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1. Introduction

The aim of these two lectures is to review very briefly the properties of the standard coher-
ent states in canonical quantum mechanics; sketch the main features of the two generali-
sations of the coherent state concept due respectively to Klauder [1] and to Perelomov [2];
and against this background to discuss the question of descriptions of operators in terms of
a given generalized coherent state (GCS) system. Specifically our target is the derivation
of necessary and sufficient conditions that ensure that any operator can be given a diagonal
coherent state representation, namely expressed as an integral over projections onto the set
of generalised coherent states. We shall in fact derive such conditions within the Perelo-
mov framework, and the principal tool we use is the reciprocity theorem concerning the
reduction of induced group representations into irreducibles.

Various definitions and terms will be clarified as we proceed.

2. The standard coherent states — a review [3]

Let us limit ourselves for simplicity to a quantum mechanical system built upon a single
canonical pair of operators. Thus we have a hermitian pair of opergipos equivalently
the annihilation and creation operator pait. . We first recall the basic operator aspects
and relations, then turn to the coherent states.

The canonical Heisenberg commutation relations, written in either form, are:
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[4,p] = i; (2.12)
- %((ﬂiﬁ) af = %(ﬁ—iﬁ),
[&,&T] -1 (2.1b)

By the Stone-von Neumann theorem, up to unitary equivalence there is just one irreducible
representation of these relations [4]. The Hilbert spHcef this representation can be
realised as the spacé or the spacd.?(R) of square integrable functions over the real
line. Correspondingly we have a Fock basis#aror the Schodinger basis made up of
(ideal) eigenvectors of the position operajor

ataln) = nln),n =0,1,2,...,00;
(mln) = dmn; (2.29)
dlg) = qlg), —00 < g < o0,
(d'lg) = d(d" — q). (2.2b)

A general vectofy) € H is describable either by its expansion coefficients in the discrete
basis|n), or by its Schodinger wave functiog(q):

<n|1/}> = 1/}n:
(aly) = (q),
@y =l [y IP =D [nl® = / dq ()] (2.3)
nez SN

For any choice of a complex nhumber= %(q + ip), whereq andp are possible

(but of course not simultaneous) eigenvalues ahdp respectively, we define the unitary
displacement operatdi(z) by

D(z) = D(q,p)
= exp(zal — z*a)
= exp{i(pd — ¢p)},
D(2)'D(z) = 1. (2.4)
Their composition law and actions on the basic canonical operators are:

D(2"YD(z) = exp {i Im 2'2*} D(2' + 2)

i
= exp {§(p’q - q’p)} D(q" + q,p" + p); (2.5a)
D(z)7" (¢,p,a,a") D(z) =G+ q.p+p,a+za +2". (2.5b)

The displacement operators form an (ideal) orthonormal basis for the space of Hilbert
Schmidt operators oK. We define this spad€, a ‘second’ Hilbert space, as made up of

operatorsi, B, ... onH with the inner product given as follows:
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ABek:(AB) =Tr (ATB) :
A2 =Tr (/UA). (2.6)
With respect to this inner product i, we find:

(D(¢',9'),D(q,p)) = Tr (D(q¢', ') D(q,p))
=27d(¢" — q)o(p' — p) (2.7)

and for a general operatol € K we have an expansion in terms of the displacement
operators:

. . dgd
AelC:A://%a(q,p)D(q,p),

a(q,p) = (D(q,p), 4),
1A = [ [ Lo 28)

The expansion coefficien{q, p) is the Weyl weight ofA.
Against this background we now recapitulate the definition and most important proper-
ties of the standard coherent states. For each complex numbe%(q + ip) we have

one coherent state):

2|
0) =0, (2.9)
where|0) is the Fock staté)) for n = 0. Then we find:

() These states are never mutually orthogonal:

1
(z']z) = exp {—i Im z'z* — §|z' - z|2} #0. (2.10)
(i) Their Schiodinger wave functions are Gaussian:

(q']2) =7 exp {z pld' —q/2) — %(q’ - q)2} : (2.11)

(i) The uncertainties\q, Ap are equal, the uncertainty principle is saturated and there
is no squeezing, in arjy):

Ag=Ap= (2.12)

i
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(iv) There is a resolution of the identity:

[ =1

whe sl = [ el 213)

(v) This association of a ‘wave functionz|¢)) with each|y) € 7 leads to the
Bargmann description @ using entire functiong(z) of a certain class:

("[¢) = exp <—%|z|2> > hnz"/Vnl
n=0
—exp (—3 I ) 762,
f(z) = i Yn2"/V/n! = entire analytic
n=0

5 < e (312) 16 I

dQZ a2
101 = [ e (2.14)
In this description, specially suited to the actiong@ndat on i), we have
a— i, at - 2. (2.15)
dz

(vi) There exist characteristic setsC C, subsets of the complex plane, such that
f(z)=0,alzeS=|¢y)=0. (2.16)
Examples are: any discrete infinite sequence with a finite limit point; any open con-

tinuous interval of the real axis, or of the imaginary axis; any finite continuous arc
in the complex plane, any bounded open subset of the complex plane, etc. [5]

(vii) Properties (i) and (iv) above show that the coherent states form an overcomplete
family. As a result we find that the diagonal coherent state matrix elenemsz)
of a general operatot on? determined completely.

(viii) An even more striking consequence of over completeness is the following: any op-
eratorA has a (unique) diagonal representation

i= [ o)) (217)

where¢(z) is in general a distribution. Fad € K, the nature of(z) can be more
precisely specified:
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¢(r, ) = Fourier transform of(z)

<[ Jrancene (1)

= exp {4(T np )} a(r, o), (2.18)

wherea(r, o) is the Weyl weight ofd appearing in eq. (2.8).
The main aim of the rest of this material is to examine the possibility of such a diagonal
representation in the case of generalized coherent states.

3. Two approaches to generalized coherent states

We now briefly outline the Klauder [1] and the Perelomov [2] forms of generalized coher-
ent state systems.

The Klauder form

The framework used is the Hilbert spaieof some quantum system, and a finite dimen-
sional topological spac€ which plays the role of a ‘label space’. There are however
no primary operator structures used in the definition. For each pantC a general-
ized coherent statg) € 7 is given in a one-to-one manner, obeying the following three
conditions:

@ o l=1 (3.1a)
(ii)  |¢) is strongly continuous i; (3.1b)
(iii)  thereis a volume elemedt on £
such that we have a resolution of identity

/df |6){¢] = 10onH, (3.1c)
L

where the last equation holds in a weak sense of matrix elements. Such &#tjgle|?)}
is a system of generalized coherent states. In a sense this is a very spare and economical
definition, but it is not constructive.

The Fock statel:) and the position eigenstate$ both violate these conditions: the for-
mer is not continuous, the latter is not normalisable. Some of the interesting consequences
are as follows [6]:

(a) For eachy)) € H we have a bounded continuous ‘wavefunction’

P(0) = (Ly) (3.2)

with the help of which we can write
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wzﬁWWA

L
wwzfﬂwm? (3.3)
L

For these wavefunctions there is no need to talk of Lebesgue square integrability, defini-
tions up to sets of measure zero, and the like. Clearly eyéty € L%(L), andH is
contained inL?(L£) as a proper subset.

(b) There is a reproducing kernel

K(¢50) = (€'16) (3.4)

which is continuous in bot# and/, and which obeys:

G K0 = K@),
(i) //waﬂwv«%aﬂazm
L L
(i) waszwwwww;
L
(iv) 1) = / AR (L )]0, (3.5)
L

Properties (i) and (ii) are the hermiticity and positive definiteneds @ ; £); property (iii)
shows very clearly why is a proper subset di2(£); and property (iv) shows that the
system of generalized coherent states is overcomplete.

In some cases, but not necessarily always, the overcompleteness leads to entire functions
and characteristic sets playing a special role.

The possibility of an operatofl being determined by its diagonal matrix elements
(£|A|€), and of an operator possessing a diagonal coherent state representation, get re-
lated in a useful way. Let us define two linear subsp#ceandX, in the second Hilbert
spacelC of all Hilbert—Schmidt operators oH as follows:

Ky = {A €K|A= /de a(0)|0)(1), somea(é)} cK;
L

Ko ={Ad ekl =0, alcechck. (3.6)
Then we find, with respect to the inner product (2.6)an
Ko = Ki,
K=K ®Ks. (37)

Thus any operatoﬁ € K is uniquely expressible as the sum of a pé[t € Ky which
possesses a diagonal representation, and ad4gaet K, all of whose diagonal coherent
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state matrix elements vanish. Furthermore, for a nonzere K, (¢|A,|¢) cannot vanish
identically; and for a nonzerd, € K, we have no diagonal coherent state representation.
As further consequences, adye K is determined by¢| A|¢) up to an element iiC,; and
anyA; e K, is uniquely determined b¢| A, |¢).

The Perelomov forrfr]

In contrast to the previous setup, we now have a more specific operator framework assumed
right at the start, in fact a quite elaborate one. We have a Hilbert sijaeelie group

G, and a unitary irreducible representation (UIR)g),g € G, of G on . We choose

some normalised fiducial vecthb,) € 7, with corresponding pure state density operator

Po = |1o)(ol|. Through actions b7 we generate the orbits @fy andgo:

I(o) = {¢(g9) =U(g)olg € G} CH,
9(po) = {(g) = U(g)polh (9)" = ¥(g) ¥(9)'|g € G} C K. (3.8)

The orbitd (i) of ¥ is embedded within the unit sphereffy and its real dimension is
less than or equal to the dimensiortaf The orbitd (o) of po is a subset of the set of pure
state density operators 6t

A generalized coherent state system is now defined as the collection of unit weggtprs
comprising the orbit}(1)); so it brings togethet, G, U(g) andy, in a special way.

The two orbits defined in (3.8) can be identified with coset spacéswith respect to
two corresponding stability groups:

Hy = {g € GlU(g)1bo =10} C G,
U(to) ~ G/ Ho; (3.92)
H = {g € GlU(g)yo = (phase o}
={g € GlU(g)polU(9)! = po} C G,
9(po) ~ G/H. (3.9b)

The subgrougH, is the stability group of), in the strict sense, whiléf is the stability
group ofy up to phases; their possible mutual relationships will be examined shortly.

We can make contact with the Klauder form in the following sense. As the correspon-
dence betweet(vy) andG/ H, is one-to-one onto, we can identify the topological space
L here as the coset space:

£ = G/H,. (3.10)

However the present generalised coherent state system would be also an instance of the
earlier form only if a resolution of the identity can be established; this is not one of the
requirements in the Perelomov form. We take up this aspect below.

The stability groupH is always an invariant subgroup &f. There are three possible
interesting relationships between them, distinguished by the nature of the factor group
H/H():
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(i) H/H, = trivial, H = Hy, 9(¢o) =~ ¥(po);
(i) H/H, = discrete nontriviagl
¥(1pg) = discrete cover of(po);
(i)  H/Hy=U(1),
¥ (1po) ~ principalU(1) fibre bundle ovet)(po). (3.12)

In case (i), the phase afy, cannot be altered by action by any elemenofin case (ii),
only a discrete set of phase changes can be made; while in case (iii) the pljaseanf
be altered by any amount upon actioriby) for suitableg € G. With quite simple finite
dimensional examples one can easily realise all three situations.

Now we consider the possibility of a resolution of the identity. We assume we have a
(left and right) translation invariant volume elemeptaVerG. Then as the representation
U(g) is irreducible, Schur’'s lemma implies that

/ dg [(9))(tb(g)| = / dg p(g)

G G
=c-1, (3.12)

wherec is some constant. i is finite, we recover in full detail a system of generalized
coherent states in the Klauder form. On the other handiiferges, we have such a system

in the Perelomov form, but not in the Klauder form Hfis finite dimensional, it is clear
thatc will be finite; then a Perelomov system is a particular case of a Klauder system. In
the case of infinite dimension®, the finiteness of will follow if the representatio/(g)

of G happens to be ‘square integrable’.

The possible resolution of the identity can be expressed in terms of integrations over
the coset spaces as well. Lete (o) andr € 9(py) denote general points in these
coset spaces. Then we can choose (local) coset representgfived(r) € G such that a
general € G can be written as a product in two ways:

g = Lo(q)ho
= {(r)h,
ho € Hy, h e H. (3.13)

(Again locally, o (q) is the product of(r) with a suitable trivial, discrete or continuous
U(1) element on the right.) From the invariant volume eleminbn G we get reduced
volume elementsg dr on the coset spaces; and the Schur lemma reduces to

/ dr p(f(r)) =c- 1. (3.14)

G/H

Even though in the Klauder sense we identifywith G/H, for the resolution of the
identity it is more economical to integrate over the (smaller) coset SFAEE

In summary, only it < oo does a general coherent state system in the Perelomov sense
also constitute such a system in the Klauder sense. Thus one definition is not subsumed by
the other in either direction.

252 Pramana — J. Phys.Vol. 56, Nos 2 & 3, Feb. & Mar. 2001



Generalized coherent state systems
4. Reinterpretation of standard coherent states and further examples

We can easily recover the standard coherent states as instances of both the Klauder and the
Perelomov systems. The relevant Hilbert spadé¢ is /2 = L?(R). To make contact with
the Klauder form we identify the topological spatand the Klauder staté) as follows:

L=C,l=2z€C,
1€) = |2) = D(2)|0). (4.1)
The strong continuity condition and the resolution of the identity are both satisfied, and the
reproducing kernel in this case is given in eq. (2.10).
To reach the Perelomov form we identify the Lie gr@eips the Heisenberg—Weyl group

(H-W group) withg andp as generators. In the relevant UIR, the elements of this group
are realised as phase factors times the displacement opBiatqr) of eq. (2.4).

U(g,p,a) =e"*D(q,p),a € [0,21),q,p € R;

1
Ug,p',a"U(g,p,a) =t <q' +q¢,p +p,d +a+ §(p’q —q'p) m0d27r> . (4.2

The fiducial vector), for the Perelomov constructiongs, = |0), the ground or vacuum
state in the Fock basis. The two stability groups are

HO = {6}7
H=U(1) ={U(0,0,a)|a € [0,2m)}. (4.3)

The orbit ofy is just the set of standard coherent states multiplied by phases:

|2; @) = U(q, p,a)ho = " D(2)[0),
I(iho) = {e*|z > |z € C, a €[0,27)}. (4.4)
We are dealing here with the Stone—von Neumann UIR of the H-W group and this is a
square integrable UIR (as we will soon see via the useful Moyal identity), so we have
consistency with the known resolution of the identity, eq. (2.13).
Having seen that the standard coherent states are an instance of both the Klauder and the

Perelomov systems, we now briefly describe some other examples of generalized coherent
state systems.

(a) G =H-W group, generic fiducial vector

In the Hilbert spacé{ = L?(R) we choose as fiducial vectgr, a general normalised
vector, not necessarily the ground st@feof the Fock basis. Then the Perelomov system
of GCSis
|Z,OL;’L/}0> :Z/{(q,p, Oé)|’(/}0> )
= €' D(z)tho) = e**|2; o), (4.5)

and this is a unit vector for alt, continuous inz as well. Quite generally, for any
one findsHy, = {e}, H = U(1) exactly as in eq. (4.3). The resolution of the identity
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also holds; thanks to the general Moyal formula valid for any four (normalisable) vectors
|(p1>7 |<P2>; |903>7 |904> inH [8]

/ T2 o D)) (@il D () 03) = (orlioa) (palia). (4.6)

K3
Thisis in fact a characterisation of the Stone—von Neumann UIR of the H-W group. Setting
l2) = |pa) = |¢o) here gives, for anyp:) and|ys),

/dA 2 (@11D(2)lo )tk D(2) |is) = (o1 lps),

-
2
/ T2 s o zs ol = 1 on @.7)

This system is therefore both a Klauder and a Perelomov system of GCS.
The reproducing kernel of the Klauder formulation is

K(ZIQZ) = <ZI;1/J0|Z;¢0>
= (1| D(2') D(2)|¢0)
= (to|D(z — 2')tho)e’ Imz"" 2, (4.8)

so the expectation values of the displacement operators in the fiducial state play an im-
portant role. The following results are known to hold for afy: the family of states

{]#1; ¢0)|z € C} is always overcomplete. There exist characteristic sefsanalogous to

the case of ordinary or standard coherent states. And there is a very interesting result due
to Klauder concerning the possibility of diagonal representations for general operators [3]:

K> = 0 < every A has a diagonal representation

& (Yol D(2)|to) #0, all z € C
S K(2'2)#£0,al 2z eC. (4.9)

The choicéyy) = |n),n = 1,2,..., of the Fock basis has been studied long ago by
Roy and Singh [9]. In this [10] case it is known that

(n|D(2)|n) = e~ L (12]?), (4.10)
whereL,(-) is the Laguerre polynomial of order This polynomial has simple zeros
on the positive real axis, so in the complex plane the quafit|t (z)|n) hasn concentric

rings of zeros. We conclude that the condition (4.9) is not obeyed for, henceC 5 # 0
and for a general operater we do not have a diagonal representation in these cases.

(b) G = SU(2)

We consider the spigi UIR ¢/(-) of SU(2), acting on a Hilbert spack of dimension
2j + 1, wherej = 0,1/2,1,3/2.... (The UIR is faithful only whery = 1/2,3/2,...)
The following facts regarding the stability groufis, H are generally known:
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(i) Forj =1/2, namely in the defining UIR of SU(2), for any choiceyw§ we have:

Hy = {e}, H=U(1);
P(tho) = SU(2), ¥ (po) =

(i) Forj > 1, if ¢ is a generic vector with no special properties, bbth and H are
trivial or discrete.

(i) Forj > 1,if ¢p9 = |m),m # 0, an eigenvector of the third componeht of the
SU(2) generators, (or any SU(2) transform of suchra)), thenH  is trivial or discrete
while H = U(1).

(iv) Forj = integer > 1, if 1o = |0) (or any SU(2) transform db)), thenHy = H =

U(1).

Now make the specific choieg, = |j), the ‘highest weight state’ in the spjrlUIR. The
ensuing Perelomov family of GCS is the family of spin coherent states. Working directly
and for simplicity onG/H = S?, we identify the topological spaa&of Klauder withS 2.
Then the spin coherent states are, using spherical polar variables to paragtrise

S2, (4.11)

(8,9) € S :18,9) = e~ "*Me= 2 j)
= ¢ 99 (c0sf/2)% e ),
z=e“tanf/2,
J_=J1—1iJs. (4.12)
By expanding the exponential we find thét¢) is a simple linear combination ¢f) for
m = j,7 —1,...,—7j. Both the reproducing kernel and the resolution of the identity are
easy to handle.
K(0',¢':0,6) = (0", 4'|0. )
3 ’ . ’ 2j

= (@' —9) (6050’/2 cosf/2 +e 1 =9 sing’ /2 sin9/2) ! ; (4.13a)

227

2j + 1

/dcos 0dg|o, p)(0, | = 7 - 1. (4.13b)

S2

So everything is in place and we have simultaneously a Klauder and a Perelomov system.

©) G =SU(, 1)

Here we deal with the universal covering gr&p(1, 1) of the group SU(1,1); the former
covers the latter infinitely many times, and both are three dimensional. The situations that
arise here are much more intricate than with the two previous cases. We begin with a brief
recapitulation of the structure of the Lie algebra of SU(1,1), then proceed to the UIR’s of
interest.

We have three hermitian generatdgs K1 and K> obeying

[Jo, K1] = iK>3, [Jo, K2] = iK1, [K1, K>] = —iJo. (4.14)

The quadratic Casimir invariant is
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Q=K +K;-J3, (4.15)

and in a UIR we can work in a basis wifha number andy diagonal.

The UIR’s we look at are the so-called discrete positive and negative ones written as
D\ andD! ™) respectively; heré > 0is a real parameter arfgl = k(1—k). In D™, J
has the eigenvaluéstn,n = 0,1, 2,...; whilein D,(C_) they are—(k+n),n =0,1,2,....
In both cases there are no multiplicities. We can give a largely common treatmén(ffbr
andD,(c_). A common Hilbert spac#,, suffices for both. A Fock-like basis fét; consists
of vectorslk; n),n = 0,1,2, ..., obeying

(k;n'|k;n) = 6prn. (4.16)
Then inD,(f) we have the actions of the generators on these vectors given by
Jolk;n) = (k +n)|k;n);
(K1 +iKs)|k;n) = /(n+ 1)(n + 2k)|k;n + 1);
(K1 —iKs)|k;n) = /n(n — 14+ 2k)|k;n — 1). 4.17)

Thus the lowering combinatiai _ = K, — i K> annihilategk; 0). ForD,(e_), in the same
‘Hy, and in the same bagis; n), we just replace

J() — Jé = —J();
Ky =K +iK, - K/ = K| +iK, = K_ = K; — iK>;
K =K —iKy = K =K —iK)=K, =K, +iK>. (4.18)

Then.Jy, K1, K} generate the UIR),(C_). Clearly the spectrum of ) is —(k + n),n =
0,1,..., and now the raising combinatidid’, annihilategk;0). Note that the value af)
does not distinguis® { ™ from D{™.

In this setting, two distinct types of GCS have been explored. One is to generalise the
notion of annihilation operator eigenstates occurring in the standard coherent states, the
other is in the spirit of the Perelomov method. The former is due to Barut and Girardello
[11].

Barut—Girardello construction irD,(f)

These GCS are defined in the casel)if” to be the normalized right eigenstates of the
lowering operatof . The states themselves, the reproducing kernel and the resolution of
the identity are all explicitly given:

K_|z) =z|z), z € C,

|2) = { oFy (2K3 =)} %Y VT @R) T (1 + 28)=" ks n);

n=0

(1) = oFs (28272) [V oF @R ) o 26 2P
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[ SEatPla) el = tons,
C
2

o(r) = o) oy (2k;r)rk— 1/21(1 o (2v7), k> 0. (4.19)

For this GCS system, no group action or fiducial vector choice is involved, so we are not
dealing with a Perelomov system. We have a system in the Klauder senggiddthtified
with the complex plan€’.

In the UIR D,(C_), asHy, is the same and&_ = K., the same states as given in eq.
(4.19) are right eigenstates of the raising operafdr, there are no changes at alll.

Perelomov type GCS iD,(ci)

Now use of thesU(1, 1) action onH;, becomes relevant, and some fiducial vector choice
has to be made. In the caseDi,‘j) for any k > 0, we choose), to be |k;0), the
eigenstate off, with the minimum eigenvalug. Itis clear that in generalf, = {e} and

H, = U(1) ~ R, except that if; is rational H, reduces td/(1). The GCS are generated
by action ofSU(1,1) elements onjk;0). It is convenient to label them with a complex
numberw within the unit discD in C. Their definitions and the reproducing kernel turn
out to be:

|\I,(+)(w)> — o~ Ha1Ki+a2K>) |k‘ 0>

I'(n + 2k) W e
Z n‘r 2](7 |k’n>,

w:%t nh< |al|> € D;
K (w';w) = (¥ (') 0 (w))
= (1= w1 = Jw)* (1 = w™w) 7. (4.20)

So for anyk > 0 we have here a well-defined Perelomov system. When we seek for a
resolution of the identity, however, we see that is possible only for 1/2 and not for
0<k<i:

/dzw o(lwf?) [T (W) (T (w)] = 1 onHy,

D

2k -1
k>

1
Tk (4.21)

o(r) :%~

Thus these Perelomov type GCS are simultaneously Klauder type GCS énly if/2,
with the identification =D C C.

In the case oD,(c_) acting on the sam#;,, we have very similar results going with the
choicey, = |k; 0), and with the replacement af by w*.
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(d) Metaplectic oscillator representation 81U(1, 1)

The results here are subsumed under what we have described above but merit brief separate
mention. The unitary representati@fi R) of SU(1, 1) we are concerned with here is a
reducible one, being the direct sumlaif;z andD§74). In terms of the annihilation and
creation operator&, a™ for a single degree of freedom, the generators are

Jo = —%&Ta - i, K = i (af2 - az) Ky = —i (aT2 + aZ) . (422

The Casimir operator has the numerical vadye- +3/16, so bothk = i andk = % are
involved. In terms of the Fock badis) for the Hilbert spacé{, the basis vectond /4; n)

and|3/4; n) supporting the UIR’st,Dé;i respectively are identified thus:

H=5p{|n) |n=0,1,2,...,}

=H) 697-[(7);
HE) =Sp{|1/4;n) In=0,1,2,...,},
[1/4;5n) = |2n);
H) =Sp{|3/4;n) In=0,1,2,...,},
[3/4;n) = |2n + 1). (4.23)

Within each of#(+) and#(~), we have both the Barut-Girardello type of GCS, namely

eigenstates oK . ; and the Perelomov family of GCS based on the choice of fiducial vec-
tor ¢y as|1/4;0) and|3/4;0) respectively. However, as seen earlier in eq. (4.21), the
resolution of the identity is not available in the Perelomov systefd iV, The treatments

of GCS in the continuous series UIR's ®/(1, 1), and in the UR’s ofSL(2, C), may be
found in the monograph of Perelomov [7].

TheSU(1,1) results assembled above can be displayed in a table:

DY k>0 D7) k>0 Remarks
Barut-Girardello K_|z) = z|z) K |z) = z|2) Klauder system
states for alk > 0; nota

Perelomov system

Perelomov states v = |k; 0}, Jo = k: o = |k;0), Jy = —k;  Resolution of identity,

GCSHY ) (w)), GCS3¥ () (w)), i.e., Klauder system,

w €D w €D onlyif k > 1/2
Metaplectic k=1/4:v0=1[0)Fock Perelomov system,
oscillator k=3/4: 40 = [1)Fock not Klauder system
representation Perelomov and

Klauder system
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5. A new approach to the diagonal representation problem [12]

We now outline a new approach to finding necessary and sufficient conditions for the ex-
istence of a diagonal representation for all operatﬁ)res K, i.e., for havinglCo, = 0. This
will be within the Perelomov framework for GCS, and uses both Clebsch—Gordan theory
and the theory of induced representations of groups.

For definiteness we assume thiatis a compact Lie group, so that all its UIR’s are
finite dimensional. We will use the symbdl| which is in general actually a collection
of several independent (discrete) labels, to denote the various UIR's dhus we shall
say that the UIRD(Y) of G operates on the (finite dimensional) Hilbert spate’), and
in a suitable basis the matrices of the UIR have eIen@Hj){%M(g), with the ‘magnetic’
guantum number&!’ andM again each standing for several independentlabels. Similarly,
for the subgroupg! C G which will arise later, we have the UIR (9) with matrix elements
Df,i?m(h) operating on the Hilbert spacg’). We will mainly work on the coset space
G/H, denoting a general point of it by the symbok G/H. For a choice of a (local)
coset representative we use the notatign as in eq. (3.13), so any € G is expressible
as the product

g=4L(r)h, g€G, reG/H, heH. (5.1)

To start the Perelomov GCS construction we begin with the DI) of G onH.(/0),
and pick a fiducial vectop, € #(7°) havingH as its stability group up to phases. Then
we have the GCS and their projections given by

¥(g) = D) (g)3ho,
plg) = ¥(g)¥(g)!
= D) (g)peD) (g) 1. (5.2)

These projections have the twin properties
h € H : DY (h)po DY) (1)~ = po;
DY) (g")p(g)D) (g") " = plg'g); (5.3)

which together imply, using the representation (5.1), fifa} is actually an operator val-
ued function on the coset spaG¢ H:

plg) = D (g)po D) (g) ™
= DU (E(r)h)po D) (e(r)h)~!
= DU (e(r))po DV (E(r) !
= p(L(r),
e, plg) = p(l(r)) = p(r). (54)

Thus the ‘independent parts’ p{g) are just thes(r) defined in the last line above. On
theses(r) the action of7 by conjugation is expressed in terms of the actio6 @n G/ H
via point transformations:
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DY) (g) p(r) DY) (g)~F = p(gr). (5.5)

We now pose the two questions:
(i) Which operatorsd on# (/) arise by considering integrals of the form

A= / dr a(r) p(r) (5.6)

G/H

for all possible (locally integrable) choices of complex weight functigi$?

(i) What are the necessary and sufficient conditionsgfer= 0, ie., for all operatorsi
to have the diagonal representation (5.6)? We will answer these questions below; first we
set up some preliminaries.

Even before the fiducial vectar, is chosen and the GGSg) along with their projec-
tions p(g) are constructed, we know from Clebsch—Gordan (CG) theory how to construct
an orthonormal basis of unit tensors f6f”°), the Hilbert space of operators &f”/0). Let
the reduction of the direct produbt(’>) x D(/0)" read as follows:

Do) 5 plo)” = Z@nJD

nJ_o,1,2,..., (5.7)

wheren ; is the multiplicity of occurrence of théth UIR in the reduction. For each such
J, we have a set of unit tensor operatt§* carrying a multiplicity labelA taking values
A =1,2,...,n;. Eachi{{}* is an operator oft{ /o), therefore an element & (/°); and
the collection obeys

DY) () Ui} D Z Pl (g (5.8a)

Tr (u;{;,” u;{f) = (wi, u;{})

=0nnA 0000 O - (5.8b)

Naturally for a particulad if n; > 1, we have considerable freedom in the choic# g

as unitary linear combinations ov&rcan always be made. Finally, an@l € K has a
unique expansion

L= 3" apsm Ui,
ATM
| Al? =Tr(AT4) = Z lansn]?. (5.9)
ATM

All this information is therefore in our hands as soon as the DIR°) is chosen, prior

to choice ofi, etc. Now we wish to know whether an§ can also be expanded as an
integral overp(r) as in eq. (5.6). For this we must clearly determine: given the projections
p(r) transforming unde€ according to eq. (5.5), which of the unit tensofg/* with
what multiplicities can be extracted frofr)? This question can be answered by carrying
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out harmonic analysis g¥(r), based on the theory of induced representations [13]. We
therefore briefly sketch the latter at this point.

Starting from any UIRD ) of H on the spac&(?), by the inducing construction we
obtain a specific UR{(g) of G on a specially constructed Hilbert spagfor simplicity
we avoid attaching any labels to tHi§. Elements — ‘vectors’ — ift{ are functions) onG
with values in3?) and obeying a covariance condition in which the UMW) of H plays
arole

g€ G :1(g) € SV
h € H :¢(gh) = DY (h)T¢(g). (5.10)

Thus for suchy only the ‘values’ ofy)(¢(r)) need be independently given, for the(y)
for anyg is known. The inner product iK is then defined to be

nwui:=/dmw@xw@»@ﬂ

G

=/www»wwmw. (5.11)

G/H

The UR%(g') of G induced from the UIRD %) of H now acts in this manner on any
Vv € H:

(g (g) =¥ (9 9)- (5.12)

The point to notice is that the covariance condition (5.10p@ndG action o) do not
come in each other’s way as one acts on the right and the other on the left of the argument
g of 1. In other words, the operatatd g) are well defined ofi, since they preserve the
covariance condition; and they are of course also unitary with respect to the inner product
(5.11) onH. This induced UR of7 is in general reducible and the question arises as to its
UIR contents and multiplicities: which UIRB() of G’ occur and how often? The answer
to this is contained in the beautiful Frobenius—Mackey reciprocity theorem [13].

The URU(g) of G, induced from the UIRD ) of the subgrougd C G, contains the
UIR D) of G as often a®(’) contains the UIRDY) of H upon restriction tad.

To apply this to the problem of finding out the irreducible tensor operator contents of
p(r), in view of the first of eq. (5.3), we need to look at the inducedR) of G coming
from the trivial UIR (j = 0) of H. This UR of G is defined on the spade?(G/H) of
square integrable complex valuediumber functions (not vectors!) efe G/ H:

I3(G/H) = ﬂﬂecmfwz/YMNmz. (5.13)

G/H

To match the law o7 action ong(r) given in eq. (5.5), we mak@ act on such functions

f(r) by
UG Hr)=F(g7"r). (5.14)
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Now this UR ofG on L?(G/H) contains the UIRD(Y) of G as often agD(’) contains
scalars with respect t. Let this multiplicity label be written a3, to be carefully distin-
guished from\ appearing in eg. (5.8): they have quite different origins!

A complete set of ‘spherical harmonics’ 6y H can therefore be written as;/>(r):
A labels the many occurrences of the same UIBf G among functions o'/ H. They
obey the transformation law

Yirg Z D) (9) Y (). (5.15)
They form an orthonormal set of functionsirf (G /H):
[ YEX ) VI ) = 5 s S (5.16)
G/H

And their completeness means that for gity) € L?(G/H) we have

F) =" foam Vi),

JAM

> 1wl (5.17)

JAM

[k

We are now in a position to perform the harmonic analysis of the operatorand
project out their irreducible tensor contents:

pry =" P Yi(r),

JIM
o = / ar YA (r)* (r). (5.18)
a/H

And by combining egs (5.5), (5.15) and (5.18) we see that tfidseare indeed tensor
operators of the indicated type:

Do) (g) pip DY) (g Z D) (9) 1 (5.19)

We infer that any operatod expressible as an integral ov&r-), namely anyA € Ky, is
some linear combination @f}*. The question is whether this is true for dllc K, that is,
whetherC, = 0.

Itis in any case clear that as on the one hand, the unit tetisgrslo form a complete
set of operators o (’°), and on the other hand the ‘components? projected out from
p(r) are tensor operators of the indicated type, there must necessarily be linear relations
having the following general structure [12]:

i = w(DN A Uil (5.20)
A
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Here for eachl’, =(J) is a rectangular matrix made up of certain specific Clebsch—Gordan
coefficients. The row label has as many values as the multiplicity of occurrence of
the UIR DY) of G in the induced UR of7 given earlier, and this is the same as the
multiplicity of occurrence ofH-scalar states within this UIR (/). On the other hand
the column label\ has as many values as the multiplicity of occurrence of the DIR
in the Clebsch—Gordan decomposition of the direct pro@tce) x D(/0)". To orient
oneself the following remark may be helpful: for comp&cand finite dimensionab (/)
the number of operatotgi is necessarily finite, while (in any nontrivial situation) the
number of independent spherical functiang* (r) is always infinite. As a result all but a
finite number of the operatofs]} must actually vanish.

We can now see that the necessary and sufficient conditions for the existence of the
diagonal representation for all operato@% KC are as follows:

(1) For each UIRJ of G, the number of values of the
multiplicity label A must be greater than or equal to
the number of values of the lah&l
(i) The rectangular matrix(.J) must have maximal
rank ie., its rank must be equal to the number
of values ofA. (5.21)

If these two conditions are fulfilled, then (and only then) the unit ten&gf$ can be
recovered from the set1}, i.e. eq. (5.20) can be inverted, and we obtain a diagonal
representation for every operatér But especially in the finite dimensional case, as is
obvious, this representation is highly nonunique.

We mention here a few examples to illustrate this result, omitting details:

Examples

(i) G =SU(2), D) =spin.Jy UIR for Jy > 1:

If 4 is a generic vector in the representation spié¢&), both H, andH are trivial; a
detailed examination shows that conditions (5.21) are obeyed and the diagonal representa-
tion exists.

(i) G =8SU(2), DY) = spin.J, UIR for integral.Jy > 1:

If 4 is an eigenvector of the generathy of SO(2) rotations with eigenvalue zero, i.e.

Yo = |Jo,0) (or any SU(2) transform thereof) then conditions (5.21) are not obeyed, so
we do not have the diagonal representation for general open&tdﬁere bothH, andH
areU(1).

(i) G =SU(2), Do) =spinJy UIR for Jp > 1/2:

If ¥o = |Jo, M) for someM, # 0, conditions (5.21) are obeyed, and the diagonal
representation exists. Hef, is trivial while H isU(1).

(iv) G =SU(3), Do) = 8-dimensional octet or adjoint UIR:

If we choosey, to be thex? state in the language of particle physics, invariant under
the diagonal/ (1) x U(1) subgroup of SU(3), theH, = H = U(1) x U(1). Conditions
(5.21) fail and we do not get the diagonal representation.
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(v) G =SU(3), Do) = 8-dimensional octet or adjoint UIR:

If we choosa), to be theA state in the language of particle physics, invariant under the
U(2) subgroup of SU(3), thel = H = U(2); once again conditions (5.21) fail and we
do not get the diagonal representation.

(viy G =H — W group
For any choice of)y € #, direct analysis along the lines of the present work shows that

s = 0 & (o] D(2)|t) # 0 forall z € C. (5.22)

This is just the Klauder criterion (4.9) recovered now via Clebsch—Gordan theory and the
reciprocity theorem for induced representations. Assuming (5.22) is obeyed, we find that
we can pass from the Weyl representation of an opetttr its diagonal representation
using GCS based upon the fiducial veatgras follows:

A://@mm@mD@m
// 2) |25 o)z vol,

|25 0) = D(2)|%0);
Fourier transform ob(z) = a(q,P)/(¢o|D(q,p)|¢o>*- (5.23)

In the case of the standard coherent states whe#s |0) of the Fock basis, we know that
(0] D(g,p)|0) = e=3(7"+7") (5.24)

and we recover eq. (2.18). For genefal, as we are dealing with a square integrable
representatior(z)o| D(q, p)|10) must vanish sufficiently rapidly asp — oo to be square
integrable; this shows from eq. (5.23) that the weight functipr) always has the charac-
ter of a distribution of some class determined by the choiag,of

6. Concluding comments

The methods we have outlined based on Clebsch—Gordan and induced representation the-
ory give us a good grasp of operator aspects of GCS generated via the Perelomov method.
Itis gratifying that we have been able to state explicitly necessary and sufficient conditions
for the existence of a diagonal generalised coherent state representation for general oper-
ators. Even in the well-studied case of the H-W group we are able to appreciate known
results in a new way; while the examples using SU(2) and SU(3) show how in quite ele-
mentary situations these conditions may not be obeyed.

Our methods can be and are being applied to study the general structure of phase space
formulations of quantum systems and state reconstruction problems.
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