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Group theoretical methods in optics
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Abstract. Scalar Fourier optics is concerned with the passage of paraxial light beams
through ideal optical systems. It is well known that the action of the latter on the former can be
given in the framework of the two- and four-dimensional real symplectic groups. It is shown
here that, based on an analysis of the Poincaré symmetry of the complete Maxwell equations in
the front form, a natural representation for paraxial Maxwell beams emerges, which moreover

shows the way to a generalization of scalar to vector Fourier optics preserving the group
structure of ideal optical systems. Properties of generalized rays, and the usefulness of some

pseudo-orthogonal groups in the treatment of Gaussian Schell-model beams, are also brought
out, ’
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I wish to describe here some work done recently by R Simon, E C G Sudarshan and
myself on the application of group theoretical methods to a variety of problems in
paraxial optics (Sudarshan et al 1983, Mukunda et al 1983). Starting from the Poincaré
invariant Maxwell field equations of electromagnetism, one arrives at paraxial optics
either in the ray or in the wave picture, making appropriate simplifications and
approximations on the way (Bacry 1984). In the ray picture: we first suppress the vector
nature of the field quantities, thus losing the polarization degree of freedom, and arrive
at the Poincaré invariant scalar wave equation; for monochromatic waves with a fixed
temporal frequency, this leads to the Helmholtz equation; in the eikonal approximation,
where wave aspects are lost, one gets geometrical rays with simple propagation laws;
and finally restricting these rays to form a narrow beam one arrives at the domain of
paraxial ray optics. In the wave picture: one limits oneself to solutions of the scalar wave
equation which are superpositions of plane waves all having a predominantly
longitudinal wave-vector and very small transverse components, to reach the paraxial
limit. Of course in this picture both polarization and simple rays are given up but typical
wave aspects are retained.

In discussing the passage of paraxial scalar waves through so-called ideal optical
systems, an elegant and practically useful group theoretical description has been found
by Bacry and Cadilhac (1981). For monochromatic paraxial scalar waves, the wave
equation becomes an equation determining evolution along the system axis—say the
z-axis—of the distribution of field values over a transverse plane. When such a wave
passes through a (linear) optical system, the system can be represented by a
corresponding operator which acts on the incoming transverse field distribution to
produce the outgoing one. Writing ¥ (x 1) for the scalar field over a transverse plane, we
can say:

¥ output(X L) = (operator representing the system) Yinput(X L) (1)
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One can now define an ideal optical system: the corresponding operator is the
exponential of i times a hermitian and at most quadratic expression in the four
hermitian operators x, and p, = —iV,. Examples are free propagation sections,
prisms, thin lenses, and arbitrary combinations of these. Now x, and p, obey the
canonical commutation relations.

[xa: pb] = iaaba [xaa xb] = [pa’ pb] = 0; a, b = 19 2 (2)

From this it follows that the operators representing ideal optical systems are elements of
a group. In particular, leaving aside linear dependences on x| and p in the exponent,
one has the basic results: each axially symmetric system corresponds to an element of the
group SL(2, R) = Sp(2, R), while a system not necessarily possessing axial symmetry
corresponds to an element of the group Sp(4, R). The significance of these
correspondences is that sequential action by several optical systems is represented by
the product of the associated group elements in the same order.
These attractive results led us to the following natural questions:

(a) Can this group-theoretical description of optical systems be maintained con-
sistently in the framework of the complete Maxwell equations, so that the polarization
degree of freedom can be handled properly?

(b) Can the concept of rays of light be generalized so as to include the typical wave
aspects of interference and diffraction; if so how do ideal optical systems act on such
rays? How do group elements act on ray parameters?

The analysis leading to the answers to these questions can conveniently be presented
in three parts: ' .

(A) We start with the complete system of Maxwell equations and express its Poincaré
invariance in the so-called front form. This is then exploited to develop a natural
representation for the most general paraxial solution of Maxwell’s equations. Thus we
learn how to describe paraxial Maxwell beams with proper account of polarization.

(B) The rules of action of ideal optical systems on scalar waves—the domain of scalar
Fourier optics—are then generalized so as to apply to vector waves, taking care to see

that the association of systems with group elements is maintained (Mukunda et al
1985a).

(C) Within the framework of second order optical coherence theory we recall a recently
proposed definition of generalized pencils of light rays (Sudarshan 1979a, b, 1981),
capable of describing typical wave phenomena, and see how the group theoretic analysis
extends to them.

To these ideas, we may append the following: for a particular class of light beams, the
so-called Gaussian Schell model beams, one can develop an efficient and convenient
description based on the pseudo-orthogonal Lorentz group SO(2, 1) in the axially

symmetric case and de Sitter group SO(3, 2) in the general asymmetric case (Simon et al
1984, 1985).

We now describe each of the above briefly.
(A) The equations describing any relativistically invariant physical system maintain
their forms under the action of the inhomogeneous Lorentz, or Poincaré, group 2. The
effects of the elements of the group on the dynamical variables of the system are
determined by ten infinitesimal generators, corresponding to the ten parameters of 2.
The most familiar description of the generators is in the so-called instant form (Dirac
1949), wherein one uses a complete set of dynamical variables describing physical
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conditions at all points of three-dimensional space at a common time. The generators of
2 are then listed in the sequence: P¥, generating space-time translations; J, a three-
vector generating spatial rotations; and K, a three-vector generating pure Lorentz
transformations. These ten generators have only a geometrical role or sigaificance—
they become dynarmical quantities themselves only if one has a canonical formalism in
classical theory, or one passes to quantum mechanics.

For problems of paraxial wave optics a more convenient way to display the action and
generators of 2 is the so-called front form (Dirac 1949). In place of the usual time and
space coordinates x° = ct, x we introduce the combinations.

T=3(x%+x%), 0 = x°—x3, x,. (3)

A front is a hyperplane in space-time with a constant value of t—we may call it “the
front t”. Corresponding to the choice (3) of space-time coordinates, one rearranges the
Poincaré generators as follows:

J3;GL= (Ky—J3)/2, (Ky+J1)/2 Py
M = (P°+ P%)/2; K;—t(P°—P3); (4a)
g;f:Po"Ps;I'I_L:Kl'*‘Jz, Kz““J'l. (4b)

The seven generators listed in (4a) give rise to transformations of & that map the front t
onto itself; the remaining ones in (4b) generate transformatioss that move the front. In
particular the combination 5 shifts a front while keeping it parallel to itself.

A particular feature of the rearrangement (4) of the Poincaré generators is that the six
generators Js, Gy, Py, M drawn from (4a), along with 3 taken from (4b), obey
commutation relations corresponding to a two-space one-time Galilei algebra
(Sudarshan and Mukunda 1974). In this algebra, 5 plays the role of “energy”—it
causes shifts in 7 but not in ¢ or x,— while M is like the “mass”. This Galilei structure is
embedded in the overall Poincare’ structure and is exposed by the front-form. Now the
Galilei algebra with non-zero “mass” always contains within it, as is well known from
nonrelativistic dynamics, quantitizs obeying the canonical or Heisenberg type commu-
tation relations (Sudarshan and Mukunda 1974). These quantities are the spatial
translation generators P, and the boost generators G, divided by the “mass” M. So if
we define

1
Q.= i Gy v 5
and.recall that M commutes with both G, and P, we find as a consequence of the
Poincaré commutation relations:

[Qa, Pb] = iaab: [Qaa Qb] = [Pa: Pb] =0. (6)

Through this remark, we can trace the validity of the relations (2), which are in turn the
basis for the group theoretic treatment of optical systems within the scalar theory, to the
Poincaré group £. Indeed in the case of the scalar wave equation one can easily obtain
expressions for all :he Poincaré generators in the front form, and one then discovers
(Sudarshan et al 1983; Mukunda et al 1983):

Scalar wave equation: Pi=p, = —iV,. 7
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Thus we have a clue to the generalisation to go from scalar to vector Fourier Optics:
replace x; of the scalar theory by Q appropriate to the Maxwell equations. Before
taking this up, however, we mention that the front form analysis also tells us the most
compact way in which paraxial solutions of the full system of Maxwell equations may be
presented. When we compute 0, for the electromagnetic field, it turns out to have the
form. '

_ 1~ ,

Maxwell’s equations: @, =x, +I_cG L (8)

Here, G| are two matrices which are three-dimensional if the (free) Maxwell field is

described by its electric vector, and six-dimensional if described by both electric and
magnetic vectors. We use the former, more economical, description, and then find:

/000 ) 000
G]==(0 0 0), G2=<O 0 0). 9)
i 00 0 i 0

The k in (8) is the wave number: k = w/c. Then the most general quasi-monochromatic
paraxial solution to Maxwell’s equation has an electric vector E(x, t) which may be
displayed as (Mukunda et al 1985a, b)

E
E(x, 1) = ( E:) = exp[(i/k)(G. P)1E +{x, 1)
E;

E,
E {x, t)= ( Ez). (10)
0 :

Subject to the transverse components E; and E, being analytic signals with narrow
angular spectra, there is full freedom in the choice of the column vector E;. For any
choice of E, application of the standard operator following it in (10) yields an allowed
field E. Thus in particular E; and E, may be chosen independently while Ej is then
determined. A similar description is possible using the magnetic field B or the vector
potential A in a suitable gauge.

One must appreciate a subtle difference between the scalar wave equation and the
Maxwell system at this point. The former wave equation 1%y = 0 reduces in the
(quasi)-monochromatic and paraxial limit to an equation determining the evolution of
W (x , , z) with respect to z. In particular, y may be chosen as we wish (subject to having

‘a narrow angular spectrum) on an “initial” transverse plane, which will then “evolve™
with respect to z in a definite way. The Maxwell system in the corresponding limiting
situation turns out to contain both equations of constraint on the x , dependences of E
and B, and equations for the evolution of E and B with respect to z. The Poincaré
symmetry expressed in the front form shows us how to disentangle these aspects
properly, and leads to the representation (10) for the E-field.

(B) Equipped with the above results, we can state the rule to go from scalar to vector
Fourier optics. Referring to (1), we find: if in scalar optics a given (linear, ideal) optical
system is represented by an operator w(x ., p1),

lp{)ut('xl) = w(xl': pl) win(xl), (1“
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then the same system is represented in vector Fourier optics by a matrix function
Q(x 1, pyu) of x, and p, obtained from w(x ., p.) by the replacement x; — Q:

E u(x1) = Qx 1, p1)Ey(x1),
Q(x1, p1)=0(Qu, pr) (12)

Since Q) and p, obey the same algebra, (6), as do x. and p,, this prescription
automatically guarantees that the association of linear ideal optical systems with
elements of the groups SL(2, R) or Sp(4, R), depending on their symmetry, is maintained
in vector Fourier optics. Thus, for the class of systems we are concerned with, we may
say that

@'(x1, pr) ©(x1, pu) = 0"(x1, p1) (13)

implies
Q(x1, pr) Qxy, pr) =Q"(x1, po). (14)

(More directly, this is so because Q | isa similarity transform of x ;). The inclusion of the
polarization degree of freedom in no way spoils the applicability of group theoretical
methods in Fourier optics.

As an example we mention the case of a thin lens. Here, the formula of scalar optics,

Y'(x1) = exp (—ZTM)‘/’(XL) (15)

goes over into the formula

E'(x,) = exp(—(ik/2f)Q1) E(x.)

1 0 O
= exp(—(ik/2j’)xi)< 0 1 O)E(xL). , (16)
x/f yif 1

Elsewhere we have given a proof of the above prescription and a systematic
development of Fourier optics for the Maxwell field. (Mukunda et al 1985a)

From the group theoretical point of view the following question is interesting:
suppose a given axially symmetric ideal system corresponds to an element SeSL{2, R).
Then what, if any, system corresponds to the inverse element S~ 1 eSL(2, R)? More
generally, we can ask if indeed there is an optlcal system correspondmg to each element
of SL(2, R), or whether only a part of the group “shows up” in this correspondence. This
question is meaningful because the available simple “building blocks™ out of which
more complex systems may be built are: the thin lens with focal length f corresponding
to the group element.

1 0
= "+ 0; 17
L(f) (_k/f 1>, f#0 a7
and free propagation through a distance D corresponding to
1 D/k
F(D)=(0 1/ ),D?O. (18)

It is the restriction D = 0 that makes the answer to the question not quite trivial. It can
however be shown (Sudarshan et al 1985) that every clement § € SL(2, R) can indeed be




502 N Mukunda

realised as an axially symmetric ideal optical system, and in the construction one finds
that one never needs more than three lenses plus three free propagation sections. In the
nonaxially symmetric case, we have been able to show that every SeSp(4, R) can be
synthesized using a finite number of lenses and free sections.

(C) We have mentioned that each ideal axially symmetric optical system stands in one-
to-one correspondence with an element of the group SL(2, R) which can be pictured asa
real 2 x 2 matrix with unit determinant. However when dealing with the wave amplitude
and the changes it undergoes, there is no obvious quantity that is acted upon by these
2 x 2 matrices directly. Such an object however emerges when one deals with generalized
rays and their distribution function. For simplicity we ignore polarization, though its
inclusion is no problem. In statistical optics the state of a (scalar) light beam is described
by the 2-point correlation function denoted schematically by

F(52) = Wy *>. (19)

Here the entries 1 and 2 denote two sets of space-time arguments and the angular
brackets stand for an ensemble average. For a (quasi) monochromatic stationary field
the time variables can be omitted and one deals with the spatial 2-point function
I'(x;X,). Sudarshan (1979a, b, 1981) has introduced the Wigner-Moyal transform of T,
calling it the Wolf function, and proposed that it be interpreted as the density or
distribution function of generalised rays of light corresponding to the given statistical
state. The Wolf-function W(x, p) is the Fourier transform of I'(x 4+ 1/2x’; x —1/2x’)
with respect to the “difference” coordinate X', bringing in the new variable p; and
represents the strength of rays of light at the point x in the direction p. It is real but can
take both positive and negative values, corresponding to light and dark rays; this is
necessary to allow for interference and diffraction. The generalized rays of light have
very simple propagation laws but lose none of the typical wave aspects of light. In the
paraxial situation (Simon 1983), W becomes a function of x ; and p. only, and can be
computed as the Wigner-Moyal transform of the 2-point function on a transverse plane.
Like the field amplitude, the Wolf function also evolves from one transverse plane to
another, and suffers changes as the beam passes through an optical system. In fact if we
arrange the components of x; and p . as a column vector g, say, then we have the result

Wout(‘]) = Win(S—IQ)a
SeSL(2, R) or Sp4, R). (20)

As expressed graphically by Bacry (1984): In some sense, Geometrical optics is Fourier
optics (up to a sign). We may amplify: the sense is that of generalized rays.

Gaussian Schell model (GsM) beams

An unexpectedly rich area of application of group theoretical techniques in optics has
turned out to be the study of a special class of fields known as the Gaussian Schell model
fields. These are defined by the particular form the 2-point function (over a transverse
plane) takes, and are of considerable practical interest. A beam is said to be of Schell
model type if the normalised degree of coherence y is translation invariant in a
transverse plane. We have a GsM beam if furthermore the intensity distribution I, the
normalised degree of coherence y and the phase ¢ are all Gaussian, i.e., exponentials of
quadratic forms. It is then easy to see that by the Wigner-Moyal transform we are led to
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a Wolf-function which is likewise Gaussian: for GSM beams,
W(x., p1) = exp[ — (positive definite quadratic form in x: and p.)]
= exp[—¢"Gq], (21)

where the 4 x 4 real symmetric matrix G completely characterizes the beam (Simon et al
1984, 1985). For axially symmetric fields, G is essentially a 2 x 2 matrix, while in general
it is four dimensional. The characteristic features of G such as positive definiteness and
some more subtle properties have been completely analysed. They lead to the following
geometrical constructions: axially symmetric GsM fields can be represented in a one-to-
one way as time-like vectors in a fictitious 2 + 1 dimensional Minkowski space; and the
action on them by symmetric ideal optical systems, symbolized by

G — G’ = SGST, SeSL(2, R), (22)

is given by Lorentz transformations on these vectors. If one gives up the axial symmetry,
then each field G can be represented in a fictitious 3 + 2 dimensional de Sitter space as a
certain second rank antisymmetric tensor, while the action on it by a system
corresponding to some S e Sp(4, R) amounts to a de Sitter transformation.

These geometrical representations of GsM fields are practically useful because they.
allow a systematic classification of the fields and evaluation of the invariants associated
with them. Many questions of physical interest, which are extremely cumbersome to
treat in the traditional wave-optical language, become quite easy to answer in the
combined generalized-ray and group theoretical language.

It is perhaps surprising, but yet gratifying, that we have been able to find so many uses
for group theoretical methods in such a well-established subject as optics!
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