fibers that, for every q ∈ Q, ”shrinks”

the whole fibre T ∗
qQ to the point α (q). Then, using Eq.(54), one obtains at once:

ψ∗
αω0 = π∗dα (56)

and we conclude [38] that the graph of α, besides being always transversal to the

fibers, will be also a Lagrangian submanifold [38, 41] of T ∗Q if and only if α

is closed. As discussed in Ref.[38], the converse is not true, i.e. a transversal

Lagrangian submanifold of T ∗Q which projects down to Q under the canonical

projection need not be the graph of a closed one-form.

Being closed, α will be locally exact, i.e.: α = dW for some function W ∈ F (Q),

at least locally. Whether or not such a function exists globally will depend on

whether or not H1 (Q), the first de Rham cohomology group of Q, is trivial.

2.2. The HJ Theory on the Cotangent Bundle. After these preliminaries,

let us re-consider now the time-independent HJ equation, Eq. (5), for Hamilton’s

characteristic function, i.e.:

H

(
q;
∂W

∂q

)
= E (57)

W can be either a particular solution of the HJ equation or a complete in-

tegral (with all the possible intermediate cases in between). In the latter case:

W = W (q; a) depending (as already discussed, in an essential way) on n additional

variables collectively denoted as a. Whenever necessary, we will denote as Wa (q)

the function that obtains by keeping the a’s constant. Hence: Wa ∈ F (Q) ∀a.
It is clear that, considering the graph of the exact one-form dWa, the image of

dWa is a Lagrangian submanifold and Eq.(57) can be rewritten as [38]:

dW ∗
a (H − E) = 0 (58)
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or, equivalently, as:

dW ∗
a (dH) = 0 (59)

As it stands, Eq.(58) looks just like a different way of rewriting the standard

HJ equation in a different language. However it allows for a deeper geometrical

interpretation of the HJ theory, and allows also for some interesting generalizations.

First of all, the image Γa of dWa is a regular submanifold [41] of T ∗Q. As such,

it can be described, locally at least, as the zero-level set of n independent functions

f1a, ..., fna ∈ F (T ∗Q), i.e. such that:

df1a ∧ ... ∧ dfna 6= 0

Γa = {m = (q, p) ∈ T ∗Q| fja (m) , j = 0, 1, ..., n} (60)

and:

{fia, fja} (m) = 0 (61)

where {., .} is the Poisson bracket in the space of functions on T ∗Q associated with

the symplectic form ω0.

Eq.(61) implies that the Hamiltonian vector fields Xj associated with the fj ’s, i.e.:

iXja
ω0 = −dfja, j = 1, ..., n (62)

are all tangent to the submanifold (indeed [38] they span the tangent space TmΓa
at each m ∈ Γa). Moreover, denoting by XH the Hamiltonian vector field that

describes the dynamics, we obtain, contracting both sides of Eq.(59) with the Xja’s:

0 =
[
iXja

(dW ∗
a (dH))

]
(m) =

[
iXja

dH
]
(m) =

=
(
LXja

H
)
(m) = − (LXH

fja) (m) = {H, fja} (m)
(63)

which proves that XH is tangent to Γa∀a. Of course XH is also tangent to the

(2n− 1)-dimensional energy surface11:

ΣE = (H − E)−1 (0) (64)

If dH 6= 012, ΣE is a regular submanifold that we can assume without loss of

generality to be also connected. If it is not, we can always restrict the discussion to

each connected component separately. Each Γa is contained in the energy surface

(64) and, in general [38], they will provide a (n− 1)-parameter foliation of the

energy surface, with the dynamical vector field XH being tangent to all the leaves

of the foliation. This is basically the geometrical content of the fact that, besides

the energy E, a complete integral depends in an essential way on n − 1 additional

parameters.

This formulation of the HJ problem suffers however of some limitations, as the

following example shows.

Example 1. Consider: Q = S1 with coordinate q, 0 ≤ q < 2π. The cotangent

bundle can be given coordinates (q, p), with p ∈ R, and can be viewed as a cylinder.

In this case: θ0 = pdq and: ω0 = dp ∧ dq are both well-defined. The vector field:

X = p∂/∂q is Hamiltonian with the Hamiltonian: H = p2/2, and the ”energy

11Remember that, in the time-independent case, the energy E must be included among the pa-

rameters on which a complete integral depends, leaving actually only n−1 independent parameters.
12Critical points of H, being invariant sets for the dynamics, can be handled separately.
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surfaces” are pairs of circles on the cylinder: ΣE =
(
q,±

√
2E
)
, E ≥ 0. The

associated HJ equation: (∂S/∂q)
2

= E has of course no global solutions for E > 0,

but the energy surfaces are nonetheless the graphs of the closed but not exact one-

forms: αE,± = ±
√

2Edq, and the equation: ϕ∗
α (H − E) = 0 for an unknown closed

one-form α is globally defined and has precisely αE,± as solutions.

This suggests that one relaxes the requirement that the pull-back of H − E in

Eq.(58) be via an exact one-form, replacing it with the weaker request that it be

via a closed but not necessarily exact one-form, i.e. that one replaces Eq.(58) with:

α∗ (H − E) = 0, α ∈ X∗ (Q) , dα = 0 (65)

The graph of any such form will be of course again a transversal Lagrangian sub-

manifold, and we can re-formulate the ”geometric HJ problem” as follows:

• A solution of the HJ equation for a given Hamiltonian and a given energy is

a transversal Lagrangian submanifold within the energy surface, obtained as

the graph of a closed one-form on Q, and

• A complete integral is a foliation of T ∗Q by such solutions for all physically

accessible values of the energy, which implies also a foliation of each energy

surface as well.

Note that (cfr. Eq.(54)), as: α∗ω0 = α∗dθ0 = d(α∗θ0) = dα, Eq.(65) can be

replaced by the equivalent one:

α∗ (H − E) = 0, α ∈ X∗ (Q) , α∗ω0 = 0 (66)

If, as a further step, one gives up the requirement of transversality, one can pose a

”HJ problem” (no more a ”HJ equation”) consisting in the search for foliations of

each energy surface simply by Lagrangian submanifolds (that, being not necessarily

transversal, can exhibit caustics [4]). This has the advantage that the full set of

canonical symmetries can be implemented as symmetries of the HJ problem (i.e.

maps that map solutions into solutions). We will not insist on this point, but refer

rather to the literature [38] for a more complete discussion.

2.3. The HJ Theory on the Tangent Bundle. We turn now briefly to the

Lagrangian context. The relevant carrier space is now the tangent bundle TQ,

with local coordinates
(
qi, ui

)
, i = 1, ..., n, which carries no pre-assigned symplectic

structure but, if a Lagrangian L ∈ F (TQ) (assumed here to be regular13) is given,

can be endowed with a Lagrangian symplectic structure ωL defined by: [1, 3, 41]:

ωL = dθL; θL =
∂L

∂ui
dqi (67)

again, for simplicity, in local coordinates. The Euler-Lagrange equations can be put

in ”Hamiltonian” form as:

iΓL
ωL = −dEL (68)

where ΓL is the second-order [41] vector field describing the dynamics, the ”energy

function” EL is given by:

EL = (L∆ − 1)L (69)

13We refer to Ref. [41] for a discussion of the case of singular Lagrangians.
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and, finally, ∆ is the dilation (Liouville) field along the fibers:

∆ = ui
∂

∂ui
(70)

Sections (actually, global sections) of the tangent bundle are now provided by

vector fields on the base manifold, just as one-forms did the same job for the cotan-

gent bundle. If X ∈ X (Q) is any such vector field, given in local coordinates by:

X = X i (q) ∂/∂qi, then X will define the map14:

X : Q→ TQ by : qi 7→
(
qi, X i (q)

)
(71)

satisfying:

π ◦X = IdQ (72)

where: π : TQ→ Q is the canonical projection, and hence X is a section of TQ.

With reference to Eq.(66) we can then define a Lagrangian HJ problem as the

search for all vector fields X ∈ X (Q) such that:

X∗ (EL − E) = 0 and : X∗ωL = 0 (73)

As such, the HJ problem on the tangent bundle can be viewed as the search,

instead of a single function as in the case of T ∗Q, of a ”vector-valued function” on

Q.

As a (Lagrangian) counterpart of the Remark that was made in Sect.1, we have

now the following [14]

Remark 4. If: X ∈ X (Q) , X : Q→ TQ is a solution of Eq.(73) and γ : R → Q is

an integral curve of X , i.e.:
·
γ = X ◦γ, then:

·
γ : R → TQ solves the Euler-Lagrange

equations for the Lagrangian L, i.e.:

X ◦ γ =
·
γ =⇒ ΓL ◦ ·

γ =
·

X ◦ γ (74)

The converse statement, however (i.e. if the integral curves γ of a vector field

X ∈ X (Q) are such that
·
γ are integral curves for the Lagrangian vector field ΓL

for a given Lagrangian L, then X is a solution of Eq.(73)) need not be true, as the

following example [14] shows.

Example 2. The dynamics of the free particle in R2 can be described by the

regular Lagrangian:

L =
1

2

[(
u1
)2

+
(
u2
)2]

(75)

with associated geometrical objects:

ΓL = u1 ∂

∂q1
+ u2 ∂

∂q2
;EL =

1

2

[(
u1
)2

+
(
u2
)2]

(76)

and:

θL = u1dq1 + u2dq2; ωL = du1 ∧ dq1 + du2 ∧ dq2 (77)

14With some abuse of notation, we are using here too the same symbol to denote the vector

field and the associated map.
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The two-parameter family of vector fields:

X = k
∂

∂q1
+
kq2 − l

q1
∂

∂q2
(78)

satisfies the assumptions of the above (putative) converse statement, but:

X∗ (ωL) = −kq
2 − l

(q1)
2 dq1 ∧ dq2 6= 0 (79)

and:

X∗ (EL) =
1

2

[
k2 +

(
kq2 − l

q1

)2
]
⇒ d (X∗ (EL)) 6= 0 (80)

Hence, both conditions of Eq.(73) will be violated.

Guided by this example we will stick to the definition of the Lagrangian Hamilton-

Jacobi problem as defined by Eqs.(73), i.e. as the search for all vector fields X ∈
X (Q) such that (using again the same notation for the associated maps Q→ TQ):

X∗ωL = d(X∗EL) = 0 (81)

The first of these equations implies, of course, that ImX be a Lagrangian sub-

manifold of TQ. Furthermore, as: 0 = X∗ωL = X∗(dθL) = d (X∗θL), every point

has an open neighborhood U ⊂ Q where there is a function W ∈ F (U) such that:

X∗θL = dW in U .

We have already shown in a previous Remark that if X is a solution of the

Lagrangian HJ problem, then it satisfies Eq.(74) (while the converse is not true)15.

It has been proved in Ref.[14] that X is a solution of Eq.(73) iff the following

diagram:

TQ
ΓL−→ T (TQ)

X ↑ ↑ TX

Q −→
X

TQ

(82)

commutes, i.e. iff:

ΓL ◦X = TX ◦X (83)

Eq.(83) is a PDE for the unknown vector field, or ”vector-valued function”, X

which replaces the PDE for the scalar function W . Once a solution is found, one

has however to check whether or not it satisfies the conditions (81) as well, in order

for it to be a genuine solution of the Lagrangian HJ problem.

It may be useful to derive the expression for the PDE (83) in local coordinates.

We can write X and ΓL as:

X = X i ∂
∂qi ; X

i = X i (q)

ΓL = ui ∂
∂qi + ai ∂

∂ui

(84)

where:

ai = ai (q, u) = Hij

{
∂L

∂qj
− ∂2L

∂uj∂qk
uk
}

(85)

15In Ref.[14] the problem of finding the solutions of Eq.(74) is also called the generalized

Lagrangian HJ problem.



HAMILTON–JACOBI THEORY 17

and Hij is the inverse of the Hessian matrix:

Hij =
∂2L

∂ui∂uj
(86)

A direct calculation shows that:

(TX ◦X − ΓL ◦X) (q) =

(
∂X i

∂qj
Xj − ai (q,X)

)
∂

∂ui
(87)

This is a vertical vector field along X whose vanishing implies:

∂X i

∂qj
Xj − ai (q,X) = 0, i = 1, ..., n (88)

and this is the required local form of the PDE (83).

One of the main results of Ref.[14] can now be rephrased as follows:

Proposition. The following statements are equivalent:

1. X is a solution of the Lagrangian HJ problem.

2. Besides being a Lagrangian submanifold of TQ, ImX is also invariant under

the dynamics represented by ΓL, i.e. ΓL is everywhere tangent to ImX .

3. The integral curves of ΓL with initial conditions on ImX project onto the

integral curves of X .

In the context of the tangent bundle, the notion of a complete solution of the

Lagrangian HJ problem can be posed as follows:

Definition. A complete solution of the Lagrangian Hamilton-Jacobi problem is

provided by a family of solutions {Xλ}λ∈Λ, Λ an open set in Rn, such that the map:

Φ : Q× Λ → TQ by : Φ (q, λ) = Xλ (q) (89)

is a local diffeomorphism.

It follows from the definition that a complete solution yields a foliation16 of TQ

with leaves transversal to the fibers, and that the Lagrangian vector field ΓL is

tangent to the fibers of the foliation.

Example 3. Consider the two-dimensional harmonic oscillator with the stan-

dard Lagrangian:

L =
1

2

[(
u1
)2

+
(
u2
)2 −

(
q1
)2 −

(
q2
)2]

(90)

The dynamical vector field is:

ΓL = u1 ∂

∂q1
+ u2 ∂

∂q2
− q1

∂

∂u1
− q2

∂

∂u2
(91)

and:

EL = 1
2

[(
u1
)2

+
(
u2
)2 −

(
q1
)2 −

(
q2
)2]

ωL = du1 ∧ dq1 + du2 ∧ dq2
(92)

16This is ensured by the request that Φ (q, λ) be a (local) diffeomorphism.
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It is known that the functions:

f0 = u1u2 + q1q2

f1 =
(
u1
)2

+
(
q1
)2

f2 =
(
u2
)2

+
(
q2
)2

f3 = q1u2 − q2u1

(93)

are all constants of the motion, not functionally independent, of course. Let, e.g.,

f0 = C, f1 = 2E1, f2 = 2E2, f3 = l. In particular, f1 and f2 are in involution:

{f1, f2} = 0. The PDE equations (88) read now:

∂X i

∂qj
Xj = −qi, i = 1, 2 (94)

and it is easy to check that the four two-parameter families of vector fields17:

XE1,E2 = ±
√

2E1 − (q1)
2 ∂

∂q1
±
√

2E2 − (q2)
2 ∂

∂q2
(95)

do indeed solve them. As:

(XE1E2)
∗
ωL = ±d

√
2E1 − (q1)

2 ∧ dq1 ± d

√
2E2 − (q2)

2 ∧ dq2 = 0 (96)

and:

(XE1,E2)
∗
dEL =

=

√
2E1 − (q1)

2
d

√
2E1 − (q1)

2
+

√
2E2 − (q2)

2
d

√
2E2 − (q2)

2
+ q1dq1 + q2dq2 = 0

(97)

each family (95) is indeed a complete solution of the Lagrangian HJ problem for

the two-dimensional harmonic oscillator with the standard Lagrangian (90) .

Remark 5. It is useful to stress here that the PDE (88) (or, for that matter,

Eq.(94) in the case of the harmonic oscillator), which defines [14] the ”generalized”

Lagrangian HJ problem, depends on the Lagrangian only through the vector field

ΓL, while the HJ problem that we are discussing here depends also on additional

structures derived from the Lagrangian, namely the symplectic form ωL and the

”energy function” EL.

It is known [44] that the so-called ”Inverse Problem in the Calculus of Variations”,

i.e. the problem of whether or not a dynamics described by a given second-order

vector field on TQ admits of a Lagrangian description can have no solutions at

all, only one solution18, or more than one solution, leading then to (genuinely)

alternative Lagrangian descriptions for a given dynamics.

If this is the case, vector fields that are solutions of the Lagrangian HJ problem

(or families thereof, yielding complete solutions) for a given Lagrangian need not

be such for an alternative Lagrangian description, while remaining, according to

what has just been said, solutions (or complete solutions) of the generalized HJ

problem, as the following example shows.

17It is easy to recognize that the components of the vector fields are obtained by expressing

u1,2 in terms of the coordinates on the base manifold and of the two parameters E1,2.
18Apart from the addition [44] of essentially trivial ”gauge terms”.
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Example 4. Consider again the two-dimensional harmonic oscillator, but now

with the alternative Lagrangian [44]:

L1 =
1

2

[(
u1
)2 −

(
u2
)2 −

(
q1
)2

+
(
q2
)2]

(98)

The associated structures will be now:

EL1 = 1
2

[(
u1
)2 −

(
u2
)2

+
(
q1
)2 −

(
q2
)2]

ωL1 = du1 ∧ dq1 − du2 ∧ dq2
(99)

while, of course, the dynamical vector field and the PDE (94) will be the same.

The vector fields (95) will satisfy again (XE1E2)
∗
ωL1 = 0 as well as: (XE1,E2)

∗
dEL1 =

0 and hence the XE1E2 ’s will provide a complete solution of the HJ problem for the

Lagrangian (98) as well.

If one considers instead the Lagrangian [44]:

L2 = u1u2 − q1q2 (100)

we have:

EL2 = u1u2 + q1q2

ωL2 = du2 ∧ dq1 + du1 ∧ dq2 (101)

and one finds, e.g.:

(XE1E2)
∗
ωL2 =


± q2√

2E2 − (q2)
2
± q1√

2E1 − (q1)
2


 dq1 ∧ dq2 6= 0 (102)

(as well as: (XE1E2)
∗
(dEL2) 6= 0). Hence, the XE1E2 ’s will be no more solutions

of the HJ problem for the alternative Lagrangian (100).

3. The Generalized Hamilton-Jacobi Problem for Differential Operators.

3.1. Differential Operators and Principal Symbols. In order to deal with

differential operators on manifolds, we will first review differential operators on Rn.

We will do this by providing an algebraic characterization that will allow us to deal

with differential operators on arbitrary manifolds.

We consider then the algebra A = F (Rn) of smooth functions on Rn. A differ-

ential operator of degree at most k is defined as a linear map: D(k) : A → A of the

form:

D(k) =
∑

|σ|≤k

gσ
∂|σ|

∂xσ
; gσ ∈ A (103)

where we have introduced multi-indices: σ = (i1, i2, ..., in) , |σ| = i1 + i2 + ... + in,

and:

∂|σ|

∂xσ
=

∂|σ|

∂xi11 ∂x
i2
2 ...∂x

in
n

(104)

It is possible to give an algebraic characterization, appropriate to arbitrary mani-

folds, in the following way. With functions f ∈ A we associate differential operators
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f̂ of order zero that act by multiplication, i.e.: f̂g =: fg on all smooth functions.

We notice that the commutator bracket gives:
[
∂

∂xi
, f̂

]
=

∂̂f

∂xi
(105)

and, more generally: [
∂|σ|

∂xσ
, f̂

]
=

∑

τ+ν=σ

cτ
∂|τ |f

∂xτ

∂|ν|

∂xν
(106)

for |τ | > 0 (strictly) and some set of constants cτ . It follows then easily that:

[
D(k), f̂

]
=
∑

|σ|≤k

gσ

[
∂|σ|

∂xσ
, f̂

]
(107)

is a differential operator of degree at most k − 1. Iterating the procedure for a set

of k + 1 functions f0, f1, ..., fk, we find:
[
...
[[
D(k), f̂0

]
, f̂1

]
, ..., f̂k

]
= 0 (108)

The converse statement holds also true, namely, a linear operator which does not

increase the support and satisfying the property (108) on any set of k+1 elements in

A will be a differential operator [5]. By means of this algebraic characterization it is

then possible to define differential operators as linear maps satisfying the property

(108).

We notice that:

• [
D(k), D(j)

]
= D(k+j−1) , k + j ≥ 1 (109)

• Setting: k = j = 1 we obtain that differential operators of degree at most one

are a subalgebra and that A, as an Abelian subalgebra of operators of degree

zero, is an invariant subalgebra thereof.

• Differential operators of degree at most one are derivations of A if they are

zero on constants.

• Derivations are a subalgebra (the subalgebra of homogeneous differential op-

erators of degree one).

Remark 6. Considering the algebra A of smooth functions and the algebra DerA of

the derivations on A, and noticing that: [X1 + f1, X2 + f2] = [X1, X2] + LX1f2 −
LX2f1, X1, X2 ∈ DerA, f1, f2 ∈ A, we can form a semi-direct product of Lie

algebras by setting:

[(X1, f1) , (X2, f2)] = ([X1, X2] , LX1f2 − LX2f1) (110)

The enveloping algebra of this Lie algebra will be isomorphic with the algebra of

differential operators.

If D is a differential operator, then for any two functions f and g:
[
f̂ , [ĝ, D]

]
=
[
ĝ,
[
f̂ , D

]]
(111)

It follows then that:
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Proposition. If D(k) is a differential operator of degree at most k, the expres-

sion: [
...
[
D(k), f1

]
...fk

]
(112)

is a function which is symmetric with respect to all the permutations of f1, ..., fk.�

We can set up an equivalence relation ” ≃ ” among differential operators of the

same degree, say k, by saying that D
(k)
1 ≃ D

(k)
2 iff:

[
...
[
D

(k)
1 , f1

]
...fk

]
=
[
...
[
D

(k)
2 , f1

]
...fk

]
∀f1, ..., fk (113)

The equivalence class is what is called the principal symbol of the differential op-

erator. The set of principal symbols is a commutative algebra, this following from

the fact that two operators of degree k are in the same equivalence class iff their

difference is a differential operator of degree < k. The set of the symbols of the

differential operators of degree k will be denoted as S(k) (Q). The action on a set

f = (f1, .., fk) of function of the principal symbol of an operator D(k) of order k

will be denoted as σP
(
D(k)

)
(f) and, of course:

σP
(
D(k)

)
(f) =

[
...
[
D(k), f1

]
...fk

]
(114)

We note that: (
σP
(
D(k)

)
σP
(
D(m)

))
(f) = σP

(
D(k) ·D(m)

)
(f) (115)

with, now: f = (f1, ..., fk+m), which shows also that: σP
(
D(k)

)
σP
(
D(m)

)
=

σP
(
D(m)

)
σP
(
D(k)

)
, as well as that:

[D1, D2 ·D3] = [D1, D2] ·D3 +D2 · [D1, D3] (116)

for any three differential operators D1, D2 and D3.

It is possible to define a Lie algebra product on principal symbols by associating

with any two of them the principal symbol of their commutator. If we denote by:

σP : Diff (k) (Q) → S(k) (Q) the map that associates a symbol with an operator,

we can define: {
σP (D1) , σ

P (D2)
}

=: σP ([D1, D2]) (117)

In this way we define a Poisson bracket on the commutative algebra of the principal

symbols of differential operators. Moreover, we have:
{
σP (D1) , σ

P (D2)σ
P (D3)

}
= σP ([D1, D2])σ

P (D3) + σP (D2) σ
P ([D1, D3])

(118)

which shows that
{
σP (D) , ·

}
is a derivation on the commutative algebra of the

principal symbols.

It is not difficult to see from Eq.(114) that one can define (and in an unique way)

a symmetric contravariant tensor D(k) of rank k via:

σP
(
D(k)

)
(f) = D

(k) (df1, df2, ..., dfk) (119)

evaluated on the symmetrized product df1 ⊗ df2 ⊗ ...⊗ dfk.

For example, for a homogeneous second-order operator of the form:

D(2) =
1

2
aij

∂2

∂qi∂qj
(120)
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(
aij = aji

)
we find:

D
(2) =

1

2
aij

∂

∂qi
⊗ ∂

∂qj
(121)

This characterization of principal symbols by means of symmetric contravariant

tensor fields allows us to conclude that the Poisson bracket on principal symbols is

isomorphic with the Lie algebra product on symmetric contravariant tensors defined

by the Schouten bracket [48].

Remark 7. If Qis parallelizable, there will be a global basis, say (X1, ..., Xn) of

vector fields, and we can consider the F (Q)-module of contravariant tensor fields

generated by them. For example, the monomial Xi1 ⊗ ...⊗Xik defines a differential

operator of order k by setting:

D(k) (f) = LXi1

(
LXi2

...
(
LXik

f
))

(122)

which corresponds to the differential operator
[
...
[
D(k), f̂

]
...f̂
]

︸ ︷︷ ︸
k commutators

, which is of order

zero.

A further identification is possible by considering the principal symbol σP
(
D(k)

)

as a fiberwise polynomial function fD(k) on T ∗Q defined as:

fD(k) =: D
(k) (θ0 ⊗ θ0 ⊗ ...⊗ θ0) (123)

For example, with: θ0 = pidq
i, the rank-two tensor (121) leads to:

fD(2) =
1

2
aijpipj (124)

Let us stress the fact that what Eqs.(119) and (123) show is that it is possible to

characterize principal symbols completely in tensorial terms.

Remark 8. We are committing a slight abuse of notation in making this definition,

as we are contracting tensor fields on Q with forms on T ∗Q. However, the abuse is

justified by the fact that θ0 is a semi-basic one-form.

With this association, the Poisson bracket (associated with dθ0) on polynomial

functions defined by contracting D(k) with covariant tensor fields defined by means

of powers of θ0 turns out to be isomorphic with the ”abstract” Poisson bracket (117)

defined on principal symbols of differential operators.

We should stress here that this realization in terms of functions that are poly-

nomials in the momenta depends on the semi-basic one-form we have used (even

though θ0 is a natural one-form [41] on T ∗Q). It would be possible to consider other

semi-basic one-forms whose exterior derivative would be a symplectic structure.

For example, we might consider, for any non-singular numerical matrixK =
∥∥Ki

j

∥∥:

θK = piK
i
jdq

j (125)
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whereby: dθK = dpiK
i
j ∧ dqj will be a symplectic structure. Then, again using

the rank-two tensor (121), one finds the quadratic form:

D
(2) (θK ⊗ θK) =

1

2
pi
(
KatK

)ij
pj (126)

(
(tK)j

i = Ki
j

)
. In this way, again the associated Poisson algebra would be

isomorphic with the abstract Poisson algebra defined by means of the principal

symbols. These alternatives may turn out to be relevant if we would like to consider

bi-Hamiltonian systems. In such a situation, semi-basic one-forms θ̃ such that:

LΓθ̃ = dF̃ (127)

which implies:

iΓdθ̃ = −dH̃; H̃ =: iΓθ̃ − F̃ (128)

would be of particular interest.

Example 5. On T ∗R2 with coordinates
(
q1, q2, p1, p2

)
the dynamics of the 2D

isotropic harmonic oscillator can be represented by the vector field:

Γ = p1
∂

∂q1
+ p2

∂

∂q2
− q1

∂

∂p1
− q2

∂

∂p2
(129)

which is Hamiltonian w.r.t. the ”canonical” symplectic form ω0 = dθ0 =
∑

i dpi ∧
dqi with the ”standard” Hamiltonian: H =

∑
i((pi)

2 +
(
qi
)2

)/2. It is also Hamil-

tonian (and hence bi-Hamiltonian) w.r.t. (among others [44]) the symplectic form:

ω̃ = dθ̃; θ̃ = p2dq
1 + p1dq

2 (130)

which is of the form (125) with:

K =

∣∣∣∣
0 1

1 0

∣∣∣∣ (131)

and where:

LΓθ̃ = dF̃ ; F̃ = p1p2 − q1q2 (132)

3.2. Hamilton-Jacobi-Type Equations Associated with Symbols. Up to

now we have seen that with the principal symbol of any differential operator we

can associate both a symmetric contravariant tensor field and a polynomial func-

tion on T ∗Q. Clearly, if we consider this polynomial function fD, it is possible to

construct a first-order PDE by setting, as in Sect.2:

(dS)∗ (fD) = 0 (133)

or, more generally:

(dS)
∗
(fD) = c (134)

thus defining a PDE of the Hamilton-Jacobi type.

¿From what we have said, we may set, equivalently:
[
...
[
D(k), Ŝ

]
, ..., Ŝ

]
= ĉ (135)

so that we can define the HJ equation associated with D(k) directly on the config-

uration manifold Q, without making recourse to the cotangent bundle.



24 G. MARMO G. MORANDI AND N. MUKUNDA

Out of the cotangent bundle representation of the principal symbol σP (D), i.e.

by means of the polynomial functions fD on T ∗Q, it is possible to associate also

Hamilton’s equations constructed out of fD, namely:

iΓdθ0 = −dfD = −d (D (θ0 ⊗ θ0 ⊗ ...⊗ θ0)) (136)

In this way, by means of the principal symbols, we are able to construct a first-

order PDE of the Hamilton-Jacobi type as well as Hamilton’s equations that define

the vector field Γ. Let us look now at a couple of examples.

Example 6. The Schrödinger operator. The operator associated with the evolu-

tion equation is:

DS = i~
∂

∂t
+

~2

2m
∇2 − V (r) (137)

The associated HJ equation may be written in the form:
[[
DS , Ŝ

]
, Ŝ
]

= E (138)

i.e.:
~2

2m
(∇S)

2
= E (139)

We find that the principal symbol, or the HJ equation associated with it, contains

no information on the potential nor on the time evolution.

Example 7. The Klein-Gordon operator. A similar situation prevails for the

Klein-Gordon operator:

DKG = ∇2 − 1

c2
∂2

∂t2
−m2 (140)

which leads to:

(∇S)
2 − 1

c2

(
∂S

∂t

)2

= 0 (141)

i.e. the principal symbol and the associated HJ equation do not take into account

the mass of the particle.

We see from these examples that the principal symbol does not capture the

full physical information contained in the differential operator (with the associated

PDE) we started from. To remedy this situation, we may define an associated,

homogeneous, differential operator on a larger space by adding one more degree

of freedom. To be specific, let us consider the case of a second-order differential

operator. Locally, the operator will have the representation:

D = ajk
∂

∂xj

∂

∂xk
+ bj

∂

∂xj
+ e (142)

(aij , bj , e ∈ F (Q)). Adding then one more variable, denoted as τ , we obtain the

extended differential operator on Q× R:

D → D̃ = ajk
∂

∂xj

∂

∂xk
+ bj

∂

∂xj

∂

∂τ
+ e

∂2

∂τ2
(143)

which is now homogeneous of degree two. We will also restrict the space of functions

on which D̃ operates to functions of the form:

f̃ (x, τ) = eτf (x) (144)
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in such a way that:

D̃
(
f̃
)
≡ eτD (f) (145)

The polynomial function on T ∗ (Q× R) (with coordinates:
(
xj , τ ; p

j , pτ
)
) associated

with the principal symbol of D̃ will be:

f eD
= ajkp

jpk + bjp
jpτ + e (pτ )

2
(146)

and we will look for solutions HJ equation:
(
dS̃
)∗ (

f eD

)
= c (147)

of the form:

S̃ (x, τ) = τ + S (x) (148)

In this way, the HJ equation will become, when written in local coordinates:

ajk
∂S

∂xj

∂S

∂xk
+ bj

∂S

∂xj
+ e = c (149)

and we have gotten rid in this way of the additional degree of freedom whose

introduction was made necessary in order to be able to deal with tensorial objects

(see the discussion in Sect.3.1).

Example 8. With the procedure outlined above, both the Schrödinger and the

Klein-Gordon operators get replaced by:

DS → D̃S = i~
∂2

∂t∂τ
+

~2

2m
∇2 − V (r)

∂2

∂τ2
(150)

and:

DKG → D̃KG = ∇2 − 1

c2
∂2

∂t2
−m2 ∂

2

∂τ2
(151)

respectively, and the associated HJ equations (looking for solutions of the form

(148)) will capture the full physics of the respective problems.

The procedure outlined here is completely general, and we see that in this way

the full information contained in our original differential operator will be captured

by the principal symbol of the extended operator, and we can proceed now with the

first-order PDE and Hamilton’s equations just as before. As for transformations,

we should remark that now we have to restrict to bundle automorphisms.

3.3. Vector-Valued Differential Operators and the Hamilton-Jacobi Prob-

lem. In several physical situations, the systems we may want to describe have also

some inner structure, and therefore scalar differential operators are not enough. For

instance, the quantum-mechanical description of a particle with spin requires that

we replace Schrödinger’s equation with Pauli’s in the non-relativistic case and with

Dirac’ in the relativistic case. More generally, this kind of situation occurs when

we consider [8, 9] Yang-Mills fields and generalized Wong equations.

Let us consider then the general aspects of this situation. We consider here two

vector bundles: E1 → Q and: E2 → Q. We denote by Sec (E1) and Sec (E2) the

spaces of sections: s : Q→ E1 and: τ : Q→ E2. The operator of multiplication by
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a function f ∈ F (Q) will be denoted here too by f̂ . Following the algebraic setting

for differential operators of Sect.3.1, we define:

A differential operator of order at most k, acting from Sec (E1) to Sec (E2), is

a linear map:

D : Sec (E1) −→ Sec (E2) (152)

such that: [
...
[[
D(k), f̂0

]
, f̂1

]
, ..., f̂k

]
= 0 ∀f̂0, f̂1, ..., f̂k (153)

In a chosen trivialization of the two bundles, their sections are vector-valued

functions on Q, and the operator D will be described by a matrix whose entries are

coordinate expressions of scalar differential operators. Thus, here too the relevant

differential part can be written as:

D(k) =
∑

|σ|≤k

gσ
∂|σ|

∂xσ

σ = (i1, i2, ..., in) ; |σ| = i1 + i2 + ...+ in
∂|σ|/∂xσ = ∂|σ|/∂xi11 ∂x

i2
2 ...∂x

in
n

(154)

but now, instead of the gσ’s being pointwise scalars, we have:

gσ ∈ Hom (E1, E2) (155)

(pointwise), and each matrix element of the gσ’s will be a smooth function on Q.

We can again identify the principal symbol with a symmetric and totally con-

travariant tensor, i.e.:

σP
(
D(k)

)
= gi1i2...ik

∂

∂xi1
⊗ ∂

∂xi2
⊗ ...⊗ ∂

∂xik
(156)

but now the tensor field must be understood as a multilinear function on one-forms

with values in Hom (E1, E2). Intrinsically:

σP
(
D(k)

)
(df1, df2, ..., dfk) =

[
...
[[
D(k), f̂k

]
, ...f̂2

]
, f̂1

]
(157)

and the symmetry follows again from Eq.(111). By using the contraction with the

k-fold product of θ0 with itself we obtain a polynomial function with matrix-valued

coefficients.

Example 9. Let; D = d, the exterior differential: d : Λj (Q) → Λj+1 (Q). The

value of its symbol on a differential one-form α is a homomorphism from Λj (Q) to

Λj+1 (Q) given by [22]:

σP (d) (α) : Λj (Q) ∋ ω 7−→ α ∧ ω ∈ Λj+1 (Q) (158)

The symbol of second-order scalar differential operators are symmetric con-

travariant tensor fields of rank two, that is:

σP (D) = ajk
∂

∂xj
⊗ ∂

∂xk
; ajk = akj (159)

When this tensor is not degenerate, it defines a (pseudo) Riemannian metric:

gD = ajkdxj ⊗ dxk (160)

with:

ajkakm = δjm (161)
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Thus, D is elliptic if gD is Riemannian and hyperbolic if it is Lorentzian.

In the scalar situation we have defined a Hamiltonian as:

H (q, p) = σP (D) (θ0 ⊗ ...⊗ θ0) =

= ai1...ikp
i1 ...pik

(162)

and in this way we have been able to define Poisson brackets, Hamilton-Jacobi-type

equations and, finally, Hamilton’s canonical equations.

In the present context, the symbol of a matrix-valued differential operatorD will

be a matrix-valued polynomial on T ∗Q. For example, for a second-order operator

we will get:

σP (D) (θ0 ⊗ θ0) = H (q, p) (163)

where now H (q, p) will be a matrix.

If our bundles were Hermitian bundles of the same dimension, they can be iden-

tified and H becomes Hermitian: H = H†. Then, H will have real eigenvalues,

and each eigenvalue function can be used as a Hamiltonian function on T ∗Q [6].

At this point we can repeat whatever has been said in the case of scalar differential

operators.

4. Joint Hamilton-Jacobi Problems. As anticipated in the Introduction, one

can pose a ”joint Hamilton-Jacobi” problem also for two or more dynamical vari-

ables. For reasons that will become apparent shortly, we will limit ourselves here

to the ”conventional” HJ problem as discussed in Sect.2. In order to discuss the

”joint” problem, we will have to discuss first some preliminary notions related to the

restriction of Poisson brackets (on a cotangent bundle) to Lagrangian submanifolds

that are graphs of closed one-forms.

In Sect.2 we have shown that, given the cotangent bundle T ∗Q of a configuration

manifold Q with the canonical symplectic form ω0, with every one-form α ∈ X∗ (Q)

we can associate the maps (52) and (55), i.e. (we omit here for brevity the suffix

”α” that was employed in Sect.2):

ϕ : Q→ T ∗Q by : q 7→ (q, α (q)) (164)

and:

ψ =: ϕ ◦ π : T ∗Q→ T ∗Q by : (q, p) 7→ (q, α (q)) (165)

and that the image of α: Γ [α] = ((q, α (q)) ∈ T ∗Q; q ∈ Q) will be a Lagrangian

submanifold of T ∗Q iff α is closed. Notice that, if (q, p) belongs already to Γ [α],

the map (165) will leave it unaltered:

ψ (Γ [α]) = Γ [α] (166)

in a fiber-preserving way.

With every function f ∈ F (T ∗Q) we can associate the pull-back:

(ψ∗f) (q, p) = f (q, α (q)) (167)
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i.e. the extension of the restriction of f to Γ [α] with the property of being constant

along the fibers. With this in mind, we want here to relate the restriction ψ∗ {f, g}
of the Poisson bracket of any two functions f and g to Γ [α] to the corresponding

restrictions ψ∗f and ψ∗g of f and g.

If π : T ∗Q → Q is the canonical projection, Eq.(165) implies: π ◦ ψ = π, and

hence:

Tπ ◦ Tψ = Tπ (168)

for the corresponding tangent maps.

Let now m = (q, p) ∈ T ∗Q and: γ = ψ (m). Then to every tangent vector

X ∈ TmT
∗Q one can associate the vector: Tψ (X) ∈ TγT

∗Q and Eq.(168) implies:

Tπ (Tψ (X)) − Tπ (X) = 0 (169)

Notice that the two arguments of Tπ in Eq.(169) are in general tangent vectors at

different points of T ∗Q. It is only when m = γ ∈ Γ [α] that we can factor out the

tangent map Tπ and write:

Tπ ((Tψ (X)) −X) = 0, X ∈ TγT
∗Q, γ ∈ Γ [α] (170)

What Eq.(170) proves is that, if X ∈ TγT
∗Q, then (Tψ (X))−X is a vertical field.

Let now f, g ∈ F (T ∗Q) and let Xf , Xg be the corresponding Hamiltonian vector

fields defined via:

iXf
ω0 = −df, iXg

ω0 = −dg (171)

while:

{f, g} = ω0 (Xg, Xf ) (172)

Then:

(ψ∗ {f, g}) (m) = {f, g} (γ) = ω0 (γ) (Xg (γ) , Xf (γ)) ≡
ω0 (γ) (Xg (γ) − Tψ (Xg (γ)) , Xf (γ) − Tψ (Xf (γ)))+

ω0 (γ) (Xg (γ) , Tψ (Xf (γ))) + ω0 (γ) (Tψ (Xg (γ)) , Xf (γ))−
ω0 (γ) (Tψ (Xg (γ)) , Tψ (Xf (γ)))

(173)

Now, in the first term on the r.h.s. of this equation, ω0 is evaluated on a pair of

vertical fields (at γ), and hence this term vanishes. As to the last term, using the

definition of the pull-back [41]:

ω0 (γ) (Tψ (Xg (γ)) , Tψ (Xf (γ))) = (ψ∗ω0) (γ) (Xg (γ) , Xf (γ)) (174)

But: ψ∗ω0 = dα and, as α is closed by assumption, this term vanishes as well and,

using also Eq.(171), we are left with:

(ψ∗ {f, g}) (m) =
(
iTψ(Xf (γ))iXg(γ) − iTψ(Xg(γ))iXf (γ)

)
ω0 (γ) =

(df) (γ) (Tψ (Xg (γ))) − (dg) (γ) (Tψ (Xf (γ))) =

(dψ∗f) (Xg (γ)) − (dψ∗g) (Xg (γ)) =(
LXg

ψ∗f − LXf
ψ∗g

)
(γ)

(175)

The last term here is in turn the pull-back via ψ of the function: LXg
ψ∗f−LXf

ψ∗g,

and in this way we obtain the result [38]:

ψ∗ {f, g} = ψ∗
(
LXg

ψ∗f − LXf
ψ∗g

)
(176)
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which expresses the relation between the pull-back (the restriction) of the Poisson

bracket of any two functions and the restrictions of the functions themselves. All

that has been proved here relies in a crucial way on Γ [α] being the graph in a

cotangent bundle of a closed one-form on the base manifold, and cannot be extended

straightforwardly [38] to more general contexts such as Lagrangian sumbanifolds in

general symplectic manifolds without further qualifications (see however Ref.[38] for

some possible generalizations).

Having established the result (176), let’s turn now to what we have called at

the beginning of this Section the ”joint HJ problem”. To be specific, let: A,B ∈
F (T ∗Q) be two dynamical variables. We look then for a closed one-form α such

that (cfr. Eqs.(164) and (165)):

ψ∗ (A− a) = ψ∗ (B − b) = 0; a, b ∈ R (177)

or:

ψ∗A = a, ψ∗B = b (178)

Eq.(176) tells us immediately that this implies:

ψ∗ {A,B} = ψ∗ (LXB
ψ∗A− LXA

ψ∗B) = 0 (179)

This (necessary) condition, i.e.:

ψ∗ {A,B} = 0 (180)

can be interpreted [38] as a sort of Poisson theorem, i.e. a condition saying that

if a solution exists for the joint HJ problem for A and B, then it must be also a

solution for the HJ problem for the Poisson bracket {A,B} on its zero level-set,

and also as a classical counterpart of the quantum condition [43] according to which

two observables must commute in order to be simultaneously diagonalizable. It is

obvious that if the Poisson bracket {A,B} does not vanish anywhere, then there is

no possible solution for the joint HJ problem for A and B.

The obvious generalization to any set A1, ..., Ak, k ≤ n = dim (Q) will be, of

course:

ψ∗ {Ai, Aj} = 0; i, j = 1, ..., k (181)

As the one-form α is closed by assumption, at least locally (and globally if the

first de Rham cohomology group of Q vanishes): α = dW,W ∈ F (Q), and Eq.(180)

will become a PDE for the unknown function W . For example, in local (Darboux)

coordinates, ω0 = dpi ∧ dqi will imply the equation:
[
∂A (q, p)

∂qi
∂B (q, p)

∂pi
− ∂B (q, p)

∂qi
∂A (q, p)

∂pi

] ∣∣∣∣pi = ∂W/∂qi
= 0 (182)

We will close this Section by discussing a simple example that can help clarifying

the status of the condition (180) as a necessary but not sufficient condition.

Example 10. It is well known [44] that the dynamics of the 2D harmonic

oscillator on T ∗R2, with coordinates
(
q1, q2, p1, p2

)
and equipped with the canonical

symplectic form: ω0 = dpj ∧ dqj can be described by in many alternative ways and,

among others, by:
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• The ”standard” Hamiltonian:

H+ = H1 +H2; Hi =
1

2

[
(pi)

2 +
(
qi
)2]

, i = 1, 2 (183)

and vector field:

Γ+ = Γ1 + Γ2; Γi = pi
∂

∂qi
− qi

∂

∂pi
, i = 1, 2 (184)

or by:

• The Hamiltonian and vector field:

H− = H1 −H2; Γ− = Γ1 − Γ2 (185)

or, eventually, by:

•
H̃ = p1p2 + q1q2 (186)

and:

Γ̃ = p2
∂

∂q1
+ p1

∂

∂q2
− q2

∂

∂p1
− q1

∂

∂p2
(187)

which describes the dynamics of the 2D harmonic oscillator on the configura-

tion space.

Now, it is clear that: {H+, H−} ≡ 0, each Hamiltonian being a constant of

the motion for the other, and the joint HJ problem for them is trivial, as complete

integrals can be found simply by separation of variables, i.e. by setting: W (q1, q2) =

W1

(
q1
)

+ W2

(
q2
)
, thereby splitting the HJ problem for H± into separate (and

identical) one-dimensional HJ problems for H1 and H2. Considering instead the

(alternative) Hamiltonian (186), we find again:
{
H+, H̃

}
≡ 0, but:

{
H−, H̃

}
= 2

(
q1p2 − q2p1

)
(188)

(i.e. the ”canonical” angular momentum) and the PDE equation (182) becomes

then:

q1
∂W

∂q2
− q2

∂W

∂q1
= 0 (189)

whose only solutions19 are of the form:

W
(
q1, q2

)
= W

(
r2
)
; r2 =

(
q1
)2

+
(
q2
)2

(190)

with W any (at least C1) function. On the other hand, the HJ equation for the

Hamiltonian H̃ reads :
∂W

∂q1
∂W

∂q2
+ q1q2 = E (191)

and no function of the form (190)20 can solve Eq.(191), nor it can for the HJ

equation associated with the Hamiltonian (185). This clarifies the fact that the

vanishing of the restriction of the Poisson bracket is only a necessary and by no

means a sufficient condition for a solution of the joint HJ problem.

19Switching to plane polar coordinates
`

q1 = r cos φ, q2 = r sinφ
´

: q1∂/∂q2−q2∂/∂q1 = ∂/∂φ.
20Inserting (190) into (191) leads to the equation: q1q2

`

2(W ′)2 + 1
´

= E, which has obviously

no solution.
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5. Time-Dependent Hamilton-Jacobi Theory and the Hamilton-Jacobi

Problem on Lie Groups.

5.1. Time-Dependent Hamilton-Jacobi Theory. We will recall briefly here

how the time-dependent HJ theory as described, in local coordinates, by Eq.(1),

i.e.:

H

(
q;
∂S

∂q
; t

)
+
∂S

∂t
= 0 (192)

can be recasted in a geometrical setting [38] just as its time-independent counter-

part.

Although the ”minimal” extension of the carrier manifold [41] appropriate to the

description of a time-dependent dynamics seems to be from T ∗Q to T ∗Q×R, where

R stands for the time variable t, the resulting manifold, being odd-dimensional,

is a contact [1] and not a symplectic manifold. As anticipated in Sect.1.5, it is

more convenient [1, 38, 41] to extend the original configuration space Q (with local

coordinates qi, i = 1, ..., n = dimQ) to: Q̃ = Q × R, considering then time as an

additional coordinate on the same footing as the qi’s, and hence to consider the

(extended) tangent bundle:

M̃ =: T ∗Q̃ = T ∗Q× T ∗R = M × T ∗R; M =T ∗Q (193)

Coordinates21 for T ∗R will be denoted as (t, h), with h the (energy) variable canon-

ically conjugate to the time t, and a point m̃ ∈ M̃ will consist of a triple: m̃ =

(m, t, h) with m ∈ M (hence: m = (q, p) in local coordinates). Associated with the

manifold M̃ there will be various projection maps, for instance from T ∗Q × T ∗R

to T ∗Q × R or to T ∗Q or to T ∗R and so on. One can further endow M̃ with a

canonical one-form θ̃0 obtained by ”adding” a contribution from T ∗R to θ0 = pidq
i

on M, i.e.:

θ̃0 =: θ0 + hdt (194)

Hence, M̃ will acquire the structure of a symplectic manifold with the canonical

two-form22:

ω̃0 = ω0 + dh ∧ dt (195)

The canonical equations of motion on M = T ∗Q can be ”lifted” to M̃ = T ∗ (Q× R)

by defining, guided by the structure of the time-dependent equation (192), the

Hamiltonian H̃ ∈ F(M̃) on the extended phase space M̃ as:

H̃ = H + h (196)

In this way:

• The Hamiltonian vector fields X̃H , X̃ eH
∈ X(M̃) associated respectively with

H and H̃ (i eXH
ω̃0 = −dH, i eXfH

ω̃0 = −dH̃) are easily found to be:

X̃H = XH − ∂H

∂t

∂

∂h
; X̃ eH

= X̃H +
∂

∂t
(197)

21Global coordinates, in this case.
22To be precise, one should write on the r.h.s. of Eqs.(194) and (195) π∗θ0 and π∗ω0, where

π is the projection: π : T ∗Q × T ∗R → T ∗Q, instead of θ0 and ω0, but we will avoid, here and in

what follows, explicit mention of the pull-back operations involved as long as this does not lead

to ambiguities.
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(XH = (∂H/∂p)∂/∂q − (∂H/∂q)∂/∂p), and hence:

• Denoting with τ the evolution parameter in M̃, the dynamics generated by

X̃ eH
is described by the set of ODE’s in the parameter τ :

dq

dτ
=
∂H

∂p
,
dp

dτ
= −∂H

∂q
(198)

and:
dt

dτ
= 1,

dh

dτ
= −∂H

∂t
(199)

These equations imply: t − τ = const. (and hence Eqs.(198) will ”project

down” to the canonical equations on T ∗Q). They imply also: dH̃/dτ = 0,

i.e.: H̃ = H + h = const.

• Denoting with {., .} and {̃., .} the Poisson brackets on M = T ∗Q and M̃ =

T ∗(Q× R) respectively, we have:

{̃F,G} = {F,G} +
∂F

∂t

∂G

∂h
− ∂F

∂h

∂G

∂t
, ∀F,G ∈ F

(
M̃

)
(200)

and, in particular, if: F ∈ F (T ∗Q× R) (i.e. it does not depend on h) and:

G = H̃ : {̃
F, H̃

}
= {F,H} +

∂F

∂t
(201)

i.e:
dF

dt
≡
{̃
F, H̃

}
(202)

and (possibly time-dependent) constants of the motion will be characterized

by:
{̃
F, H̃

}
= 0 (203)

in full analogy with the time-independent case.

The dynamics on M̃ leaves invariant (i.e. X̃ eH
is tangent to) all the submanifolds

where H̃ takes a constant value, and the dynamics on T ∗Q× R can be recovered

from any one of them. For this reason, one can concentrate on the zero-level set of

H̃, i.e. on the invariant submanifold23:

Σ̃0 = H̃−1 (0) = (m, t, h = −H (m, t)) ⊂ M̃; m ∈ M, t ∈ R (204)

Being obtained by giving explicitly the (globally defined) variable h in terms of

m and t, Σ̃0 is diffeomorphic to T ∗Q × R, and is actually a global section of the

projection map: π : T ∗ (Q× R) → T ∗Q× R.

If we keep t fixed, we obtain a family {(Σ̃0)t}t∈R of constant-t sections of Σ̃0.

Each section is a submanifold of T ∗ (Q× R) of codimension two (i.e. it is 2n-

dimensional, while Σ̃0 is (2n+ 1)-dimensional) diffeomorphic to T ∗Q and is a global

section of the projection map: π′ : T ∗ (Q× R) → T ∗Q. This family provides

then a (regular) foliation [41] of Σ̃0. Moreover, due to the additional and nowhere

vanishing ∂/∂t which is present in the definition of X̃ eH
, the (Σ̃0)t’s are transversal

to the flow generated by X̃ eH
, and the one-parameter group {Φτ}τ∈R of canonical

23Being of codimension one, Σ0 will be a coisotropic [38] submanifold of fM.
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transformations of T ∗ (Q× R) generated by X̃ eH
will permute the (Σ̃0)t’s among

themselves, i.e:

Φτ : (Σ̃0)t → (Σ̃0)t+τ ; τ ∈ R; Φτ ◦ Φτ ′ = Φτ+τ ′ ; Φ0 = IdfM
(205)

Remark 9. One should keep in mind that, while on the extended phase space

T ∗ (Q× R), due to the fact that the dynamical vector field X̃ eH
does not depend

explicitly on the evolution parameter τ , the dynamics is ”autonomous” [1, 41], and

gives rise therefore to a ”bona fide” one-parameter group, this is not so on T ∗Q.

There, due to the time-dependence, the dynamics will give rise in general [1, 38] to

a two-parameter family {φt2t1} of canonical transformations of T ∗Q obeying the

law of combination [38]:

φt3t2 ◦ φt2t1 = φt3t1 ; φt1t1 = IdT∗Q (206)

which will ”collapse”, of course, into a one-parameter group if the Hamiltonian

happens to be time-independent, i.e., in such a case: φt2t1 = φt2−t1 .Explicitly (see

also Eqs.(198) and (199)), the one-parameter group {Φτ} will act as [38]:

Φτ : (m, t, h) → (φt+τ,t (m) , t+ τ, h+H (m, t) −H (φt+τ (m) , t+ τ)) (207)

At this point, it becomes apparent how one can cast the time-dependent HJ

problem as stated in Eq.(192) into a geometrical form on the extended phase space

M̃, paralleling to some extent the discussion in Sect.2.2. With any S ∈ F(Q̃)

(dS ∈ X∗(Q̃)) we can associate the map:

ϕ̃S : Q̃→ M̃; ϕ̃S : Q̃ ∋ (q, t) →
(
q,
∂S

∂q
, t,

∂S

∂t

)
⊂ M̃ (208)

which is a global section w.r.t. the projection map: π̃ : M̃ → Q̃. Then:

Γ̃ =: ϕ̃S(Q̃) ⊂ M̃ (209)

will be the graph of the closed (actually exact) one-form dS on Q̃, and hence a

((n+ 1)-dimensional) transversal Lagrangian submanifold in M̃. The requirement

that S be a solution of the PDE (192) can be rephrased in geometrical terms by

requiring that:

ϕ̃∗
SH̃ = 0 ⇐⇒ Γ̃ ⊂ Σ̃0 (210)

Remark 10. Eq.(210) should make it clear why, at variance with the time-independent

case, the ”zero-level set” Σ̃0 plays a distinguished rôle in the geometrical approach

to the time-dependent HJ problem.

The geometrical meaning of the time-dependent HJ problem in the present for-

mulation is therefore the following:

We look for transversal Lagrangian submanifolds Γ̃ in M̃ that are contained in

Σ̃0 and are graphs of exact one-forms on Q̃. Γ̃ will have codimension n in Σ̃0. A

complete solution of the time-dependent HJ problem will be an n-dimensional foli-

ation of the ”zero-level set” Σ̃0 by such submanifolds. Usually, these submanifolds

are defined by the ”dispersion relations” of our PDE.
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By reasoning as in Sect.2.2 we can conclude that the vector field X̃ eH
will be

tangent to the submanifold Γ̃. Hence, the dynamical flow will leave it invariant,

i.e.:

Φτ (Γ̃) = Γ̃ ∀τ (211)

All of the above picture is on the extended phase space M̃, and one should see

now how it can be made to ”descend” to the physical phase space M = T ∗Q, i.e.

how it behaves under the projection:

π′ : T ∗ (Q× R) = M̃ → M =T ∗Q; π′ : (m, t, h) → m (212)

For every fixed t we may consider S as a function St ∈ F (Q) with dSt ∈ X∗ (Q).

Then, the map:

ϕS,t : Q ∋ q → (q, (dSt) (q)) ∈ T ∗Q (213)

giving a global section w.r.t. the projection: π0 : T ∗Q→ Q, will define the transver-

sal Lagrangian submanifold Γt = ϕS,t (Q) in T ∗Q, the graph of the exact one-form

dSt.

Going back now to the situation in M̃ = T ∗ (Q× R), we can consider the family

of intersections {Γ̃ ∩ (Σ̃0)t}T∈R of Γ̃ with the constant-t sections of Σ̃0. Explicitly:

Γ̃ ∩ (Σ̃0)t =

{(
q,
∂S

∂q
, t,

∂S

∂t

)
∀t
}

(214)

and, for every t, Γ̃ ∩ (Σ̃0)t will be an n-dimensional (hence isotropic [38] in M̃)

submanifold contained in (Σ̃0)t. Using then Eqs.(205) and (211) one sees that Φτ
permutes again these submanifolds among themselves, i.e.:

Φτ

(
Γ̃ ∩ (Σ̃0)t

)
= Γ̃ ∩ (Σ̃0)t+τ (215)

and, under the projection (212) we obtain:

π′
(
Γ̃ ∩ (Σ̃0)t

)
= Γt (216)

Moreover, using Eq.(207), we see that the Γt’s evolve in time as:

φt+τ,t (Γt) = Γt+τ ; t, τ ∈ R (217)

We obtain then the following picture:

Any solution of the HJ problem in M̃ = T ∗ (Q× R), i.e. any single geometrical

object Γ̃, gives rise in M = T ∗Q to a family {Γt} of time-dependent, Lagrangian

submanifolds in T ∗Q, each Γt being the graph of an exact one-form dSt on Q, that

evolves in time according to Eq.(217).

One should keep in mind, however, that time-evolution need not be, and quite

often is not, a harmless process, to the extent that solutions that are ”well behaved”

at a certain time may develop caustics and/or become ill-behaved at later times.

To ”cure” these and other possible pathologies, and also to fully implement sym-

metries in the time-dependent context as well as in the time-independent one (see

also the discussion at the end of Subsect.2.2), one might be forced to require that

the relevant submanifolds be graphs of closed but not necessarily exact one-forms

and/or to abandon the requirement of transversality. We will not discuss here these

generalizations, but refer rather to the literature [38] for further details.
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5.2. The Hamilton-Jacobi Problem on Lie Groups. In the previous Sub-

section we have seen how, even for non-conservative systems, one can implement

canonically, via the one-parameter group (Φτ )τ∈R, the action of the Abelian group R

of time translations by suitably enlarging the phase space from T ∗Q to T ∗ (Q× R).

It is interesting to generalize this approach [38]to the case in which the action of

the Abelian group R is replaced by that of a more general Lie group G.

5.2.1. Canonical Actions of Lie Groups on Symplectic Manifolds. Let M = T ∗Q

with the canonical symplectic form24 ω0 and let g be the Lie algebra of a k-

dimensional Lie group G, with a basis {er}kr=1 obeying the Lie bracket relations:

[er, es] = Ctrset (218)

the Ctrs’s being the structure constants of the group.

The group G will act canonically [1, 38, 41] on T ∗Q if there exists a realization

{φg}g∈G
via a family of diffeomorphisms of T ∗Q satisfying:

φg ◦ φg′ = φgg′ ∀g, g′ ∈ G; φe = IdT∗Q (219)

(with e the identity of the group) and:

φ∗gω0 = ω0 ∀g ∈ G (220)

To the basis {er}kr=1 of the Lie algebra there will correspond a set {Xr}kr=1 , Xr ∈
X (T ∗Q) , r = 1, ..., k of fundamental [41] vector fields generating the finite (canoni-

cal) transformations φg and obeying the commutation relations:

[Xr, Xs] = CtrsXt (221)

As a consequence of Eq.(220) the Xr’s will be locally Hamiltonian, i.e.: LXr
ω0 =

0 ∀r. We shall assume them to be actually globally Hamiltonian, i.e. that there

exist globally defined functions H1, ..., Hk s.t.:

iXr
ω0 = −dHr, r = 1, ..., k (222)

The Poisson brackets of the H ’s will be given as usual, by: {Hr, Hs} = iXs
iXr

ω0,

and it is a simple matter to show that Eqs.(221) and (222) imply:

d
[
{Hr, Hs} + CtrsHt

]
= 0 (223)

i.e.:

{Hr, Hs} = −CtrsHt + drs; drs ∈ R, drs + dsr = 0 (224)

The Jacobi identity on the Poisson bracket (224) implies then:

Cursdut + cycl. perm. of (r, s, t) = 0 (225)

One can get rid of the additional constants if there exist other constants λ1, ..., λk
s.t.:

Ctrsλt = drs (226)

24Although we will concentrate here on T ∗Q, most of what will be said applies equally well

[38] to a general symplectic manifold (M, ω).
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in which case, re-defining: H̃r =: Hr − λr one gets Poisson brackets without addi-

tional additive constants, i.e.:
{
H̃r, H̃s

}
= CtrsH̃t (227)

Remark 11. The condition (225) is the statement that the map: d : g × g → R

acting via: d (er, es) =: drs (with g acting trivially on R) must be a two-cocycle

[17, 37, 39, 40] in g, while Eq.(226) requires it to be also a coboundary. This will

be granted if the second cohomology group H2 (g,R) of g with values in R [17]

vanishes, i.e.: H2 (g,R) = 0. This is true for many of the groups that are relevant

for Classical Dynamics [51]as well as for Quantum Mechanics and Field Theory such

as the Euclidean, the Lorentz and the Poincaré groups. It fails however to be true

for the Galilei group, which has a non-trivial two-cocycle (i.e. a cocycle which is

not a coboundary) connected with the mass [51] which is an invariant for the Galilei

group.

5.2.2. The Canonical Action of a Lie group G on T ∗G. As is well known [41], a Lie

group G can act on itself, among other ways, via left or right translations. We will

concentrate on the former, i.e. on the diffeomorphisms:

L(0)
g : g′ → L(0)

g g′ =: gg′; L(0)
g1

◦ L(0)
g2

= L(0)
g1g2

; ∀g, g′, g1, g2 ∈ G (228)

and will discuss briefly how this action can be lifted to a canonical action of G on

the cotangent bundle T ∗G.

Left translations are generated by a set: X
(0)
1 , ..., X

(0)
k of independent and nowhere

vanishing right-invariant [41] vector fields satisfying:
[
X(0)
r , X(0)

s

]
= CtrsX

(0)
t (229)

with associated dual (right-invariant) one-forms θ(0)r, r = 1, ..., k such that:

i
X

(0)
s
θ(0)r = δrs (230)

and satisfying the Maurer-Cartan structure equations [41]:

dθ(0)r +
1

2
Crstθ

(0)s ∧ θ(0)t = 0 (231)

These right-invariant one-forms will provide a basis θ(0)r (g) for the cotangent space

T ∗
gG at any point g ∈ G.

A basis for the dual g∗ of the Lie algebra g will be denoted as {er}kr=1 and will

be specified by:

〈er|es〉 = δrs (232)

Any element h ∈ T ∗
gG can be written as: h = hrθ

(0)r (g), and we have the associa-

tion:

T ∗
g G ∋ h = hrθ

(0)r (g) ↔ h̃ = hre
r ∈ g∗ (233)

This implies [41] that T ∗G will be diffeomorphic to G × g∗: T ∗G ≃ G × g∗.
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Using the canonical projection: π : T ∗G → G we can pull back the θ(0)r’s to

obtain: θr =: π∗θ(0)r ∈ X∗ (T ∗G) , r = 1, ..., k, and we can define then the canonical

one-form Θ0 on T ∗G as:

Θ0 = hrθ
r (234)

Hence: Ω0 = dΘ0 will be the canonical symplectic form on T ∗G.

The canonical lifts X
(0)∗
r from G to T ∗G of the X

(0)
r ’s will be defined [41] by

the conditions:

L
X

(0)∗
r

Θ0 = 0, T π
(
X(0)∗
r

)
= X(0)

r r = 1, ..., k (235)

i.e. X
(0)∗
r must be a vector field that leaves the canonical one-form unchanged and

that projects down under the tangent map Tπ to X
(0)
r for all r’s. X

(0)∗
r is of course

Hamiltonian as the first of Eqs.(235) is equivalent to: i
X

(0)∗
r

Ω0 = −d(i
X

(0)∗
r

Θ0). The

X
(0)∗
r ’s turn out also [38] to be dual to the θr’s. i.e.:

i
X

(0)∗
r

θs = δsr =⇒ i
X

(0)∗
r

Θ0 = hr (236)

and hence:

i
X

(0)∗
r

Ω0 = −dhr (237)

The X
(0)∗
r ’s close on the same Lie algebra as the X

(0)
r ’s [51], i.e.: [X

(0)∗
r , X

(0)∗
s ] =

CtrsX
(0)∗
t . The same happens with the Poisson brackets of the hr’s, but in this case

(cfr. Eq.(224)) without [41, 51] additional constants i.e.:

{hr, hs} = −Ctrsht (238)

with no need to require here the second cohomology group H2(g,R) to vanish.

It is the lifted vector fields X
(0)∗
r that generate the canonical action of G on T ∗G.

Finite transformations will be denoted as T ∗L
(0)
g and they will act as [38, 51]:

T ∗L(0)
g :

(
g′, h̃′

)
−→

(
gg′,D (g) h̃′

)
(239)

where D (g) is the coadjoint [41] representation of G on g∗.

5.2.3. The Hamilton-Jacobi Problem on G. We shall extend now our formulation of

the TDHJ problem by replacing R with G. We can combine the canonical actions

of G on T ∗Q and on T ∗G ≃ G×g∗ to get a canonical action on: M̃ =: T ∗ (Q× G).

M̃ will be a symplectic manfold with the canonical two-form:

ω = ω0 + Ω0 (240)

Points in M̃ will be denoted as: m̃ = (m, g, h̃),m ∈ T ∗Q, g ∈ G and h̃ ∈ g∗. The

required canonical action will be denoted as Φg, g ∈ G, and will be given by:

Φg :
(
m, g′, h̃′

)
=
(
φg (m) , gg′,D (g) h̃′

)
(241)

It will be generated by the vector fields:

X̃r = Xr +X(0)∗
r , r = 1, ..., k (242)

which will obey the commutation relations:
[
X̃r, X̃s

]
= CtrsX̃t (243)
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and will be Hamiltonian w.r.t. the symplectic form ω with Hamiltonians:

H̃r = Hr + hr (244)

One can prove, just as in Subsect.5.2.1, that the Poisson brackets of the H̃r’s are

given by:

˜{
H̃r, H̃s

}
= −CtrsH̃t + drs (245)

and they will ”inherit” the same two-cocycle d that we found to be present there.

We can define now the momentum map [41] µ as:

µ : M̃ −→ g∗ : µ (m̃) = H̃r (m̃) er = (Hr (m) + hr) e
r (246)

and define next the analog Σ̃ of the submanifold Σ̃0 of Subsect.5.1 will be defined

as the zero-level set of the momentum map, i.e.:

Σ̃ = µ−1 (0) =
{(
m, g, h̃

)
|m ∈ T ∗Q, g ∈ G, hr = −Hr (m) ⇔ H̃r = 0

}
⊂ M̃

(247)

which is a submanifold of dimension (2n+ k) diffeomorphic to T ∗Q× G.

Now, as:

˜{
H̃r, H̃s

}
≡ L eXs

H̃r = −CtrsH̃t + drs (248)

we see that Σ̃ will be invariant under the canonical action Φg if and only if d = 0.

This is one of the most compelling reasons for requiring d to be a coboundary, i.e.

for requiring that H2 (g,R) = 0.

In analogy with the constant-t sections introduced in Subsect.5.1 we can intro-

duce ”constant-g sections” Σ̃g:

Σ̃g =
{
(m, g, h̃)|m ∈ T ∗Q, g fixed, H̃r = 0

}
(249)

which are of dimension 2n and diffeomorphic to T ∗Q. The canonical action Φg
permutes these sections among themselves, i.e.:

Φg

(
Σ̃g′
)

= Σ̃gg′ (250)

One can pose now a geometrical HJ problem for the Lie group G as follows:

Find a (maximal) Lagrangian (hence of dimension (n+ k)) submanifold Γ̃ ⊂
M̃ = T ∗ (Q× G), transversal w.r.t. the projection: π̃ : M̃ → M and such that:

i∗eΓµ = 0 ⇔ i∗eΓH̃r = 0, r = 1, .., k ⇒ Γ̃ ⊂ Σ̃ (251)

and sucht that, for every g ∈ G:

Γg = π
(
Γ̃ ∩ Σ̃g

)
=: Γg (252)

is a g-dependent Lagrangian submanifold in M = T ∗Q.

This implies, of course:

Φg

(
Γ̃
)

= Γ̃ (253)

as well as, at the level of M:

φg (Γg′) = Γgg′ (254)
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Remark 12. Requiring the simultaneous vanishing of all the H̃r’s on Γ̃ is remi-

niscent of the joint HJ problems that were discussed in Sect.4. The vanishing of

the two-cocycle d is then another necessary condition for the HJ problem on Lie

groups to admit of a solution.

Finally, if Γ̃ happens to be the graph of an exact one-form dS ∈ X (Q× G)

determined by S ∈ F (Q× G), we can express everything in somewhat more familiar

terms.

In the notations of Refs.[38, 51], let: α =
(
α1, ..., αk

)
be local coordinates for G

in a neighborhood of the identity, normalized to αr = 0, r = 1, ..., k, at the identity.

Then, if α, β, γ are coordinates for a, b, c ∈ G, the composition law: ab = c is

expressed in local coordinates as:

γr = f r (α, β) , r = 1, ..., k (255)

with preassigned functions25 f r. Introducing the (invertible [51]) matrix:

η (α) = ‖ηrs (α)‖ ; ηrs (α) =
∂f r (β, α)

∂βs
|β=0 (256)

and its inverse: ξ (α) = η (α)
−1

(ηrs (0) = ξrs (0) = δrs), right-invariant vector fields

are given [38]by:

X(0)
r (α) = −ηsr (α)

∂

∂αs
(257)

and the associated right-invariant one-forms will be given by:

θ(0)r = −ξrsdαs (258)

The canonical one-form Θ0 of Eq.(234) can then be rewritten as:

Θ0 = −hsξsrdαr =: πrdα
r (259)

and will define the ”momenta”:

πr = −ξsrhs ⇔ hr = −ηsrπs (260)

Then, with: S = S (q;α) and the usual replacement: π → ∂S/∂α, the conditions:

H̃r = Hr + hr = 0 become:

Hr

(
q;
∂S (q;α)

∂q

)
− ηsr (α)

∂S (q;α)

∂αs
= 0 (261)

and this is now the (conventional) system of PDE’s associated with a canonical

realization of the Lie group G on T ∗Q.

For further generalizations we refer once again to Ref.[38].

25The conditions to which the fr’s have to obey are discussed at length in Ref.[51].
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6. Concluding Remarks. Following Dirac’s prescription [21] according to which

Classical Mechanics must be a suitable limit of Quantum Mechanics, we have con-

sidered in this paper the Hamilton-Jacobi theory as emerging from Quantum Me-

chanics when we consider an approximation in which Planck’s constant is treated

as a parameter.

¿From this point of view, while we keep on with the originating idea of the

theory of considering Hamiltonian Optics as a suitable limit of Wave Optics, we

have taken advantage of the fact that Wave Mechanics concerns also with particles

with internal structure. This has suggested that we deal not only with ”scalar

differential operators” like Schrödinger’s or Klein-Gordon’s, but also with ”matrix-

valued differential operators” as those appearing in the Pauli as well as in the Dirac

equations. The net result is an extension of the usual Hamilton-Jacobi formalism to

a formalism where the Hamiltonian ”scalar function” is replaced by a matrix-valued

Hamiltonian.

In the same spirit, following what happens in relativistic field theories, we have

replaced the one-parameter group of time evolution with a Lie group, e.g. the

Poincaré group.

We have not considered the Hamilton-Jacobi theory for field theories proper but,

following the ideas outlined in this paper, it should not be very difficult to foresee

how to proceed.

The joint Hamilton-Jacobi problem turns out also to be very useful to deal with

holonomic and non-holonomic constraints within the Hamilton-Jacobi formalism

[15]. In this connection we should also mention some recent relevant contributions

[28, 34] to the same subject.

The geometrization of the Hamilton-Jacobi problem presented here has many ad-

vantages over more conventional presentations. For example, as mentioned already

in Sect.2.2, posing a ”Hamilton-Jacobi problem” as the search of foliations of the

energy surfaces by Lagrangian but not necessarily transversal submanifolds opens

the possibility of implementing the full set of canonical symmetries as symmetries

of the Hamilton-Jacobi problem as well. We have also shown elsewhere [38] how to

deal, in the same fully geometric spirit, with transformations and symmetries for

partial differential equations of the Monge-Ampère type. Using the present gener-

alization to differential operators acting on sections of vector bundles it should be

possible to incorporate into the formalism more general PDE’s than those of the

above ”Monge-Ampère” type.

Using our matrix-valued Hamiltonians it will be possible to deal with equations

of the Wong type [8], i.e. equations describing particles interacting with Yang-Mills

fields. Also, in this approach, treating, say, electrons moving in some monopole-like

magnetic field, algebroids arise in quite a natural way. We shall postpone more

details on these aspects to a forthcoming paper.
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[13] Carathéodory,C.: Calculus of Variations and Partial Differential Equations. Holden-Day,

1965.
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