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A complete classification of the orbits in the Lie algebras of all the real
orthogonal and pseudo-orthogonal groups of total dimension not exceeding
five is presented. The classification is carried out using elementary geometrical
methods, exhibiting in a clear way the relevance of the results for a lower
dimensional group in obtaining the resuits for a higher dimensional one. For
each orbit the values of the algebraic invariants are calculated, a represen-
tative element is displayed, and the geometric nature of the latter is described
by listing a complete set of independent vectors invariant under it., While
the orbit structure for the orthogonal groups turns out to be relatively simple,
that for the Lorentz type and the de Sitter type pseudo-orthogonal groups
become progressively complex. Particular care has been taken, in view of the
intricacy of many of the results, to develop a suggestive and systematic nota-
tion. The orbits are classified and tabulated in a form that makes it parti-
cularly easy to apply them in practical physical problems. Examples of such
problems are pointed out,

1. INTRODUCTION

The real orthogonal and pseudo-orthogonal groups of low dimensions play an
important role in a variety of problems of physical interest. Thus, for instance, problems
possesing spherial spmmetry in three dimensions involve the group SO (3) in their ana-
lysis’’2. Physical systems subject to the requirements of special relativity similarly involve
the (homogeneous orthochronous) Lorentz group SO (3, 1), and in suitable kinematical
situations also the important subgroups SO (3) and SO (2.1)*2. The latter subgroup,
SO (2,1), is closely related to the two-dimensional real unimodular group SL (2,R) whiz
is the same as the real symplectic two-dimeansional group Sp (2, R) relevant in Hami-
Itonian mechanics'’®.  Thus SL (2, R) is the group of linear canonical transformations
on one canonical pair of Hamiltonian variables; and as is well-known, there is a two-
to-one homomorphism from SL (2, R) to SO (2,1). Similarly, when one considers pro-
blems involving two canonical pairs of variables on a four dimensional phase space,
the group of linedar canonical transformations is the symplectic group Sp (4, R), which
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is a double covering of the real pseudo-orthogonal de Sitter group SO (3, 2) in five di-
mensions. Physical problems in which SO (2, 1) and SO(3, 2) play a significant role on
account of their relation to canonical transformations are many, among which we
mention here the following as examples : Fourier optics in the paraxial limit and the
related study of ideal optical systems®-8; description and propagation of optical
Gaussian Schell-model beams®!?; squeezed coherent states’’~!® and two-photon coherent
states'®18 in quantum optics; the representation theory of para-Bose operator algebras'®2®
and studies of particles with internal structure®® based on the new Dirac equation®®3.
Of course the relevance of the de Sitter groups SO (3,2) and SO (4, 1) in the context of
certain linear relativistic quantum mechanical wave equations has been long appreci-
ated; thus the tensor and vector matrices associated with the original Dirac equation®?
generate a de Sitter algebra, and a corresponding statement is true in the case of the
infinite component Majorana equations 32 as well as with the well-known Bhabha
equations®.

For most practical physical applications, it is adequate and convenient to work
initially with the elements of the Lie algebras of these groups, and later by a process
of integration or exponentiation to arrive at finite group elements. This is particularly
true in dealing with the linear (unitary or nonunitary) representations of these groups.
In the case of the simplest group SO (3), it is a well-known and geometrically evident
fact that all (infinitesimal) generators are basically alike, differing from one another
only in orientation and overall magnitude. This is the essential content of Euler’s
theorem®’ which states that every rotation in three dimensions leaves one direction
invariant, and so is a rotation through some angle about that direction as axis. How-
ever, when one goes to higher dimensions, or alters the signature of the metric, or both,
the elements of the Lie algebra separate into many essentially distinct types, with quite
different geometrical properties. This situation can be expressed in the following way:
The Lie aigebra G of any one of the groups G under consideration, viewed as a linear
vector space, carries a particular representation of G, namely the adjoint representation.
Two vectors in the Lie algebra, i. e. two infinitesimal generators, which are coanected
by some transformation in the adjoint representation may be regarded as being essen-
tially equivalent and not differing from one another in any intrinsic manner. Starting
with any element in the Lie algebra and subjecting it to all the transformations of the
adjoint representation, one builds up the orbit on which the starting element lies. The
entire Lie algebra G thus splits into distinct and mutually disjoint orbits under the
adjoint action. (Of course all the preceding statements are valid for any Lie group, not
just the ones we are concerned with here).. While for the group SO(3) all orbits in
its Lie algebra SO (3) (except the trivial one) are basically similar in structure, this
is not so in the other cases, and one does find significantly different kinds of elements
and therefore of orbits in the Lie algebra. Examples of this situation are of course
familiar in the context of special relativity, where generators of spatial rotations and
of pure Lorentz transformations are the opposite ends of a spectrum of possibilities.
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It is the purpose of this paper to provide a complete classification of the orbits
in the Lie algebras of all the real orthogonal and pseudo-orthogonal groups of total
dimension not exceeding five. Our aim is to make use of elementary geometrical methods
in obiaining this classification, and also to exhibit in the clearest possible way the
relevance of the the results for a lower dimensional groups in obtaining the results for a
higher dimensional one. We endeavour to derive and present our results in a manner
that makes it particularly easy to apply them in practical physical problems. We shall
be concerned with the orthogonal groups SO (n) for n = 3, 4, 5; the Lorentz pseudo-
orthogonal groups SO (n, 1) for n = 2, 3, 4; and the “de Sitter” type pseudo-othogonal
groups SO (n,2) forn = 2, 3. Thus there are eight groups included in our study, divided
in the above manner into three distinct sets. In some cases, such as SO(3) and possibly
also SO (2, 1), the classification of and the geometrical nature of the elements on each
orbit is well known. Nevertheless, for the sake of completeness and the setting up of
uniform notations, we shall include all cases in the analysis, the familiar ones being
dealt with only briefly.

The material of this paper is organised as follows. [n section 2 the three groups
SO (n) are taken up, in the sequence n = 3, 4,5. For the treatment of SO (4), the
decompositions SO (4) = SO (3) @ SO (3) (locally) and SO (4) = SO (3) & SO (3)
are exploited. Section 3 treats the Loreatz type grous SO(n, 1) forn = 2,3 and 4. In
the last of these, namely in classifying the orbits in SO (4,1), it is necessary in one case
to deal with an E (3) subgroup of SO (4, 1), and its Lie algebra. Section 4 classifies
orbits in the two ““de Sitter” type algebras SO (2,2), SO (3,2). For the former, the
decomposition SO (2.2) = SO (2,1) @ SO (2,1) in exploited. Since the number of dif-
ferent types is quite large in these two cases, the results are presented in two separate
tables (corresponding to ranks 2 and 4 respectively) in each case. The SO(3,2) analysis
involves, in a particular situation, use of an E (2,1) subalgebra. The paper concludes
in section 5 with some general comments.

As mentioned earlier, in order to make the results more transparent and useful
and to clarify the relationships between the structures for different groups, we will ex-
press the orbit classifications for the various groups in a mutually compatible manner.
This means that the notation, in particular the choices of indices labelling components
of vectors, tensors, .. and their ranges, must be chosen judiciously. We now explain
the choices which we shall adhere to throughout the paper. For the two groups SO(3),
SO (2,1) operating on three-dimensional spaces, we use lower case Latin letters a, b, c,
... as indices for components of vectors, tensors, etc. For the three groups SO(4),
SO (3.1), SO (2.2) operating on four-dimensional spaces the lower case Greek letters A,
B, v, ... will be used. For the three groups SO (5), SO (4,1), (SO (3,2) acting on five-
dimensional spaces, the capitan Latin letters A4, B, C, ... will be used. Turning to the
ranges of indices for the orthogonal groups SO(n) the dimensions will be numbered
1,2, ... 3. Thus for SO (3) the indices a, b, ... run over 1, 2, 3; for SO (4) the indices
A, g, ... go from 1 to 4; and for SO (5), 4, B, ...runover 1, 2, ..., 5. For these three
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groups, the metric tensor is just the kronecker symbol 845, Suv or S45. For the Lorentz
type groups SO (n, 1) the dimensions will be numbered O, 1, 2, 3, 4. The metric tensor
g.. will be diagonal and *‘space:like”: goo = — 1, g1 = ... g« = 1. In the discus-
sion of SO (2,1), we will let a, b, .. run over 0, 1, 2; for SO (3,1} we shall have p, v,...
going over 0, 1, 2, 3; and for SO (4, 1), A, B, ... will span the full range©, 1, ..., 4,
For the “de Sitter” type groups SO (n, 2) we number the dimensionsas 0,1,2,3,5
omitting the numeral 4. This is in fact the convention often used in physical problems
where SO (3,2) in relevant. The metric tensor will again be diagonal and “space like”:
oo = 855 = — 1, 81, = go» = &3; = 1. (There is a minor mismatch here in that the
dimension 5 carries a positive signature in the context of SO (5) but a negative signa-
ture in the case of SO (n, 2); however this will not cause any serious problem). For
SO (2,2) we let . v, ... go over 0, 1, 2, 5; and for SO (3,2) we have 4, B, ... going over
the full range 0, 1, 2, 3, 5. With these conventions, the appearance af indices a, b, ...
will immediately signify that we are dealing with ‘‘three dimensional quantities”; whether
the relevant group is SO (3) or SO (2, 1) will be clear from the context. Similarly the
appearance of indices u, v, ... will signify that “four-dimensional objects”” are involved,
and so on. The generic symbol J.. will be a basis element for any one of the Lie alge-
bras : thus Jas for SO (3) and SO (2,1); J.v for SO (4), SO (3,1) and SO (2,2); and Js
for SO (5), SO (4,1) and SO (3,2).In all cases we have antisymmetry in the
subscripts. The components of a general element in the Lie algebra will be §°, with
antisymmetry in the superscripts. Thus the Lie algebra element will be

J(E) = } &% Jup or § E* Ju, or $E47 Jup (L)

with all indices being lowered in the case of SO (n). The quadratic invariant will uni-
formly be denoted by &, (§)

7, (8) = 3 0 Egp or 3 B Euy or 4848 Eup. ..(1.2)

For the cases of groups in four or five dimensions, there is a second algebraic invariant
€& (§) which will be defined at the appropriate places. It is easily constructed once one
realises that, in all cases, the adjoint representation transforms & as a second rank
antisymmetric tensor under the appropriate orthogonal or pseudo-orthogonal rotation
group. Finally the symbols e ep, e4 will be used for a basic set of mutually orthogonal
unit vectors in three, four or five dimensions respectively; while the letters ¢,/
and s (relevant only for the SO (n, 1) and SO (n, 2) analyses) will stand for general
“timelike” “lightlike”” and “‘spacelike” vectors.

2. Orpirs IN THE L1 ALGEBRAS SO () n, = 3,4, 5
The generators Jas of SO (3) obey the familiar Lie bracket relations

[Jab, ch] =8¢ Jod —8’,‘, Jad + sad Jeb —3ed Jea, a, b, = ],2, 3. ...(2.1)

The Lié relations for SO (4) and SO (5) (indeed, for any‘SO (n)) are similar, with a, b,
¢, d replaced by g, v, P, o or 4, B, C, D and the ranges of the indices suitably extended:
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they need not be written down explicitly. We now briefly review the orbit structure in
SO (3), then take up the cases of SO (4) and SO (5).

SO (3) A general element in the Lie algebra is as in eqn. (1.1)
J(E) = % Eab Jab. .(2.2)

With the use of the three-index antisymmetric symbol, both Jas and §as can be replaced
by single index “vector” quantities

Ja = % €ape Joe, G0 = % €apc Ebc;
Jap = €abe Je, Eap = €ape E.c;
J (&) = & Ja. ...(2.3)

We treat £q as the components of a three-vector E. In terms of Ja, eqn. (2.1) takes the
familar from
[Ja, Jb] = €gbe Jc. ...(2.4)

The quadratic invariant &, (€), the only one in the case of SO (3), is the squared length
of E:
G (E) = 12‘ Bab Eap = Ba8a = l g ‘ 2 (25)

If 36 is a small parameter, the effect on a general vector z. of an infinitesimal
transformation generated by J (§) is

8 20 = 80 Eap 25 = — 30 (Ep 2)a. (2.6)

Thus E itself is invariant under the rotations generated by J (£). This can be understood
as a matrix property which we later generalise to higher dimensional groups. The three-
dimensional real antisymmetric matrix (§as) is necessarily of rank 2, since we exclude &
= 0; it therefore has exactly one null eigenvector, namely § itself, which is therefore
invariant under the rotations generated by J (§)®*.

The adjoint action of SO (3) onE, asis well known, amounts to subjecting  to a
three-dimensional rotation. It is conveniently represented via the spin 1/2 representa-
tion of SO (3), which also leads to the defining representation of SU (2). Init, the
generators J; are the Pauli matrices :

Ja = :25 6y a= 123, X))
J (€) is a general traceless antihermitian 2 X 2 matrix :
JE) = ‘2—’ £ a. (2.8)

For any U € SU (2), the adjoint action changes § to &' in this way :
Ui@®Uut=1JE)

., = Rap (U) &. ..(2.9)
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Here R(U) € SO(3) is the image of U € SU (2) under the homomorphism SU (2) —
SU (3). Thus the orbit of § consists of all £’ with the same (squared) length as §. We
can therefore label obits in SO(3) with a positive nonzero parameter u: the orbit #; (1)
consists of all J (§) for which

¢y ()= |82 =1u ...(2.10)

This is a sphere $? in the 3-dimsnsional § space. A convenient representative element on
#3(u) is the positive multiple uJ, of J;,. This element can be characterized geometrically
by the statement that under therotatious generated by it, the single vector e, is in-
variant. This reflects the fact that the rank of the matrix (8) is constant over an orbit,
and so is 2 at the representative point wJ;,. All these properties for SO (3) can be
summarised in a table which sets the pattern for presentation of results in other cases:

SO(3) Orbit structure :

Rank () Orbit Parameter Invariant Representative Invariant
range €1 (§) Point vector

2 B, (u) >0 u? ulys €

SO (4)

With the index conventions explained in the Introduction, a general element of

SO (4) is written as

J(E) =} Epv Juv . 2.11)
the subscripts taking the values 1,..., 4. It is convenient to define three-component
objects and quantities in the following manner :

Jo = }eane Joe, K, = Jya;

€a = % eabe Epe, Ma =&ja. (2.12)
(Of course, the latin subcripts here go over 1, 2, 3). Then the basic Lie relations of
SO(4) are :

[Ja, Jb] = [Ka, Kb] = €abe Jo,

[Ja, K] = €anc K. ..(2.13)
If now we define the combinations

M, = i(-’a -+ Ka)

Na = 3 (Ja — Ka) ~.(2.14)
the familiar SO (3) @ SO (3) structure of SO (4) emerges :

[{Ma, M) = €apc M,

[Na, Nb] = €gbe Nc,

[Ma, Nbo) = 0. ...(2.15)
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Therefore the results of the orbit classificatian for SO (3) can be used to tackle the
SO (4) problem.
The general element J () € SO (4) can be written in the forms
JE) =EJ +nK
=a M+ £ N,

wa = &a + 74, Bu = & — 7a. ...(2.16)
The invariant ¢ (§) has the value

G =8B =18+ [n|2=3(ja|*+ [B] ..(21D)

Since SO (4) is a group of rank two (as is SO (5)), there is a second algebraic invariant
which can be obtained with the use of the four index antisymmetric symbol :

3 (B) = — § €uvpo Epv Epe
—Em=1(lal®- (B2, - (2.18)

This invariant is related to the rank of the 4 X 4 antisymmetric matrix (£,.): in fact
one finds

A (E) = det (Epv) = (E 7])2
= (¢ B) ..(2.19)

Now the rank of (§,v) is either 2 or 4,since we exclude £uv = 0. Therefore the vanish-
ing of . (§) corresponds to rank (£xv) = 2, and a nonvanishing &, (¢£) implies rank
(8xv)=4. The rank in turn determines the number of independent vectors in four-space
invariant under the infinitesimal rotations generated by J (§). On a general four-vector
z,, this rotation acts as

82;1 == 80 EF‘V Zy. ..(220)

We see: if ¢, = 0, there are two independent vectors which are both invariant
under the rotations (2.20), and without loss of generality they may be assumed to be
orthonormal ; if ¢, = 0, there are no such vectors.

On account of the local SO (3) ® SO (3) structure of SO (4), the effect of the
adjoint action is to subject the two three-component quantities «., a to independent
SO (3) rotations. With this remark and the results of the SO (3) analysis, we can
immediately classify the SO (4) orbits. Given an element J (E)& SO (4), there is a unique
element on its orbit having the form |a | M3 + | B | Ny, Here |« | and | 8 | cannot
both vanish. J (§), and with it all the elements on its orbit, can be characterised as be-
ingofrank 2 if | @ | = | B | ; otherwise they are all of rank 4. Rewritten in terms of
the original Juv, the above mentioned representative eclement is®.

ja | My + {BINy=uJy, + ' Ju,
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u=4(lal+|B])>0,
Ww=4(la| - |B)uziu]. (2,21

Now, the rank 2 case corresponds to vanishing #’. For such orbits we see that ¥ > 0
is a single labelling parameter, and the choice of representative element is such that e;
and e, are both invariant under the rotations generated by it. On the other hand, the
rank 4 case corresponds to u’ # 0, and the rotations generated by uJ,, + u'Js; definitely
alter every non-zero four-vector. These results can be summarised as follows :

SO (4) Orbit structure :

Rank (§) Orbit Parameter Invariant Invariant  Representative Invariant

ranges @1 (8) @, (B) Point vectors
2 ¥, (w) u>0 u? 0 ulip e, €,
4 P u)uz|u| >0 +ur w s 4-u'Jy, —_—

The following remarks can now be made concerning these results. The problem
of classifying the rank 2 orbits of SO (4) reduces easily to a problem at the level of the
SO (3) which generates the canonical SO (3) subgroup in SO (4) acting on the dimen-
sions 1, 2 and 3. This is because on any such orbit one can always find representative
elements for which one of the invariant vectors is e,. On restricting oneself to this
part of the orbit, the further classification depends only on the already available
SO (3) results. On the other hand, the rank 4 orbits in SO (4) are quite new in the
sense that they cannot be reduced to a problem within the SO (3) algebra correspond-
ing to the canonical SO(3) subgroup of SO (4); they may be thought of as characteristic
of SO (4), notwithstanding the fact that the local SO (3) ® SO (3) structure of SO (4)
simplified matters. The table of results for SO (4) also shows that the values of the
algebraic invariants ¢ (§) and & (§) together determine the orbit to which J (§) be-
longs. (Note that they are restricted by &, > 2| ¢2]). In the rank 2 case, when
%, = 0, &1 determines ¥ and the statement follows. In the rank 4 case, &, and &, do
determine v and u" individually because of thc restriction # > | 4’ |, and the state-
ment again follows.

SO(5)
A general element of SO (5) is

J(&) = } &ap Jus, we(2.22)

with the indices going over 1, 2, ..., 5. The infinitesimal SO (5) rotations produced by
this generator alter a general vector z4 in the standard manner:

824 = 80 Bus Zg. (223)
The first algebraic invariant is
€1 (E) = 4 Ean Eus. ...(2.24)
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The rank of the matrix (£48) is either 2 or 4; correspondingly the number of indepen-
dent null vectors of this matrix, equivalently vectors invariant under (2.23), is either
3 or 1. Thus for any J (§) there is at least one invariant vector. In constructing the
second algebraic invariant & (£) we are led to a possible invariant vector defined in
terms of E4p itself. Since with SO (5) we have a five-index antisymmetric symbol, we
define the five-vector

4 = % eancpr Ebc EpE. ...{(2.25)
It is an easily checked fact that
Eap i = 0. ...{(2.26)

Therefore, whenever {4 does not vanish identically, it provides us with one vector in-
variant under (2.23). The second algebraic invariant is the squared length of 1 :

€2 (€) = Cala. ... (2.27)

In the case when rank (§45) = 2, let us denote a preliminary choice of three in-
dependent null vectors of (E4s) by ¢” m = 1,2, 3, and set up the matrix of inner

products
(M) = (€ €)= (e™, o), -(2.28)

This three-dimensional real symmetric matrix is positive definite because we are deal-
ing with SO (5) rather than SO (4, 1) or SO (3,2). Now by an SO (3) transformation
acting on the indices m, m’, and therefore amounting to a different choice of the em,
we can diagonalize M, when its nonzero entries become all strictly positive. By a further
renormalization of its eigenvetors, it can be seen that M becomes the unit matrix. This
argument shows that without loss of generality the three invariant vectors under the
transformation (2.23) can be chosen to be othonormalt®.

With the help of the above result, the analysis of rank 2 orbits in SO (5) be-
comes quite easy. Let some J (§) € SO(5) of rank 2 be given. By means of suitable
SO (5) transformations we can pass to those elements on the orbit of J (8) for which the
three invariant vectors are es, ¢, and e;. Such elements must be of the form uJ;,, u7%0,
where | u | is fixed by the value of &, (¢). This is similar to the SO (3) situation.
Since the elements uJ;, and —uJ,, can be connected to one another even within SO (3),
it follows that we can restrict u to be strictly positive in choosing «J;, as an orbit repre-
sentative for rank 2 orbits of SO(5). On the other hand, no further reduction in distinct
orbit representatives is possible even with the greater freedom of transformation available
with SO(5) as compared with SO (3);i. ¢. as one can quite easily convince oneself, two
elements uJ,s and u'J,, with u, ¥’ >0, us£u’, cannot be connected to one another by any
SO (5) transformation. At the representative point uJ,s, the only nonzero component
of E4n is E1,=u; so {4 =0 identically at this point and consequently also at every point
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on every rank 2 orbit. This result may in a sense have been anticipated : if {4 were not
identically zero, it ““would not know which of the three independent invariant vectors”
it should be. As with SO (3) and SO (4) the present rank 2 orbits will be denoted as
5 (u).

The classification of rank 4 orbits is slightly more intricate. Let an element J (§)
€ SO (5) of rank 4 be given. The matrix (§45) has just one nonzero null vector. Using
svitable SO (5) transformations we can pass to elements on the orbit of J (£) for which
the invariant vector is e;, Such elements therefore belong to SO(4), the Lie algebra of
the canonical SO (4) subgroup of SO (5) acting on the dimensions 1, 2, 3, 4; and more-
over they are of rank 4 within SO (4), meaning that there is nonontrivial combination
e,, €,, €3, ¢, annihilated by any of them. Now from the SO (4) results we know that
with the help of transformations within SO (4) we can find among the above elements
on the orbit of J (§) some of the form w/,, + v'Jys withu == | u' | > 0. FHowever,
since an SO (5) orbit could be larger than an SO (4) orbit, two distinct elements of the
above form which cannot be connected within SO (4) may possibly be connected
by some SO (5) transformation. If this happens, the concerned SO (5) transfor-
mation must take e¢; into — e;. The point being made is that while in the first in-
stance, by arranging the invariant vector to be e;, the problem is brought down to the
level of rank 4 SO (4) orbits, in thereafter using the SO (4) results one must take
account of the fact that SO (5) is larger than SO(4'. In this way one sees that, say by
a rotation of amount = in the 4-5 plane, the elements uJ,» + u J,3 and u/,, — u'J; are
on the same SO (5) orbit. Thus unlike the SO (4) case, we may here restrict the
parameters by u > u’ > 0; the corresponding orbit in SO (5), denoted #; (u, u’), is of
rank 4 with unique representative element wJ;2 + ©'J,3. At this point on the orbit, only
E1, and 43 out of £4p are non-zero; correspondingly, s = — uu' is non zero, while
the other components {u = 0. This is consistent with our arranging the choice of
orbit representative so that the invariant vector is e;. The general conclusion to be
drawn is that at every point J (§) on a rank 4 orbit, the five-vector {4 does not vanish,
and is the single vector annihilated by J (£). The final results for SO (5) are thus as
follows :

SO (5) Orbit structure :

Rank () Orbit Parameter Invariant Invariant Representative Invariant

ranges ¢ (8) @, (§)  Point vectors
2 s (u) u>0 u? 0 . ey, ey, 5
4 Psuu) uzu >0 u*+u uwu'? uly, + u'lg e

Several points are worth noting. All results for SO (5) are obtainable on making use
of the previously obtaned results for SO (3) and SO (4), provided one pays attention
to the extra freedom of transformation available within SO (5) as compared to SO (4).
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As with SO (4), the vanishing here of the algebraic invariant ¢, (§) unambiguously
signifies that the rank is 2. The restriction on &) (§) and &, (€) in the SO (5) case are:

¢1>0,@, >0, G > 2vG. .(2.29)

We see that ¢/, () determines u in the rank 2 case, while &, (§) and & (§) determine
u, w' unambiguously in the rank 4 case. Thus the values of the algebriac invariants fix
the orbit to which J (§) belongs. The manner in which the SO (4) results helped sim-

plify the SO (5) problem sets the pattern for similar simplifications in the SO (n, 1) and
SO (n, 2) analyses,

3. ORBITS IN THE Lie ALGEBRAS SO (n, 1),n = 2,3, 4

A basis for SO (2,1) is given by three elements Jop = — Joa, a,b=10,1,2,
obeying the bracket relations

[Jab, Jedl = gac Joa — Zoc Jed + 8ad Jeb — 8sd Jea. ..(3.1)

The diagonal metricis goo = — 1, g1 = & = 1. For SO (3, 1) and SO (4,1) we

replace a, b, ¢, d by p, v, P, o and 4, B, C, D respectively, and extend the metric tensor
with g3z = g,, = 1. For the pseudo-orthogonal groups indices must be raised and

lowered using the appropriate metric tensor, and the antisymmetric symbol is de-
fined by

€12 = €123 = €gya3y = L. ...(3.2)
SO (2,1)
A general element of SO (2,1) is
J(E) = &% Jap. (3.3)

Since the dimension of the space is three, as with SO (3) we can use easc to replace Jop
and £.s by single index objects:

Jo = § eapc J¥, 8o = — } €anc £

Jap = — €ape J¢, Eab = eanc §°. - (3.4
The relative signs are adjusted so that J (£) has a neat form :

JE) = & Ja. ...(3.5)
In terms of Ja, the bracket relations (3.1) are

Vo, Js] = €ape Je. «e(3.6)

Under the adjoint action by SO (2,1), when £% transforms as a second rank antisym-
metric tensor, £2 transforms as a three-vector because eas; is an invariant tensor. The
quadratic invariant &, (€), the only algebraic invariant in the SO(2,1) case, is

€1(8) = 180 & = — E°8a (3.7
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The rank of the matrix (£a5) must be 2, which means that under infinitesimal
Lorentz transformations

S za = 8E, 20 ...(3.8)

there is just one invariant vector. This is §¢ itseif since
& &b =0 ...(3.9)

As long as J (£) is non-zero, so is £% and J (§) generates Lorentz transformations “about
Ee as axis”. The adjoint action can be explicitly realised via the 2 x 2 matrix repre-
sentation of SL (2, R), as in the SO (3) case. In this representation we have, for in-
stance.

Jo - %cz, J > by, Jy—>} o .(3.10)
so J (£) is a general real traceless 2 x 2 matrix :

J(E) = % (8% io, + &' o, + E* ca). ..(3.11)
Then for S € SL (2, R) we have

SJIE)S?=J(E)

e = Q7 4(S) &b, we(3.12)

where A (S) € SO (2, 1) is the image of S € SL (2, R) under the homomorphism
SL(2, R) - SO (2,1).

We see from this discussion that, since there are three qualitatively different kinds
of vectors in a 2+ ! space, there is a similar number of qualitatively different orbit types.
If J (E) with a timelike £ is given, the orbit of J (§) consists of all J (£') with £ having
the same Lorentz square as £%, and £'° the same sign as £°. Similar statements can be
made for the cases when &¢ is lightlike (positive or negative). When §2 is spacelike only
the same Lorentz square is required. Thus each nontrivial orbit can be distinguished
by a symbol ¢, / or s in these three cases. Further, in the 7 case, the representative
point on the orbit can be chosen as §'¢ = (u, 0, 0), u * 0;in the ! case we can arrange
E'e=¢€(1,0,1), e= = 1; and in the s case, £7 = (0,0,v), v > 0. At these
representative points the invariant vectors are respectively e, €, + €, and e,.

A table presenting all the distinct orbits in SO (2,1) can be drawn up based on
these results :

SO (2.1} orbit structure ;

Rank (§) Orbit Parameter Invariant Representative Invariant
range &, (E) Point vector
2 By, (1; 1) usx0 u? ulyy e,
2 By, (I; €) e = 41 0 €« (Ji2 + Jio) e + e,

2 B (53 v) v>0 —v2 vJyo e,
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The “‘arguments” of #,,, (...) in the various cases are self-explanatory. In comparison
with the SO (3) table, there is an expected increase in complexity. In particular we see
that only when ¢1 (£) is negative does it uniquely determine the orbit to which J() be-
longs. Incase ¢, () > O, this algebraic invariant cannot determine the sign of ¥ or
¢, as the case may be.

SO (3,1)

In handling this case we can follow the SO (4) pattern to the extent possible and
deal with three-dimensional quantities by breaking up £,y and Juv; we can also exploit
the simplicity of the defining two-dimensional spinor represention of SL (2,C), as was
done with SO (3) and SO (2,1). In the sequel both approaches will be used and related
to each other. Concerning the index conventions, since in this Section dealing with
the SO (n, 1) groups the Latin indices a, b, ...run over 0, 1, 2, we shall use indices /, k,
... to go over the range 1, 2, 3 covering the “‘space” dimensions

In terms of £, and J.v we define

Jy =4 € Ju, K; = Jyp;

&= % e &y, my = &jo ..(3.13)
Then the general element J (§) € SO (3,1) and the Lie brackets are

J(E) =4 B Juy = EJ + nK;

WV il = — K, K] = e;u Jy,

[Jjs Ki] = €jut K. ...(3.14)
The two algebraic invariants are

E1(E) =388 =18 —[nl?

€2 () = § €uvpo L*W EPT = E. M. ...(3.15)
The infinitesimal Lorentz transformation generated by J () :
dze = 80.5 * v.z¥ ..(3.16)

is characterised by the 4 x 4 antisymmetric matrix (.v) whose rank is either 2 or 4.
The rank can be related to &, (%) since

A (B) = det (§,) = Em)* = (&, (O))* .(3.17)

Thus vanishing &, (§) means rank (§,.v) = 2, and there are then two independent
vectors invariant under (3.16): nonvanishing &, () means rank (§,v) = 4, hence no
invariant vectors.
At this point we introduce the two-dimensional spinor representation of J,.:
-1 1

Jy= 505 K= — 595

2 (equation eontinued on p. 104)
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IO =-1LE-ins. . (3.18)

So J (§) is a general complex traceless 2 x 2 matrix. Adjoint action by SL (2,C), which

is the same as by SO (3, 1), amounts to subjecting J (£) to a similarity transformation:
for any S € SL (2, Q),

SE-—in.cS!=(E ~in)e .(3.19)

In searching for the ‘‘most natural” form into which J (§) can be put via the adjoint
representation, we can therefore use the results of the theory of the Jordan canonical
form of a matrix. Remembering the tracelessness property, this allows for two possi-
bilities: (i) J (§) can be diagonalised, with nonzero equal and opposite generally complex
eigenvalues; (ii) J (§) cannot be diagonalised, but can be put into the upper triangular

Jordan from (g - 0 ) . These two distinct possibilites can be partially correlated
with the classification based on the rank of (§uv), since in the spinor representation

1

detJ(®) = — det—m).o= 5 & @ — ;

@, (). ...(3.20)
Therefore possibility (1) with diagonalisable J(£) must correspond to at least one of
¢, and &, being nonzero; while possibility (ii) implies ¢, = &, = 0. Only in the
latter case can the definite statement be made that rank (§xv) = 2;in the former case,
we can have both values 2 and 4 for the rank, according as 7, = 0 or 5 0.

With this preparation, we can proceed to analyse and classify first the rank 2
orbits in SO (3,1). Let J () be given with &, (§) = 0. By adapting the argument given
in Section 2 in connection with SO (5), we can assume without loss of generality that
the two independent null-vectors of (xv) are mutually orthogonal, and each of them is
normalised to 4 1 if it is not a light-like vector. Ina 1l 4+ 3 space with signature
— + + - there are three distinct possibilities for this pair of vectors : is ts, Is or ss. Thro-
ughout an orbit one and the same possibility is realised. There is therefore at least one
spacelike vector invariant under J (£). Using suitable SO (3,1) transformations, we can
pass to those elements on the orbit of J (§), each of which leaves es invariant. Such
elements therefore are linear combindtions of Jas, @, b = 0, 1, 2, and to further analyse
them the SO (2,1) results can be used. These now tell us that one of the following
three mutually exclusive possibilities must occur : (i) there are elements wJy,,, ¥ # 0, on
the o1bit of J (§), for which e,, e, are the two invariant vectors, realising the configur-
ation 7s; (ii) there are elements e (J,, + Ji0), ¢ = & 1, on the orbit of J (£), for which
e, + ey, e3 are two invariant vectors, corresponding to the configuration Is; (iii) there
is an element vJio, v > 0, on the orbit of J (E), which leaves e,, e; invariant and realises
the configuration ss. Obviously in case (i) the value of &, (€) fixes | v |, and we can
use the extra freedom available in SO (3,1) as compared to SO (2, 1) to achieve u > 0;
in case (ii) both &, and &, vanish, and in case ¢ = — 1 it can be converted to + 1 by
a rotation of amount » in the | — 3 plane; in case (iii) &, (§) determines v > 0 unam-
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biguously. Of these three cases, we can recognise that case (ii) is precisely that possibility
encountered among the Jordan canonical forms when J (§) could not be diagonalised.
Since in cases (i) and (iii) &, (£) is nonzero, these are included among those Jordan
canonical forms wherein J (§) could be disgonalised. (Note that through J,, = 4 g, is
not diagonal, it can be diagonalised). This completes the classification of and choice
of representative elements from the rank 2 orbits of SO (3,1).

Now we consider the rank 4 orbits consisting of J (§) with &, (§) #% 0. Here we
can immediately use the results of the Jordan canonical forms : since by eqn. (3.20)
det J (&) is nonzero, J (§) can be diagonalised. Therefore on the orbit of J (£) there cer-
tainly are elements which in the spinor representation are complex multiples of a3. One
can easily see then that on a given orbit there is a unique element of the form uJ,»+vJys
with # > 0 and v ¥ 0. The values of « and v are unambiguously determined by &, (£)
and &, (8).

Putting together the two sets of results for both ranks. We get the following
table :

SO (3,1) Orbit structure :

Rank (§) Orbit Parameter Invariant [nvariant Representative Invariant
ranges @1 (%) @2 (8) Point vectors
2 San(ts;y)  u>0 u? 0 uldy, o, €3
2 B350 (Is) — 0 0 Ji2 + Jio eo+es, €3
2 Ba(ss;v) v >0 — 2 0 v Jio e, €3
4 Py (u,v) u>0,v£0 1° — 2 uv uJis + uly, —

It is clear that by a combination of geometrical arguments and matrix-theoretical
arguments, the complete results for SO (3,1) emerge relatively easily. It is also clear
that in all cases, the values of &,(5) and &, (E) determine the orbit to which J (¥)
belongs; this contrasts with the situation in SO (2,1).

SO (4,1)

Now we turn to the third and last of the Lorentz type groups to be studied. As
in the case of SO (5), here too since the total dimension of the space is five which is
odd, every generator J (£) has an associated matrix (§45) which has at least one non-
trivial null vector. However whereas with SO (4) such a result essentially reduced the
problen to SO (4) (and in suitable circumstances further down to SO (5)), in the
present case we have a grater variety of possible configurations to consider, due to the
changed metric.

Let us begin by listing those expressions for SO (4,1) which are similar to cor-
responding ones for SO (5) :
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J () = } E4B Jus; ()
G, () = § BB Eup; (b)
L4 = & eancor §BC §PE; ©
¢y (B) = LA, d  3.21)

These are to be supplemented by the identity
Ess L8 = 0. ...(3.22)

Depending on whether the rank of (§45) is 2 or 4, we have three or one independent
invariant vectors. In the former case, a choice can be made such that they are mutually
orthogonal, and if nonlightlike are normalised to & 1. We will find that {4 = 0 when
rank (£48) is 2; and that when rank (£45) = 4, {4 is the sole nonvanishing invariant
vector.

We classify first the rank 2 orbits. The three independent and mutually orthogo-
nal invariant vectors could in principle be of any one of the ten types (listed in dictionary
order) e, ttl, tts; tll, uls; tss; I, lis; Iss; sss. However, in a space with signature
— -+ -+ + 4+, the configurations ¢, ¢, Il cannot occur; i.e., we cannot find two mutually
orthogonal time-like vectors etc. Therefore the only possible configurations for the three
invariant vectors are three in numbers fss, Iss, sss. In every case, there are two mutually
orthogonl (normalised) space-like vectors. We may conclude: if an element J (§) €
SO (4.1) with rank 2 is given, there definitely are elements on its orbit which leave e;
and e, invariant. Such elements belong to the SO (2,1) generating the SO (2,1) operat
ing on indices 012, and so are linear combinations of J.s. Analysis of the rank 2 orbits
is thus related to the SO (2,1) problem, so there are precisely three mutually exclusive
possibilities characterising the orbit of J(£): (i) there is an element leaving e,
invariant, realising the situation fss; (ii) thereis an element leaving ¢, + e, invariant,
corresponding to /ss. (iii) there is an element leaving e, invariant, corresponding
to Iss. Incase (i) there is a unique element /i, u > 0, on the orbit of J(§); the
possibility # < 0 can be changed to 4 > 0 by a rotation in the 1-4 plane. In case (ii)
the element Jy2 + Jio is on the orbit; again the element — (J,, + Jio) goes into
Ji2 + Jip by a suitable 1-4 rotation. Lastly in case (iii)) a unique element v/,
v > 0, lies on the orbit. This completes the catalogue of rank 2 orbits. In all cases the
vanishing of {4 is obvious.

The discussion of the rank 4 orbits brings in a group not encounted in the treat-
ment so far. If a J(£) € SO (4,1) of rank 4 be given, there is just one vector which
it leaves invariant, which is of type ¢, l or 5. In the ] and s cases, the problem reduces
to the subgroup SO (4) or SO (3,1) respectively. However the ¢ case involves an E(3)
subgroup of SO (4,1), which is an inhomogeneous real orthogonal group. We dispose
of the ¢ and s cases first, then take up the / case.
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In case a rank 4 orbit in SO (4,1) is of type ¢, there definitely are elements on it
which leave e,, and no other vector, invariant. Such elements belong to SO (4) generat-
ing the SO (4) group acting on the “space” dimensions 1, ..., 4; and within SO (4) they
must be of rank 4. One can then check that out of them, a unique representative ele-
ment u J,, + u'J,3 withu > | ' | > 0 can be picked and can serve as a representative
element for the SO (4,1) orbit itself. At the representative point the only nonzero
component of {4 is § = — uu’,so {4 is in the direction 4- ¢o. If the rank 4 orbit.is
of type s, then ¢, SO (4) and SO (4) are replaced by e;, SO (3,1) and SO (3,1) acting
on 0, ..., 3 respectively. So elements wJ;. + vy with u > 0, v 5% 0 exist on the orbit.
But since the freedom of rotations is the 3-4 plane in available in SO (4,1), we can find
a unique point on the orbit by requiring both ¥ > 0 and v > 0, Now, the only non-
zero component of {4 is ¥y = uv, which confirms our expectations.

The last case to be examined in SO (4,1) is a rank 4 orbit of type 1. By suitable
SO (4,1) transformations, starting with any element on such an orbit, we can pass to
those elements for which the (single) invariant vector is e,+e,. We must now determine
the general form of such elements J (£), using the property that the matrix (§48) is of
rank 4 and annihilates only z4 = (1,0, 0,0, 1). Among the equations {4z 2% =0
there are four independent ones :

Eos = 0
Ejo=—284 /=123 ..(3.23)
So we can write
JE) = 1848 Uy
=} I + Bjo (Joy + Joy). ...(3.24)

Here, as in the treatment of SO (3) within SO (3,1), the indices /, k, ... range over 1,2,
3. The generators J, P € SO (4,1) defined as

Jj == %ij[ Jkl,
Pj = Joj + J‘j ...(3.25)

obey the brackets relations of E (3), the Lie algebra of the Euclidean group in three
dimensions :

Vi Jel = €pa Ji
[ P = € Py,
[P}, Pi] = 0. ...(3.26)

This is expected, as the stability group of a light like vector in 1 + 4 space is E (3).
Now we must search for the necessary and sufficient conditions on (§48) apart from
(3.23) which ensure that eo + ¢, is the ‘only’ vector invariant under J (§). Let us write
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the J (£) in eqn. (3.24) as

J(E)=EJ + aP,

&) = 3 € ki Eui,

a; = &0 ...(3.27)
The condition that this (§48) annihilate a general z4 is

a,z =0,

Eaz + (2" —z)a =0, ...(3.28)
It is an easy consequence of these equations that

Eaz =0,

Eoa(z® — z4) = 0. .- (3.29)

Now from eqn. (3.28) we see that if either £ or & were to vanish, the desired conclusion
on z4, namely z = 0 and z° = z%, would not follow; hence we must insist that
both & and a be nonzero. If E.o = 0, then from equn. (3.29) we see that the desired con-
clusion on z4 does follow. On the other hand, if E.@ % 0 with neither § nor « vanish-
ing individually, we can find a solution to eqn. (3.28) setting z° = z* and z propor-
tional to §. Therfore the necessary and sufficient condition we are seeking on J (§) €
E (3)isEa= 0.

We have in this way found the general form of elements on the given 1-type orbit,
where the invariant vector is eo + e,. These elements can be denoted by pairs (€, o).
Now we must exploit the adjoint action by E (3) to try and put such a pair into some
simple and natural from. The adjoint action by the SO (3) part of E (3) is given by

(§, o) > (RE, Ra), ..(3.30)

where R€ SO (3). On the other hand the translation by an amount b acts in the adjoint
representation in this way :

E a)—>E a+ b AE). «(3.31)

Under these changes (3.30, 31), &. « is invariant. Now given a pair (§, a) withE.a # 0,
we can first use the freedom (3.30) to put E into the form

o —(0,0,u), u>0. ...(3.32)

After this, the translational freedom (3.31) can be used to reduce the first two compo-
nents of a to zero:

aa— (0,0, a)a 0, ...(3.33)

Having achieved this, we see that J (£) has been carried by adjoint action using E (3)
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alone to the form
JE)»>ud,+ 2 P
=uJd,+ a(Jyz + Jy3). ...(3.349)

At this point we have to ask if the further freedom of traasformation remaining in
SO (4.1) after all of E (3) has been used up will help simplify the expression (3.34) still
further. It turns out that this is possible: the generator J,, & SO (4 1) has the effect of
changing the scale of P

[']Oh J]] = Ov
[Vous Pl = — P;. ...(3.35)

Therefore by using finite transformations generated by Jy4, we can reduce the parameter
o in (3.44) to ¢ = 4 1, depending on the sign of £. a in the original pair (§, a).

Thus we have succeeded in showing that on a rank 4 orbit in SO (4,1) of type |,
there is a unique representative element u/,, + € (Jos + Jus) for some ¥ > 0 and some
e = 4+ |. We can then calculate the five-vector £ at this representative point and find
{4 = €(1,0,0,0, 1), as expected.

The complete table of resuits for SO (4,1) is:
SO (4,1) orbit structure :

Rank (£) Orbit Parameter Invariant Invariant Representative Invariant

ranges €1 (E) & (B) Point vectors
2 Bt,, (tss; ) u>0 u® 0 uJia €, €3 €4
2 B4y (Us3) - 0 0 Jia+J50 ep+es,e, e,
2 By (s355v) v >0 - 0 vJyo €5, €3, €,
4 B () uz | u' | >0 w+u?  —utu? wl,tuJg, e
4 By (Gut) u>0; e= +1 1 0 u,t+e(Joa+Jys) e, + €,
4 B4, (su,y) u>0;v>0 u: — 12 uyv® uJyy-+vlyy e,

It is obvious from this table that the invariants ¢ (§) and &; (§) no longer suffice to
fix the orbit to which J () belongs.

4. ORBITS IN THE LiE ALGEBRAS SO (n,2), n = 2 AND 3

The two ‘“de Sitter” type groups SO (n,2) are the last ones we analyse in this
paper. The relevant dimensions are numbered 0, 1, 2, 3, 5 with signature —+ ++ —.
For SO (2,2) we have indices g, v, ... and the dimension 3 is omitted. The gené¢rators
Juv obey

[Juv, Joa] = Bue Jve — 8o Jue - Gue Jov — Zve Jop. ..(4.1)
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For SO (3,2) we replace pvPo by ABCD going over the full range. For these two groups
the antisymmetric symbols are normalised by

€01235 = €gy25 = | ...(4.2)

Y4

SO (2,2)

Just as with SO (4) in Section 2 where the orbit classification was simplified be-
cause of the local decomposition SO (4) &= SO (3) ® SO (3), here we can use the local
decomposition SO (2,2) == SO (2,1) ® SO (2,1) and the results pertaining to SO (2,1).
However since SO (2,1) has a much richer orbit structure than SO (3), there being the

various types tu, le and sv, many more possibilities arise with SO (2,2) than arose with
SO (4). More over we must remember that the ¢, [ and s classification of orbits within

each SO (2,1) factor in SO (2,2) has no such geometrical interpretation in four dimen-
sions's,

Adapting eqns. (2.12, 14) to the present situation we define :
Ja = § eqpe I, Ky = Jga;
M, = %(Ja + Ka), N, = % (Ja - Ka); a, b = 0, ], 2. ...(4.3)

Then egns. (4.1) can be expressed in two ways:

[Ja, Jo] = [Ka, Kb] = e:b Je,
Ve Kol = €, Ko (@)

(Mo, Ms]) = €, Mc; [Na,Ns] =€, N.;

[Ma, No] = 0. (b)...(4.4)

These show the decomposition SO (2,2) = SO (2,1) & SO (2,1). For the components
E* of a general element J (£) € SO (2,2) we define :

o = — § eabe £y, Mo = Elo;

aa = £9 4 70, B9 = 2 — y°. ...(4.5)
Then J (§) and the two algebraic invariants are :

JE) =348 Juy = 82T+ n° Ka = a® Ms + P° Ng;

G1(8) =3 EYEuy = — B0 8 — Mona = — } (a® %o + B° Ba);

@2 (8) =& € pveo BV EPT = B2 Mg = } («® 20 — BB0). ..(4.6)
The invariant &, (£) determines the rank of () since ‘

A ) = det Ew) = (o) = (€, B (4.7
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Therefore &, (E) = 0 (# 0) corresponds to rank (§,v) = 2 (4).

The adjoint action of SO (2,2) on £*¥ amouats to the following: we subject «* and
B4 to independent SO (2,1) transformations as 3-vectors, corresponding to the two factors
in the product SO (2,2) == SO (2,1) ® SO (2,1). Therefore each orbit in SO (2,2) is the
Cartesian product of two SO (2,1) orbits, with = lying on the first factor and ¢ on the
second. In looking for nontrivial SO (2,2) orbits, we can allow at most one factor
in the product to be trivial. Thus to begin with, the distinct SO (2,2) orbits can be listed
in this way: (0; tuy), (0; 1 €,), (0; svo); (tuy; 0),...(tuy; sv,); ..3(sv;0)...,(svy; sv2). Here u,, u,
# 0; €, & + - 1; vy, v, > 0; and there are fifteen combinations. On any one of these
SO (2,2) orbits, a unique representative clement is obtained as the sum of representa-
tive elements from each factor. As examples we have:

(tus; 0) — uy My = 4 uy (J1y + J50);
(les; sv,) = €y (My + M) 4 v,N

= 3V (Jio = Js2) + 4 €, (V1o + Jrz + J50 + J52). ...(4.8)

In each case, the values of &uy at the representative element can be read off, and then
&1 (8) and &, (E) for the entire orbit calculated. Towards classifying SO (2,2) orbits
according to their ranks in the four-dimensional sease, we give in a table the value of
4 &%na = 4 ¢, (§) in each cartesian product. The rows (columns) are labelled by the
first (second) factor in the product.

Values of 4 &, (§):

0 tu, le, XA
0 — u.zz 0 — V‘,::
tu, —u u; —u; —u —ul — v,
1€ 0 “z 0 - v22
v v v+ u v; vi— v

Since the total number of orbit types for SO (2,2) (and later also for SO 3.2))
is quite large, we present the pattern of rank 2 orbits separately from that of rank 4
orbits. As a first step we read off from the above table all those cases when &, (B)
= 0, corresponding to J (§) being of rank 2, and also in each case write down a repre-
sentative element, as was donn in the examples of (4.8) (the preliminary expressions in
terms of M. and N, are omitted):
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(tuy; twy)) - u, Jyy (i)
(le; le,) — €, (Jy0 + Jy2) : @ii)
(svi; 5v) = v, Jyg (iii)
(e;0) > L ex (V1o + Jio + Joo + Jyw) (iv)
(0; le;) — % €, (1o + Jyz — Jso — J;a) (v)
(ey; 1, — &) = €, (Jzo + J30) (vi)
(ry; 1, — uy)) = uy Jye. (vii) . (4.9)

The reason for listing these seven cases in this particular order will become clear soon.
Now in cach of these cases we know, since &, (§) = 0, that there are two independent
(mutually orthogonal) vectors in four dimensions which are annihilated by the matrix
(Env) at the representative point. These pairs of vectors are easily calculated and for
the seven situations listed in (4.9) they are, in the same order: e, e;; e, + €3, €;; €, €5;
ey + e, e,+ e;; e + e,, e1—e;; 69t ey, €1; €;, e;. We see that in case (i) the representa-
tive generator J (&) leaves invariant two (mutually orthogonal) unit time like vectors,
s0 it is a realisation of the possibility #7 for the invariant vectors ‘in the four-dimen-
sional sense’, i. e. in the 0125 space on which SO (2,2) acts. Similarly case (ii) corres-
ponds to the configuration 7/; and the remaining ones to 1s, I/, I, Is and ss in that order.
(Now we see that the sequence in (4.9) corresponds to dictionary order in the symbols
1, 1, s interpreted in the four dimensional sense). The appearance of two equivalent
Il configurations, namely ¢, + e., e,+e¢; and e, + e, e;—¢; is to be noted: they cannot
be transformed into one another by any SO (2,2) transformationt?. In all the other
cases, namely 11, ¢/, ts, Is and ss, any configuration of the concerned type can be trans-
formed via SO (2,2) into the given configuration. The complete list of rank 2 orbits in
SO (2,2) can now be tabulated. We drop the subscripts 1,2 on the parameters in (4.9),
and in cases (iv) and (v) we use the scaling freedom provided by the generators M, and
N; respectively to replace } « by e. Thus we arrive at the following table, where in the
first column the case number taken from (4.9) is given :

Rank 2 orbit structure in SO (2,2): &, (E) = 0:

Case Orbit Parameter Invariant Representative Invariant

In(4.9) ranges &1 (8) Point vectors
@) By,0 (11; 1) us%0 u? ul,, €0,€5
(i) Dyl e= 41 0 e (g + Jyp) eo+e;, €5

(iii) D5 (15; V) v>0 — v? vJyo e,, e

(table continued on p. 113)
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Case Orbit Parameter I[nvariant Representative Invariant
ranges & (8) Point vectors
(iv) 8,00 (U5 €) e= % | 0 (0t 1o+ T30+ Is5) e,te,e te,
\2 8, (le) €=+ 1 0 e(Jio+J1o—T50—J50) eyteye,—ée;
(vi) By (Us3e) €= 41 0 € (J50+50) et €y€
(vii) B, (553 1) u#0 u uJs, ' e, e,.

One can see already at the level of rank 2 orbits the extent to which the values of the
algebraic invariants &, (£) and @, (E) fail to fix the orbit to which J (§) belongs. If one
also compares the patterns of rank 2 orbits in SO (4), SO (3,1) and SO (2,2) with one
another, all of the corresponding groups being defined on a four-dimensional space, one
can see a gradual increase in complexity as the metric changes from Euclidean to
Lorentzian to de Sitter.

When we turn next to cataloguing the rank 4 orbits in SO (2,2) their variety is
again vastly greater than with either SO(4) or SO (3,1). Recall that in the latter cases,
these orbits can be compactly denoted as 9, (u, u'), #;,; (4, v) respectively, with unifor-
mly valid expressions for the invariants and representative elements. With S0(2,2) the
situation will turn out to be very different. One of the aspeets requiring specific atten-
tion will be that of finding suitable symbols for the various distinct families of orbit
since the labels 7,/,s are no longer available, there being no nullvectors for a (E.) of
rank 4.

Going through the table of values of 4¢, (§) row by row, we find in the first in-
stance twelve types of SO (2,2) orbits over which ¢2» () does not vanish. As in (4.9),
we list these cases now, in the sequence in which they occur in the &, () table, giving
in each case the corresponding representative element as a liaear combination of J,:

0: tuy) > % uy (V1 — Jy0) (i)
(05 svy) = 3 v, (Jig — J5o) (ii)
(tuy; 0) > § uy (Jye + Js) (iii)
(tu: tw), uy # + uy = 3 (0 + w) i + 3 (th — 1) Jse (iv)
(tuy; ley) — yun (Jay + Jso) + 3 6 (Jyo+Jp, — Js0—J50) v)
(tuy; sv)) = 4 (Jia + Joo) + 4 va (Jio — Jog — Ji2) (vi)
(ey; tuy) = iy (Jip — J5o) +4¢; (Jio+ 71y +J50+s0) (vii)

(ey; sv,) = 3 vy (Jio—Js2) + dei (Jio+J1o+ 50+ Js2) - (viii)
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(5v1; 0) = 4w (Jio + Jso) (ix)
(sva; ) = 3 vy (Jio + Jso) + 34y (J1o — J50) (x)
(5v, ) = 3 v, (Jyo + J5) + & (Jao +J10— S0 — S5 (xi)

(v sva), vy = v, = (v + v Jye + 8 (1 — v) s (xii) ...(4.10)

(We remind ourselves that every uy 7% 0, évery vy > 0 and every ¢ = = 1). Naturally
none of these representative elements has any invariant vector. Now our task is to com-
bine sets of these families of orbits judiciously to form larger coherent families, based
on the forms of the representative elements. One can see for example that the repre-
sentative elements in cases (i), (iii) and (iv) combine neatly into the two-parameter
family uJ1,+u'Jso subject to the restrictions u, ' 0; here we have identified § (u,4-u,)
with u, v’ respectively. Let us call this family of orbits as famiiy 4, so an individual
member of it is written &,,, (4; 4, #’). Similarly, cases (ii), (ix) and (xii) in (4.10) have
representative elements combining neatly into the expression v/, + v'J;, subject to
v>= | v' | > 0. These restrictions on v,’ result from identifying them with §(v;+v,) res-
pectively. This family of orbits will be labelled by the letter B, leading to #,,, (B; v, v').
Thus six of the twelve cases listed in (4.10) are taken care of, leaving six more to be
handled, namely (v), (vi), (vii), (viii), (x) and (x1).

Now these six cases split naturally into three pairs: (v) and (vii), (vi) and (x), (viii)
and (xi). Within each pair, the relationship is that the representative elements get in-
terchanged by the reversal of the sign of the dimension 5 (and accompanying relabelling
of parameters). This discrete operation is an outer automorphism on SO (2,2), not an
element in the identity component of SO (2,2) and it amounts to interchanging the
SO (2,1) factors in the (local) product SO (2,2) = SO (2,1) @ SO (2,1). Thus within
SO (2,2), it is the interchange M, « N,. Taking up fiirst the pair (vi), (x) in (4.10):
we replace u,,, = 2u, v,,» = 2v, and introduce a sign parameter ¢’ = - 1 to distinguish
cases (vi) and (x) respectively. Thus we get a combined expression v (J;; + ¢'J5) + v
(J1p — €'J;,) for the representative element on an orbit of family C, with the parameter
conditions u # 0,v > 0, ¢ = -+ 1. For the pair (v), (vii): we use the scaling freedom
via transformations generated by M,, N, to alter § ¢,,» to €,,,; then with the changes
€,5 —> €, M,,, — 2u, and introduction of ¢ = + 1 to distinguish between cases (v) and
(vii), we get the representative element u(Jy2 + € Jyo) + € (Jig + Jio — € J5o — € J5p)
on an orbit of family D, subject tou 520, ¢, ¢’ = £ 1. For the last pair (viii), (xi)
in (4.10): by simillar steps we get an element v (J;o — € Jsp) + € (Jip + J1y + € Jso
+ € Js5), v > 0, ¢, ¢ = - |, representing an orbit in the family E.

By this reorganisation of the entries in (4.10), the rank 4 orbits in SO (2,2) fall
into five major families. Calculation of &, (§), &5, (§) in each case is straightforward,
and the final results are presented in the table on p 115.
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The complete picture of all SO (2,2) orbits is obtained by combining the two
tables refering to rank 2 and rank 4 orbits respectively. It may be useful to mention
here that in any practical application of these results, the identification of the orbit to
which a given J (§) € SO (2,2) belongs is best done by splitting it into its M, and N,
components, checking with the cases in (4.9) or (4.10) as appropriate, and then assingn-
ing it to the correct #,,, (...). The algebraic invariants &, (§), ¢, (%) do not by them-
selves determine the orbit.

SO (3,2)

For this group all of eqns. (3.21) giving expressions for J (§), &, (8) {4 and &.(%)
in the case of SO (4,1) can be taken over as they stand, with the understanding that A,
B, ... now go aver 0 | 2 3 5 with signature — + + + —. Moreover eqn. (3.22) also re-
mains valid. The rank of (£ ,5) is either 2 or 4, leading to the existence of 3 or 1
independent invariant vectors. The former corresponds to rank 2 orbits which we
take up first.

As with SO (4,1), we first list all ten conceivable configurations of three (mutually
orthogonal) invariant vectors in dictionary order: t11, t:l, tts; 11, tis; tss; I, Us; Iss; sss.
While with the signature of a 4 + 1 space only three of these actually exist,ina 3 + 2
space six configurations survive and these are: 115, tls, tss; lls, Iss, sss. These have been
split into two sets of three configurations each because, as we shall soon see, the first
set can be handled at the SO (2,1) level, while the second set in reducible to a problem
within SO (2,2),

Let J (£) € SO (3,2) be of rank 2, and let the null vectors of (£ 45) be invariantly
characterised as being of one of the types #ts, t/s or 1ss. In every case we have one time
like and one space like vector, mutually orthogonnl and normalised, included in the
triad. One can therefore always pass via suitable SO(3,2) transformations to element(s)
on the orbit of J (§) which leave e; and e, invariant. Such element(s) then belong to
the SO (2,1) algebra associated with the dimensions 0, 1, 2. The further separation
into three mutually exclusive possibilities corresponds to whether the third invariant
vector is of type #, / or 5 in the 0 1 2 subspace. Therefore the orbit of J (§) definitely
contains element(s) of one of the following three types: uJ,, with u 3£ 0 or € (Jy, + J,0)
withe = £ 1 or vJy, with v > 0. In the first two cases, the sign of # or € can be
arranged to be positive, if necessary by making a suitable rotation in the I-3 plane.
This settles the quesition of finding suitable representative elements for rank 2 orbits of
types s, tls and ftss.

Turning to the three remaining rank 2 orbits of types Ils, Iss and sss, we see that
in every case there is at least one unit space like vector in the invariant triad. On all
such orbits there are then elements which leave e; and two other vectors invariant.
Such elements therefore lie in SO (2,2) associated with the dimensions 0 1 2 5, which
has been analysed earlier in this Section; further they are of rank 2 within this SO(2,2).
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The classification of such SO (2,2) orbits shows that with . the help of SO (2,2) trans-
formations we can pass to elements which, in addition to e,, leave invariant one of the

following four pairs of vectors, depending on the invariant configuration associated
with J (§):

lls - e, + ey, e, + es0re, + e,,e, — e
Iss — ey + e, €,;
555 — €, €. ..(4.11)

However, while the two possible pairs associated with //s are inequivalent at the SO(2,2)
level, they are transformable into one another by a suitable 1-3 rotation within SO(3,2).
Therefore, depending on whether the orbit of J (§) is of type /Is, Iss, or sss, there is a
‘unique’ element on it leaving e; + e,, e, + €;, €3, 0T €5 + €,, €1, €3 OF €, €,, €3 re-
spectively invariant; and the form of this element can be taken from the table of
rank 2 orbits in SO (2,2}, namely case (iv), (vi) or (vii) respectively in that table. Now
this table shows that in cases (iv) and (vi) there is a parameter ¢ which can take values
-+ 1, and these are distinct possibilities within SO (2,2). Similarly in case (vii) of that
table the parameter ¥ can be positive or negative. One must naturally examine whether,
in view of the greater freedom of transformation available in SO (3,2), the parameter
« could be restricted to + 1, and v to positive values alone. This however cannot be
achieved, since it requires (among other things) swiching the sign of Js,.

Taking into account the results of the two preceding paragraphs, we can construct
a catalogue of all the rank 2 orbits in SO (3,2). Itiseasily seen that on all such orbits,
{4 =0 identically, so &, (§) = 0 as well. These facts are explicity indicated in the
following tables :

Rank 2 orbit structure inS0 (3,2): {4y = G. () =0

Orbit Parameter  invariant Representative Invariant
range &1 (8) point vectors

¥, (115, U) u>0 ut uJy, €y, €3, €5
3,5 (tls) - 0 Jio + Jia e + e, e3, €5
Ba,2 (1553 v) y>0 —v? v €y, €3, €;
B,y (Ils; €) e=+ 1 0 €(Jyo + Jiz + Jso + J50)  epteses+ege,
3,0 (Iss; €) € = 41 0 € (J5 + J5) e,+e, e, e
Ba., (ss5; U) u+*0 u® uJse €, €3, €3

Let us now turn to our last topic, the analysis of orbits of rank 4 in SO (3,2). Fol-
lowing what is by now a familiar pattern, these orbits inevery case can be related to
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some suitable six-dimensional subalgebra in SO (3,2). As we would expect, it will happen
that for any rank 4 J (£)€S0 (3,2), { 4 is nonvanishing and is the sole nullvector of (§ 48).
The possible orbits therefore split initially into three types, corresponding to {, being
of typet,lor s. Wecan pass via suitable SO (3,2) transformations to elements on the
orbit of J (£) for which the invariant vector {, is proportional to ¢,, e; + es or e, respe-
ctively. Such elements must then belong to the SO (3,1) subalgebra associated with the
dimensions 012 3, an E (2,1) subalgebra (as we shall see), or the SO (2,2) subalgebra
associated with the dimensions 0 1 2 5. In all cases, we have to deal with rank 4 elements

in these subalgebras. Except for the E (2,1) case, then, we can draw on previously
derived results.

The case when U4 is of type ¢ is easiest to handle. Then, among the elements on
the orbit of J (§) which leave e; invariant are some of the form wJ,, + vJga for some
u > 0,v = 0. This much follows from the nature of rank 4 orbits in SO (3,1). But
going beyond this, the freedom to perform rotations in the 0-5 plane shows that we can
arrange for v also to be positive. The result is that on any rank 4 orbit in SO (3,2) of
type #, there is a unique element uJ,, + vJys with bothuw, v > 0.

Next we consider the case when ¢, is of type /, and ask for the most general J (&)
for which the only invariant vector is e; + 5. Thus (€ 45) must annihilate only z4 = (0,
0,0, 1, 1). The equations £ 4p 28 = 0 give the following conditions:
535 = 0’

Cag = — &u5, a=0, 1,2 ..(4.12)

This allows €a5 and &.; to be independent. Using a notation patterned after that of
section 3 in dealing with E (3), we write J () as

J(E) = Ea Ja + D(-“Pa,
Jﬂ = %(abc ch,
Pu = Ja3 + Ja5,

€ = — } ™ by, aa = £ - (4.13)

The latin indices here and handled exactly as in the treatment of SO (2,1) in section 3.
Js and P, span an E (2,1) sub-algebra within SO (3,2), i. e. a Poincaré algebra in a
2 + 1 space, which is the stability group of a light like vector in de Sitter space

[Ja, Js) = €2, J,

[Ja, Pb = C:bpc,

[Pa, Ps] = 0. .(4.14)
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Now we seek necessary and sufficient conditions on &°, «® to ensure that es + e; is the
only null vector for (£48). The condition that (£45) annihilate a general z4 is :

u® 2z, = 0,

€abo BY 2 — og (2% — 2°) = 0. ..(4.15)
A consequence of these equations is the pair

a* Eazp = 0,

ab Z, (28 — 25) = 0. ...(4.16)

If «® &5 + 0, that is sufficient to lead to the desired results on z4, namely, z* = 0 and
z% = z5 The necessity of this condition is also eassy to prove. Therefore, on a given
rank 4 orbit in SO (3,2) of type /. those elements J (&) for which the invariant vector
is es + e; are of the form (4.13) with nonvanishing «® £,, and therefore also with non-
vanishing «® and £°.

In finding a natural representative element on such an orbit, we first use the E(2,1)
adjoint action to simplify the pair (£% «?) as much as possible, then search for further
simplification using elements of SO (3,2) outside E (2,1). The adjoint actions by the
homogeneous SO (2,1) part of E (2,1) and by the translations in E (2,1) are :

(8% we) — (A; &b, A ab),
A€ SO (2,1 (a)
(Bo,a%) — (8%, a® + ¢, AbEC) (b)...(4.17)

The freedom of transformation (4.17a) allows us to put £ into one of several distinct
forms; this is then followed by the use of (4.17b) to simplify «% Of course, as £, re-
mains invariant. It is then seen that the pair (£%, «“) can be carried by suitable E(2,1)
transformations to one of the following mutually exclusive configurations

&% a0 > (1, 0,0),(x, 0,0), u 0, a5 0;
_')(‘9()’5))(“’0»"“)) € = + ]v“;éo;
-+ (0,0,%),(0,0,a), v> 0, # 0. ..(4.18)

Now what remains is the action by elements of SO (3,2) outside of E (2,1). Here one can
convince oneself that only transformations of consequence are those generated by Jj,,
and these help to normalise « in any one of the cases (4.18)to ¢’ == 4 1:

[J35, Ja] = 0,
WVsss Pa] = P .(4.19)

The final result is that on a rank 4 orbit in SO (3,2) of type /, there is a unique repre-
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sentative element of the following mutually exclusive forms :
wly + €Py=uldy, + € (Jog + Jg5), u #0,e =+ 1;
e (Jy + Jo) + € (P — Py) = ¢ (Jiz + Jlo) + €' (Joa + Jos — Jiz — Jus),

e=+41,¢€ =4I
Wt € Pyp=vJyg+ € (gt Jy),v >0, =+ 1. .- (4.20)

The third and last case of a rank 4 orbit in SO (3,2) is when {4 is of type s. If on such
an orbit J (€) is a point where the invariant vector is es, then J (£)€ SO (2,2) associated
with the dimensions 0 | 2 5. From the table of representative elements on rank 4 orbits
in SO (2,2) we know that by SO (2,2) transformations J (§) can be brought to one of
the following standard froms labelled as in the table :

Ay, +udy, uz®0,u #0;
B:ivly +vis, v=|v]>0;
Coe':u(Jp+ €Jso) + v(Jyp~ €J5),u720,v>0,¢ = £1;
D, e :u(Jyy+ € Jyo) + € (Jyo + Jiz — € Jyp — €'y),
u#0,¢==x 1, = + [;
E, € v (Jg —€ J) + €Uy + Ty + € Jsp + € Jso),
vy>0,¢e==% 1€ = + 1, ...(4.21)
Now these various possibilities, inequivalent within SO (2,2), can to some extent be
related to one another by suitable SO (3,2) transformations. Thus a rotation of amount
w in the 2-3 plane carries: v, v’ under 4 to — w, «'; v, v; under B to v; —v:iu, v, ¢
under C to — u, v, — ¢, — €; and a rotation of amount = in the 1-3 plane carries
e, u, ¢ under Dto —¢, — u, — e. In these four cases, then, we can restrict the
ranges of the parameters when finding unique representative points on the concerned
SO (3,2) orbits : under 4, ¥ > 0 and ¥’ % C; under B,v 2 v' > O;under C, ¢’ = +1
andu # 0,v > 0; under D, ¢’ = + landu % 0,e = -+ 1. The type E in (4.21) does
not, however admit such a reduction or havling of distinct possibilities. All we may
do to reduce the number of labels is to restrict €’ to the value + 1 but allow v to be
nonzero positive or negative. This can be seen by tracing the effect of a rotation of
amount = in the 1—3 plane on the generator in the last line of (4.21).

No simplifications beyond those described above are possible by considering
elements in SO (3,2) outside SO (2,2).

Collecting all the results pertaining to the three categories 1, /, s of rank 4 orbits
in SO (3,2) the complete listing of possibilities can be drawn up as on p 121,

The only point of notation here requiring explanation pertains to the second, third
and fourth entries. While the first letter / within #,,, (...) refers to the nature of ¥4,
the second letter f, / or s refers to the nature of the 3-vector £° in the pair (§% «°) des-
cribing an element in the subalgebra E (2,1),
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5. CoNCLUDING REMARKS

In the preceding Sections we have exhausitively classified all the orbits under the
adjoint action in each of the Lie algebras SO (p, q) for p 4+ ¢ < 5. Particular care
has been taken, in view of the complexity of some of the results, to develop a suggestive
and systematric notation. For each orbit, we have calculated the values of the algebraic
invariants, displayed a representative element, and described the geometric nature of
the latter by listing a complete set of independent vectors invariant under it.

By definition, every orbit in any of the Lie algebras admits a transitive action by
the corresponding group G. Therefore it is a realisation of a certain coset space G/H,
where H is the subgroups of G leaving invariant the representative point on the orbit.
In the case of SO (3), as is well known this can be expressed by

B3 (1) = SO (3){SO (2). (51

In the SO (2,1) each orbit #,,, (f; 1) is a model for SO (2,1)/SO (2); each #,,; (s; v) re-
alises SO (2,1)/SO (1,1); and the two orbits #,,, (/; ) are realisations of SO (2,1)/H
where H is a “parabolic’ subgroup generated by J,, + J,,. The situation with SO (3,1)
is actually simpler than with SO (2,1). Here, each of the orbits #3,, (#s; 1), D3, (555 V),
#3,, (1, v) is a realisation of one and the same coset space SO (3,1)/SO (2) x SO (1,1)
where SO (2) is generated by J;, and SO (1,1) by Jys. The single and somewhat excep-
tional orbit #3,, (Is) is the coset space SO (3,1)/N where is a two-parameter abelian
group generated by J; — K, and J, + K. For the orbits in the other Lie algebras a
similar through sometimes tedious analysis can be carried out by finding the stability
group of the representative element in each case.

Wtih the general representation # == G/H, the dimension .of an orbit # is that of
G minus that of H. It is a general result that dim. # is always even. For both SO (3)
and SO (2,1) it is geometrically clear that each nontrivial orbitis two-dimensional.
For SO (3,1) all orbits are of dimeasion four, but the situation is more complicated for
both SO (4) and SO (2,2), and also for SO (5). The rank 2 orbits #; (¥) in SO (5) are
six dimensional, since the stability group of the representative element wJ,, is easily
seen to be the four-parameter group SO(2) x SO (3) generated by Jis, Jag, Jis, Jsa.
The “generic” rank 4 orbits #; (v, ¥’} C SO (5) for u > u’ > O are eight dimensional
(H generated by J,, and J3,), but if 4 = i’ the dimension drops to six (H now generated
by Jis + Jus, Jyo — Jaz, Jos — Sy, Jay —J40). For SO (4) as well as for SO(2,2), “most™
orbits are four-dimenssonal, but there are some two-dimensional ones as well, in case
in the cartesian product representation of an orbit one factor is trivial. Thus for exam-
ple in the case of SO (4) family of orbits &, (u, «'), the orbit dimension is a disconti-
nuous function of the parameters u, ', since dim ¢, (u, ') = 4 if v > | v’ | and dim.
#, (i, u') =2 ifu = | u' | . A similar sitnation occurs in SO (5) too.

We must note another source of discontinuity in some families of orbits as we have
listed them. Thus while the presence of labelling parameterse, ¢ = + 1 automati-
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cally means that the family of orbits concerned consists of several disjoint pieces, if a
parameter u or v is only restricted to be nonzero that too results in there being several
disjoint components in the family. It would have made our tables inordinately lengthy
if we had insisted that each listed family of orbits form a connected set.

The availability of the vector {4 in the five-dimensional groups SO (5), SO (4,1)
and SO (3,2) is fortunate since it immediately determines whether rank J () is 2 or 4.
In fact the squares of the various components {4 are simply the determinants of the
various principal 4 x 4 submatrices within the 5 < 5 matrix (£4s), so a vanishing (non-
vanishing) {4 must imply rank (£45) is 2 (respectively 4). Further for these five-dimen-
sional groups any orbit in the Lie algebra can be studied in the context of some suitable
subalgebra since there is always at least one invariant vector. This kind of simplification
does not always occur with SO (4) and SO(3,1).

We conclude by remarking that the complete set of results obtained for the largest
group we have analysed, and indeed the most intricate one, namely SO (3,2), has been
used to the fullest extent in a study of a special class of optical fields!®. We refer here
to the action of general first order optical systems on the so-called Gaussian Scheli-
model beams, in which context the two-fold covering group Sp (4,R) of SO (3,2) plays
a primary role. We refer the reader to the appropriate reference for details'®. It is quite
likely that the treatment of squeezed coherent states!'-!5® two-photon coherent
state'®"1% and generally the discussion of processes involving two modes of the photon
field will be clarified as a result of our analysis.

The interested reader will find much relevant material on orbits in Sitaram and
Tripathy*, Auslander and Kostant’® and Kirillor?®.
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