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1. Introduction

The quantum mechanical motlon of a charged partlcle in the field of a static magneuc ‘
monopole was first discussed by Dirac (Dirac 1931). The vector potential of such a
magnetic field has an unavoidable string singularity at least semi-infinite in extent.
Dirac showed that as a kinematic requirement every wave function for the charged
particle must necessarily vanish along the string. Consistency of this requlrement and
of behaviour near the string with quantum mechamcal pnnc1p1es led Dirac to the
quantlzauon condition

n »
eg-—zh. | | S | (1)‘
In an effort to eliminate the string, Wu and Yang (Wu and Yang 1975) developed
another way of describing quantum mechanical states in the above situation. The
three-dimensional space around and excluding the monopole, $? x R, , is expressed as
the union of two open, overlapping, topologically trivial regions R, and R,. For
instance, R, omits the negative z-axis while R, omits the positive part. In each of the
regions R, and R, a corresponding singularity free vector potential 4,, 4, can be
chosen; in the overlap R,nR, where both are defined, they are related by a gauge -
transformation. Each quantum mechanical state is then described by a. pair of
singularity-free wave functions ,, ¥/, defined on R,, R, respectively. Over R,nRy, ¥,
and y, are related by the same gauge transformation that relates 4, to A4,. This
transition rule connecting i, and ¥, in the overlap is kinematic in nature, being the
same for all states (in the given monopole field). The requirement that it be well-defined,
i.e. single valued, leads us back to the quantization condition (1). This so-zalled method
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of sections has been extended to treat the unitary irreducible representations of the
rotation group SO(3), leading to the monopole harmonics (Wu and Yang 1976;
Biedenharn and Louck 1981). The non-Abelian generalization of the magnetic
monopole field is discussed by Coleman, and by Goddard and Olive (Coleman 1981;
Goddard and Olive 1978). :

In another independent approach to the string problem, it has been shown
(Balachandran et al 1980) that the string can be avoided altogether if one works with a
degenerate Lagrangian based on an augmented configuration space SU(2) x R, rather
than the physically accessible 2 x R .. Here SU(2) is viewed as a principal fibre bundle,
with structure group U(1), on the base S2, the sphere of all possible directions
emanating from the monopole in physical space. S? is itself the space of (right) cosets
SU(2)/U(1); and any attempt to reduce the degenerate Lagrangian to a nondegenerate
oné with S?x R, as configuration space automatically reintroduces the string
singularity because SU(2) is a nontrivial U(1) principal fibre bundle on S2. ‘

These developments bring out the usefulness and clarifying effect of using
topological and geometrical notions in such problems and also direct our attention to
other problems where, given a Lie group G and a closed Lie subgroup H =G, the fact
that G is a principal fibre bundle on the space of (right) cosets G/H, with H as structure
group, plays a basic role. :

A well-known method of building up unitary representations (UR) of Lie groups,
‘particularly relevant and useful in quantum mechanics, involves considerations of just
the above kind. This is the method of induced representations as developed by Mackey
(Mackey 1968; Isham 1983). Given G and H as above, let D(+) be a unitary irreducible
representation (UIR) of H in a Hilbert space " carrying an inner product( ., . )y-. One
builds up a Hilbert space #°, say, consisting of elements written abstractly as |¥),

[¥'), .. .,and carrying a unitary representation U (-) of G, in this way. Each [¥) in #
corresponds to a function on G with values in 7"
¥>—i(g)e?” forall geg, (2)

obeying a covariance condition with respect to H:
Yy(gh)y=D(h ™ ")(g) forall heH. , (3)
On such |¥), we define a representation U (*) of G by the action

Ug)®y=¥>: ¢¥'(9=yg1'9) B 4)

It is immediate that this action preserves the covariance condition (3) and possesses the
representation property. Moreover, the covariance condition ensures that (y(g), ¥(g))s
is constant over each (right) coset g H in G. At this stage we introduce the symbol £ to
generically denote a (right) coset space, and p for a general point in :

*=G/H, peX. » ‘ (5)

The distinguished point in £ corresponding to the coset H containing the identity
element will be denoted by p‘®. One can then make the representation U () of G given
by (4) a unitary one by defining a suitable invariant inner product

-~

z

dulp) (W), ¥(@)y - ©
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and ‘thus also completing the definition of the Hilbert space . This unitary
representation of G is said to be induced from the UIR D(-) of H originally given on ¥".

The UIR’s of the Euclidean group E(3) (Pauli-1965), i.e. the group of rigid motions in
three-dimensional space and of the inhomogeneous Lorentz group, or Poincaré group
2 (Wigner 1939; Wightman 1960) of special relativity, are of basic significance in
quantum mechanics. Even though these representations have been known and are
familiar since a long time, the method of induced representations seems the most
elegant and economical way of arriving at them.

It is clear that each y(g) obeying the covariance condition (3), though not constant
over a coset, is determined all over a coset ifits “value” at one representative point in the
coset is known. Now G acts on £=G/H transitively by left multiplication:

geG,peX—p'=gpel. (7
Elements of H are distinguished by the property that they leave p‘® invariant:
hp©@=p® forall heH. (8)

To choose a coset representative for each cosetin G is to pick an element I(p)e G for each
peZ such that

(p)p=p | ©)

in the sense of the action (7) of G on Z. The “independent information” contained in /(g)
is then the collection of its values at the elements /(p)e G:

Y(l(p))=plp)e?". ‘ . - (10)

In this sense, each y(g) is essentially a function ¢(p) on I with values in ¥7, and the
action of U(g) on [¥) can be expressed directly in terms of ¢(p):

UI¥>=¥">= | |

¢'(p)=D((p) " *gllg" " P)olg™ " p): (11)
If an orthonormal basis for ¥ is indexed by letters o, B, . . ., the components @,(p) of
o(p)e?” can be written as '

?p)=<p, 4 @, : (12)

so that |p, ) is an (ideal) orthogonal basis for . Then (11) can be reexpressed as

U(g)lp, &> =%D,;a(h(g, p)lgp, B,

h(g, p)=1(gp)” lgl(p)veH : (13)

The inner products among the (ideal) basis vectors | p, «) are fixed by (6). This form of an
induced group representation is familiar from the Wigner construction of the UIR’s of

2, in which context the element h(g, p) in H in (13) is called the “Wigner rotation”.

Given the above general structure, the following questions naturally arise: When can
the coset representatives I(p) be chosen in a smooth and singularity-free way 'l over 27
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Since the Wigner rotation is a function of both g and p in general, what is the maximum
simplification that can be achieved in its form, at least when g is an element he H? In
this paper we address ourselves to these questions in the context of the representations
of E(3) and £.

The attempt to choose I(p) for each peX obeying (9) is evidently an attempt to find a -
section when G is viewed as a principal fibre bundle on = G/H as base and with H as
fibre. It follows that a globally smooth choice of I(p) is possible when and only when this
bundle is trivial. If it is nontrivial, any attempt to find an I(p) for all p is bound to
encounter singularities, just like the vector potential in the monopole problem. As with
the Wu-Yang treatment of quantum mechanical states in the presence of a monopole,
we can avoid such “kinematic singularities” in the induced representations of G by

expressing the base X as the union of (at least) two open topologically trivial regions R,,
R

T =R,UR,, (14)

and choosing I,(p), I,(p) over R,, R, in a singularity-free way. This means that over each
of R, and R;, the bundle structure can be trivialised; and the portions of G sitting on top
of R, and R,, G, and G, say, are homeomorphic to the products R,x H, R, x H
respectively. For p in the overlap we necessarily have:

pERamRb: lb(P) = la(p)hT(p)’
he(p)eH. ‘ (15)

Then |¥)es# is specified by -a pair of functions @,(p), @;(p) defined on R,, R,
respectively and taking values in ¥":

?.(p)=9(.(p), PeR,;

e, (0)=Y(l,(p)), PeER,. (16)
In the overlap we have the kinematic transition rule
PeR,NR,: @4(p)=D(hr(p)™(@a(p)- : (17)

In principle it is straightforward to derive equations which give the effect of U(g) on a
pair (¢.(p), ©,(p)) to give a new pair (¢,(p), ¢;(p)) also obeying (17). The important
point is that in order to avoid string-like singularities in /(p) and the accompanying
Wigner rotations, one must pay the price of working with sections rather than globally
defined wave functions, at least if the intention is to operate dxrectly with the
independent information in y(g).

When G is a nontrivial bundle over G/H, one can pose the following further
questions: (a) Can the two (or more) open sets R,, R, in X be chosen so that each is
carried into itself under action by elements of H? (b) If the answer is in the affirmative,
can the choices of I, (p), I, (p) be made so that at least for elements he H the p-dependence
in the Wigner rotation is eliminated:

L(hp)=hl,(p)h™", peR;
l(hp)=hl(p)h~*, peR,? (18)
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The motivation is that if this can be achieved, then for elements he H the action of U (h)
on |@)> would be simple and would use just the UIR D(+) of H originally Qhosen:

Ul =le'):
@o(p)=D(h)p.(h™" p),
@5(p)=D(h)@,(h™ " p). (19)

This form, when it can be achieved, is called the Shirokov-Foldy form (see Mukunda
1970). 4

We shall study the UIR’s of E(3) and £ from the point of view of answering the
questions raised above. Since our intention is not to derive these well known
representations by the method of induction but rather to examine them to answer the
questions posed above, we shall be briefin the identifications of G, H and X in each case,
and shall go on directly to study the relevant topological aspects. Furthermore, we shall
be more interested in studying the way the operators U(h) act on ¢,(p), ¢;(p) for heH,
and not in the manner in which U(g) for general ge G mix these ¢’s.

The paper is organized as follows. In § 2 we study the UIR’s of E(3), or rather of its
two-fold covering group. The results are very similar to what are known for the
treatments of the monopole problem. Section 3, devoted to the UIR’s of the Poincaré
group, begins with notational preliminaries and general considerations common to all
the three types of UIR’s; we then study in detail the timelike, spacelike, and lightlike
UIR’s in that sequence, since that is the way the complexities increase. It will be seen
that from the topological point of view, the lightlike case is the most intricate. Section 4
is devoted to a summary of our results and some remarks.

2. Representations of the Euclidean group

In this section G will be the (two-fold) covering group on the Buclidean group E(3). It is
the semidirect product of SU(2) by the group T (3) of translations in three-dimensional
space: :

G=SUQ2)x T (3). ) (20)
A general element in G is

g9=(u, a),

ueSU(), 2eR?, 1)
and the composition law 1s

(', a") (u, a)=(u'u, a’ + R(u)a). @)
The rotation R(#)eSO(3) determined by ueSU(2) is d@ﬁned as usual by

uo xu~ =0 R(Wx, : (23)

where o is the set of Pauli matrices and x is a real three-vector.
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The subgroup H <G is the semidirect product of U(1) by 71(3), where U(1) is the
diagonal sub-group in SU(2):

]

U(1)={h(9)='exp(§ea3> / o<9<4n}cswz),

 H=U(1)x T®)={(h, a)/heU(1),acR?}. (24)

(Note that we have departed from the notation in the introduction and are using h for
an element in the homogeneous part H, of H, rather than in H; this is convenient and
adequate in dealing with E(3) as well as with 2 ). Therefore the coset space &= G/H is

5 SUQ) x T(3)/U(1) x T(3) ~SU(2)/U(1) = $2. (25)

Thus the general point peX can be taken to be a real three-vector p of fixed (say unit)
length. The distinguished point p® is the “north pole” of §*

p=(0,0,1). ' @26
This corresponds to setting up the cénonical map n:G—Z by the rule
n: (u, a)eGéuag,u*l:o'-p, peS2. 27

The (left) action of g=(u, a)e G on X amounts to rotating p by the homogeneous part u
of g: :

p’'=gp=R(u)p, independent of a. (28)

This can be seen by writing out the subset of elements of G making up the coset goH for
some g,€G, and seeing how this subset changes upon left multiplication by g.

For the inducing procedure one takes the space ¥~ to be one-dimensional, and the
UIR D(*) of H to be

(W), a)—exp(imf +1ia-p?),
m=0, £1/2, +1,.... : ~ ”

The representation U(-) of G that results is irreducible. It is characterized by helicity m,
and magnitude of momentum equal to unity. Here the momentum operators are

1identified, as usual, as the hermitian generators p of the translations T (3)<=G.

For all practical purposes, in dealing with the topological aspects and considering
choices of R, , [, , (p), etc., one can restrict oneself to the homogeneous parts G,, H, i.e.
SU(2), U(1) of G and H. Thus I, ,(p) can be chosen to lie in SU(2). Since SU(2) is a
nontrivial U(1) bundle over $2, we do need (at least) two open subsets R,, R, of T =52
to avoid singularities in /(p). Now the action of H, on X is seen from (28) to consist of
rotations about the z-axis. As in the Wu-Yang treatment of the monopole problem, we
therefore choose

R,=82—-{(0,0, - 1)},
R,=S2—{(0,0, 1)}. : | (30)
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This secures invariance of each of R,, R, under H,, action. Therefore it is meaningful to
ask for [,(p)eSU(2) for all peR, such that

L(pp®=p, (a)
L(HOP)=HOLHO ™, 0<b<dn.  (b) (31)
As is known, such [(p) can be found, for example
L(P)=[2(1+p;)]" (1 +p- 003),
PER,. : (32)

We next ask if an [,(p)eSU(2) can be found obeying the same (31(a), (b)) but now for
peR,. The answer is that this is impossible, and for the following reason. Consider the
point (0, 0, — 1)eR,, which has the same (homogeneous) stability group U(1) = SU(2) as
p©. If a singularity-free choice of I(p)eSU(2) over R, were available obeying (31b), then
at p=(0, 0, — 1) we would have

1,((0,0, — 1)) =h(O),((0, 0, — 1))A(@B) "1, 0<f<4n. | (33)

This forces 1,((0, 0, —1)) to belong to the commutant of U(1) in SU(2), which is U(1)
itself. But then [,((0, 0, — 1)) cannot satisfy (31a): -

1,((0,0, —1))eU(1)=
L,((0,0, —1))p@=p?@= (0,0, - 1). L (34)

Thus the twin conditions (31) can be obeyed on R, but not on R,, and it is not possible
to bring the action of U(1) to the simple form indicatf:d in (19).
Under these circumstances, a possible natural choice for l(p) is

lb(p):' la(_p) . iaZa pERb' : v (35)
This is based on the fact that
peR,<>—peR, (36)

and that the rotation R(ic,) carries p®® to —p‘®. With this choice for [(p) we find that
the “transition element” h(p)eU(1) determined by (15) in R,NR, is

hr(p)=1p) " " Ls(p)
=exp(—i¢os)
=h(-24),

¢ =azimuth of peR,NR,. (37
And instead of (31b) obeyed by l,(p), 1;(p) obeys
1, (h(6) p) = h(6) 1, (p) h(0), 0<h<4n. (38)

Therefore if the helicity m UIR of G is set up in the language of sections, the functions
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@a(p), @(p) defined over R,, R, respectively will be related by the transition rule

@y (p) = exp(2ime) @, (p),
¢=azimuth of peR,NR,. (39)
And the effect of U(h(6)) on these sections is

U@ o> =le>

@, (p) = exp(imé) %(R (exp (—E—l- 903) ) p),
@ (p) =exp(—imb) ¢, (R (exp (:21 004 ) ) p). | o (40)

The essential point we have brought out is that it is impossibleuto make ¢,(p) and ¢, (p)
transform identically under the distinguished subgroup U(1) = SU(2), provided m+#0.

We conclude with the remark that in this problem the analogue of the Dirac
quantization condition (1) is that, in order that the transition rule (39) be well defined
and single-valued over R,NR,, m is restricted to the values 0, +1/2, +1, ..

3. Representations of the Poincaré group

3.1 General considerations

The UIR’s of the covering group 2 of the Poincaré group 2 have a greater variety than
in the case of E(3). As shown by Wigner (Wigner 1939; Wightman 1960), they are of
three distinct types: timelike (t), spacelike (s), and lightlike (J), depending on the nature
of the eigenvalues of the energy momentum operators. (We ignore those UIR’s
of 2 where the translations are trivially realized). We write p* for these eigenvalues,
and for convenience we normalize p“p, to —1 m the.t and to +1 in the s cases. (We
use the metric goo= —1). In the ¢ and I cases, p° may be taken to be positive definite.
The group Z is the semidirect product of SL(2, C) with the space-time translation
group T'(4): (our notations for 2 are standard; see, for example, Mukunda 1970):

P=SL(2, C)x T (4). - | (41)

Elements of # and their composition law are:

g=(4, a"e?,
“AeSL(2, C), a*eR%; :
(4', a%) (4, a*) =(A'A, ™ + A(A),a). | 42)

The homogeneous proper Lorentz transformatxon A(A4)eSO(3, 1) determined by A is
fixed by

Ao xt AT =0, A(A)* X"
o x=0,x'=x""1+x0. - 43

A —




Group representations and the method of sections 445

- ‘ Each type of UIR of & is associated with a particular subgroup of SL(2, C).

t: SU(2)={<fu* ;)/,|1|2+|p|2=1};
s: SUU 1)={(A AN = jp2=14;
. > ¥ A* BE=1r

I E(2)={<g ;)/w:l}. | (44)

For the inducing construction, the necessary subgroups of P are the semidirect
products of these subgroups of SL(2, C) with T (4):

H, o 50r=(SUQ) or SU(1, 1) or EQ2))x T (4) (45)
The coset spaces X, , ;=%/H, ,, can be realized in Minkowski space as
z={p"/p"p,=—1,p">0},

_— | | Z={p"/P'P.=1}.. |
¥, ={p*/p"p,=0, p°>0}. (46)

P is a principal fibre bundlé‘ over T, ,, with structure group H, . The canonical
projection map in each case can be given in a manner similar to (27), and once again
only the homogeneous part 4 in the general element (4, a*) is involved:

n: (A, a"e PsA{ or o4 or 14+03)AT=0,p",

p“EEt orsor I3
 pOR=(1,0,0,0) or (0,0,0, 1) or (1,0,0, 1). (47)

The distinguished points p© in the three cases are also listed. The action of
g=(4, a*)e Z on a point p*eZ, ;, involves only 4:

g(A4, a"): p*—>p*=A(A)"p" , (48)

Therefore the stability group of p® in each case is the corresponding H given in (45).

To see when we have a nontrivial bundle structure, it suffices to look at the

* homogeneous parts. The topological structures of SL(2, C), its relevant subgroups and
i - the X’s are: ‘

SL(2, C)~83x R3;

SUQ)~S?, Z,~R%

SU(1, 1)=S* xR?, E,~SxR; | |

EQ)~S'xR?; Z~S?xR. - (49)
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Itisimmediately clear that 2 isa trivial H, bundle over ,, but a nontrivial H, ,, bundle
over X ,,. This is the same as the statement that SL(2, C) is a trivial SU(2) bundle over
¥,, and a nontrivial SU(1, 1) (E(2)) bundle over Z,(X,). Therefore in the s and | cases we
will have to express X as the union of (at least) two open subsets R,and R;, asin the E(3)
case, in order to have singularity-free expressions for the coset representatives (p); but
Z, need not be split up in this way. Even in the t case, however, we can ask if /(p) can be
chosen so as to obey (18) with respect to SU(2).

As in the previous section, we use h, /', . . . , to denote elements in the homogeneous
parts SU(2),...,of H  ,ratherthanin H __.To obtain the various UIR’s of 2 via
the inducing construction, we pick a UIR D(-)of SU(2), . . . in a Hilbert space 7" and
extend it toa UIR of H _ by:

(h, a*)e H—D(h)exp(ia*p?). ' (50)

Here the standard momenta p'® are as given in (47). For the ¢ case, ¥ is of finite
dimension; for the s case, ¥~ is of infinite dimension for a nontrivial D(-); and for the [
case, ¥~ is of dimension one or infinity according as the “translations” in E(2) are
realized trivially or nontrivially.

With this general background we can examine now the three types of UIR’s of 2
from the point of view of the questions posed in § 1. The characteristic variations in the
answers as we look at the cases ¢, s and ! in sequence will be brought out.

3.2 The timelike representations

In this case there are no topological obstructions to the choice of a singularity-free coset
representative /(p) for all peX,, so the method of sections is unnecessary. If D(-)isa UIR
of SU(2) in the space ¥ (of dimension (2s+1) corresponding to spin s), the induced
UIR of Z operates on functions ¢(p) with valuesin ¥~ ,1.e.on(2s+ 1)-component wave
functions @,(p). The inner product is

. ds3
{plp)= f =L o) olp),

5 P
p°=(1+p-p)*”2 . (51)

Correspondingly the (ideal) basis vectors for 3# are Ip, ) and obey
P, BIp, &) = p°6@p' —p)d,. | ‘ (52)
The action of U(4, a) is given by

) D) Al@)yulp'. B,
p=A(A)* p". (53)

The only interesting question is whether | (p) can be chosen so as to satisfy (18):

l(hp)=hl(p)h~1, heSU(). ’ (54
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The answer is well known: the choice
Ip)=02(1+p%]1" "> (1 +0,p% (55)

does fulfil (54). Therefore if we restrict 4 in (53) to elements of SU(2), we have the simple
action '

U (h)|p, o> =; D(h)glp', B>,
p'=R(hp, heSUQ). | (56)

3.3 The spacelike representations

Unlike £, which is topologically like R?, £ has a nontrivial structure. As coordinates
for £, we can use the unit vector peS* and p°eR: then the 3-vector p is

p=(1+(p%»"*p. (57)

We know in advance that I, must be expressed as the union R,UR, of two open,
topologically trivial regions (two will do) to avoid singularities inI(p). The first question
is whether R, and R, can be chosen to be invariant under SU(1, 1). For heSU(1, 1), the
Lorentz transformation A(h) acts on p®, p*, p2 (as an element of SO(2, 1)) and leaves p*
invariant. Therefore we make the choices

R,={p*/p*p,=1p°>—1}, -
R,={p*/p"p,=1,p><1}; (58)

then each of them is invariant under SU(1, 1). The distinguished point p‘®=(0,0,0, 1)
lies in R,. We can now ask for an I,(p) defined free of singularities all over R, obeying

PP =p, (@)
L(hp)=hl,(p)h™", heSU(1, 1)  (b) (59)

It has been shown elsewhere that such I,(p) can be constructed (Mukunda 1970): an
example, strikingly similar to the solution (32) for the E(3) problem, is

b L(p)=[2(1+p3)1" 2 (1 +p*0,03). (60)

)

Next we show by an argument like the one used in §2 that it is impossible to find an
1,(p), smoothly defined all over R,, obeying (59). If such an [, existed, then consider the
point —p©@=(0,0,0, —1)eR, which has the same (homogeneous) stability group
SU(1, 1)=SL(2, C) as p'®. Then at the point — p©@, (59) for I, would lead to:

1,((0,0,0, —1))=h1,((0,0,0, —1))h™*, heSU(1, 1), (61)

ie. 1,((0,0,0, —1)) must belong to the commutant of SU(1, 1) in SL(2, C). But this
1 . commutant is trivial, consisting just of the two elements Z,={1, —1}; which then
means that 1,((0, 0,0, — 1)) cannot carry p©© to —p:

lb((oa Oa Oa - 1))EZZ=>lb((0: Oa O, - 1))p(0)=P(0) # —p(O)' (62)
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The two desirable conditions (59) can therefore be obeyed on R, but not on R,.
Under these circumstances, a choice for I, that suggests itself, in analogy to (35) in the
E(3) case, is: .

L(p)=1,(~p)-io;, peR,, —peR,. - (63)

With this /,(p) the transition element hy(p)eSU(1, 1) can be computed:

hT(P) =l(p)” llb(P)

=la(_;p09 _Pl, _p2$ p3)la(_-p) iUZ

Ap)y  up)
= 11,
(u(p)* z(p)*)ESU(’ )
AP)=(—pi+ip)/(1—p3)*"2,  u(p)=—p°/(1—p3)'7,

PER,NR,. (64) '

The behaviour of I,(p) under SU(1, 1) can also be found; in place of (59), we have:
b(hp)=1,(—hp)-io, |
=h'1(-p)-h™ " io,
=hiyp)e(h?), |
(h)=0,ho,eSU(1, 1). ~ (65)

‘Here, 7(*) is an outer automorphism on SU(L, 1), the effect on a general element being

Ao [ —p*
(¢ ) )

Putting together the above results we see “hat when the spacelike UIR of £, based on
the UIR D(-) of SU(1, 1) on ¥, is described in a singularity-free manner using the
method of sections, each [¢) in # is represented by a pair of functions ¢,(p), ¢,(p)
defined respectively on R,, R, and taking values in ¥"; they obey the transition rule

@5(P)=D(hr(P) "' @u(p), PER,ARy; | 67)
and with respect to SU(1, 1) we can at best achieve
Uh)led>=9':

®2(p)=D(h) @,(h~p),
@5(P)=D(z(h)) @, (h~'p), heSU(, 1). (68)

It is impossible to achieve (19). :
The analogues to (51, 52, 53, 56) can be worked out, but we omit the details.
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3.4 The lightlike representations

The coset space X;, which is just the positive light cone, can be described in three

_dimensions as

%,={p/p°=Ip|>0}=R*—{0}. (69)

It is the omission of the origin from R® that makes the topology of £, nontrivial. Since
SL(2, C) is a non-trivial E(2) bundle over %,, we do need (at least) two open
topologically.trivial regions R, R, with Z; = R,UR,, to avoid kinematic singularities in
I(p). The first question we ask is whether R, and R, can be chosen to be both E )
invariant. Surprisingly, the answer is in the negative.

To see this, we analyse in detail the action of E(2) on Z,. A general element in E(2) is

AU ‘
h~—(0 A*)’ Al=1, peC. (70)

The phase 4 produces spatial rotations about the z-axis, which act very simply on
%,. The complex parameter y is just the translation part, T'(2), in E(2). If we write
u=a, —ia, and treat a, =(a,, a,) as a transverse 2-vector, we find the following action
on a general pFeX;:

h=('(1) | “1“1"’2>eE<2), p' =A(h)p

p®—p¥=p°—p

p% +p¥=p°+p*+2a, p, +(p°~p*)al,

pi=p.+@°—p’aL. | | (71)
In the three-dimensional picture of X, given by (69) we see: each point on the positive z- .
axis is E(2) invariant; each point not on the positive z-axis is either on the negative z-
axis or can be transformed to such a point uniquely by a suitable choice of T @
parameters a, . This motivates the definition of two disjoint subsets of Z;, together
making up X;, in this way:

zl = Zgl) UZ.P)’

AT =4;

£0={(0,0,x)/x>0},

T ={(p., ps)/cither|p, | >0 or p, =0, p;<0}. (72)
In the Minkowski sense, (" and Z{¥ correspond respectively to p®—p>=0 and
p®—p?®>0; so each of them is E(2) invariant. However, while {? is an open subset of

T, M is not, and this is the source of the problem. Four-vectors p*eZ{! are
individually E(2) invariant:

preX®ept=kp @ =(x, 0,0, 9, k>0, (73)
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On X{* however E(2) acts nontrivially. From (71) we see that the choice

a,=-p,/(p°~p? (74)
gives a T'(2) transformation that carries p*eX( into
pfﬂz%(po__p.'i’ 0: 07 Pa“PO)‘ (75)

Conversely, startihg with (x, 0, 0, —x) for k>0 we can get any desired value for p,.viaa
suitable 7'(2) element: A

T (2)
(x,0,0, —k)ex® —

p*=((p1+4x)/4x, p., (pF —4x?)/dx), 1>0. | - (76)

Returning to the three-dimensional picture of Z;: each point on the positive z-axis is
E(2) invariant; each point on the negative z-axis expands under E(2) action into a
paraboloid of revolution about the z-axis, with vertex on the negative z-axis, and
opening out in the direction of increasing z. The open E(2) invariant region X{? is just
the union of all these paraboloids: ,

With this detailed geometrical picture of the E (2)action on X, viewed as R3 — {0}, the
claim made earlier can be proved. If %, is the union of two overlapping open sets R, and
R,, each E(2) invariant, then (" must be contained in (at least) one of them, say in R,
(The possibility that only part of (! is in R, can be handled in a manner similar to the
ensuing argument). Since R, is open, some open region surrounding X{! must also be
contained in R,. By the E(2) action, since R, is assumed to be E(2) invariant, some open
collection of the paraboloids of revolution, forming an open region containing T (",
must be in R,. But that means that R, is topologically nontrivial, since the origin
is excluded. In other words, R, has the same degree of topological nontriviality as
[RP—{O}, if not more. That is, the bundle cannot be trivialized over R,. Any local
trivializations of the bundle must use topologically trivial open sets R, and R, of which
at least one is not E(2) invariant. ‘

In view of the above result, let us accept the choice of topologically trivial open
regions R,, R, according to

Ry={p"/p*p,=0,p°>0,p°—p*>0},

R,={p*/p*p,=0, p°>0, p°+p*>0}. (77
We do have X,=R,UR,, and | |

PeER,NRy<=p, #0. (78)

The open set R, is £(?, and is E(2) invariant. However R,, which contains Z{" and in
particular the distinguished point p'¥=(1,0,0,1), is not E(2) invariant. Coset
representatives /,(p), /,(p) can be chosen smoothly over R,, R, respectively. While for
l,(p) such a question cannot be posed, for I,(p) we can ask whether it can obey

L(hp)=hL(p)h™", heE(2). | (79)

It turns out, however, that this is impossible! R, contains four-momenta of the form
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(x, 0, 0, —x) for all x> 0. If a smooth choice of ,(p) over R, obeying (79) were possible,
we could take p=(x, 0, 0, —k) and he U(1) in (79) to get: :

la((Ka 0’ 0: - ’C)):eXp (% 60-3 ) la(('Cs Oa 09 - K))exp ('__21 903 )7

0<0<4m. v (80)

This restricts [, ((x, 0, 0, —x)) to be diagonal, and so some spatial rotation around the z-
axis followed by a pure Lorentz transformation in the z-direction; it cannot then take
p@=(1,0,0, 1) into (x, 0, 0, —k)!

We have thus the result that (79) cannot be obeyed in the E(2) invariant region R, of
¥, over which it can be meaningfully posed. One can also see that a change in the
specific choice of R, will not help: any open E (2) invariant region in X, will contain an
open collection of the paraboloids of revolution, which then include some momenta of
the form (k, 0,0, —k), and the argument based on (80) will again apply. We must
therefore content ourselves with smooth choices of I,(p) and [,(p) over R, and R,,and a
computation of the transition element in R,NRs. No simplification in the action of E(2)
on the individual sections along the lines hoped for can be achieved, though the reasons
for R, and for R, are quite different.

The following are possible choices for coset representatives over R, and Ry:

L(p)=[2(p°—p*)] 2 (A1 +03—p-0)os, p°—p*>0;
L) =[20°+p*)]1""* (A —a3+p-0), p°+p*>0. (81)

We find that this particular choice of I,(p), while it cannot obey (79), does obey an
equation with respect to E(2) involving an outer automorphism ¢’ on E(2):

L(hp)=hl,(p)7 (h™*),
=0,k Mo, =h* heEQ). (82)

Finally, we calculate the transition element hr(p)eE(2):

hT(p):'la(p)—llb(p)
=</1(p) 1) >
0 A@* ’
%(p)=(—pz+ip1)/lpl|, | ,
wp)=2i(1 —p3)/ipLl, PERNR,. (83)

Since by (78) p, does not vanish in the overlap, hr(p) is well-defined.

Putting together the above results we have the following picture. If we start with a
UIR D(-) of E(2) in a Hilbert space ¥~ and the standard momentum p@=(1,0,0,1),
and by the inducing construction build up a lightlike UIR of &, then an element
|@Ye # corresponds to the pair of functions @,(p), @,(p) defined over R,, R, and with
values in #". The transition rule is the same in appearance as (67) in the spacelike case,



452 Biswadeb Dutta and N Mukunda

but with the definitions of R,, R, and hy(p) appropriate for the lightlike situation.
Under the action of an element of E(2), we have:

U(h)| @d=1g":
@a(p)=D(@'(h)) p,(h™*p), heE(2). (34

For @), we have no simple formula since E(2) does not leave R, invariant; in fact ¢,
involves both @, and ¢, reminding one of the indecomposability of the lightlike
representations of 2 found in another context (Matthews et al 1974).

4, Concluding remarks

Motivated by the quantum mechanical description of states in the field of a magnetic
monopole, we have analysed the UIR’s of the (covering groups of the) Euclidean group
E(3) and Poincaré group 2, to see how kinematic singularities can be avoided
in the wave functions occurring in these UIR’s. We have answered the following
questions which come up naturally when these UIR’s are constructed by the inducing
procedure: ‘ v

(a) Inthose cases where the group G(E(3) or # )is a nontrivial principal fibre bundle
on the relevant coset space £=G/H, what are natural choices of open topologically
trivial regions of X over each of which the bundle can be trivialized?

(b) Can each of these regions be chosen to be 1nd1v1dua11y invariant under H,, the
homogeneous part of H?

(¢) Inthe UIR of G that results by inducing, starting from a UIR D(h) of H, can the
action of elements of H, be made as simple as possible and to involve D(h) itself? Can
the choices of coset representatives be adjusted to achieve this?

Leaving aside the case of E(3), the UIR’s of 2 have been found to behave as follows:
In the timelike representations, as is well known, the bundle is trivial, and globally
smooth choices of coset representatives /(p) do exist. Moreover I(y7j can be chosen so
that for elements he H,=SU(2) the Wigner rotation is not momentum dependent.
Then the UIR D(h) of SU(2) used in the inducing construction directly describes the
SU(2) behaviour of wave functions. For spacelike representations, two regions R, and
R, in X are needed, as in the monopole and E(3) problems, and we can choose them to
be individually SU(1, 1) invariant. Over R, the coset representative [,(p) can be chosen
to have the simplifying property (18); the one over R, cannot. The lightlike
representations show further complexity. Two regions R,, R, are needed to trivialize
the bundle, but of these only R, is E(2) invariant. Moreover, even on R, we cannot pick
a smooth coset representative I,(p) obeying (18). Thus from the view point of this paper
we see a gradual increase in the intricacy of the topological structure and group
theoretical behaviour as we go from ¢ to s to .

We have not given general formulae, in the s and | cases, for the effect of a general U(g)
on ¢, and ¢,. One expects a mixing of these sections, easy in principle, but tedious in
practice to work out. For a comparison, the case of monopole harmonics has been
worked out in detail by Wu and Yang. -

Finally we would like to collect together and draw attention to the specific coset

~ representatives we have found in the case of the Poincaré group, for the s and ! UIR’s.
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Including also the well-known choice in the timelike case; the complete list is:

t p)=[201+p9)] (1 +p- 0}

s: L()=020+p3)1""*(1+p-003), p3>—1,
L(p)=[21 —p5)1" 2 (A —p-0s)icy, pa<l;

L Lp)=020°—p)1 @ +0s-p-0)as, PO—p>>0,
L(p)=[20°+p*)1" 2 (A —a3+p-0), p°+p*>0.

It would be interesting to see if there is some general argument leading to such similar
forms in these widely differing situations, which then might be meaningful in higher
dimensions.
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