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Properties of the symplecton calculus
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Abstract. The representation of the group SU(2) afforded by the symplecton
calculus of Biedenharn and Louck is mathematically related to the older treatments
of the representations of this group. The method used is similar to the phase space
description of quantum mechanics, and considerably simplifies important calcula-
tions.
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Introduction

In the construction of unitary representations of continuous groups that arise in
physical problems, physicists frequently make use of the algebra of harmonic
oscillator operators, or as they are also called, boson operators. Thus one starts
with a certain number of independent boson creation and annihilation operators
and tries to form functions of these which will obey the commutation rules of the
Lie algebra of the continuous group one is interested in. The motivations for
this procedure are clearly the ease with which one can compite commutators
among Functions of boson operators and the ease with which one can deal with
the states of these oscillators, their scalar products, etc.

A continuous group whose representation theory finds very wide applications
in physical problems is SU(2), the unitary unimodular group in two dimensions.*
This happens because SU(2) is the universal covering group of the group of real
orthogonal rotations in three-dimensional space. And it is in connection with
SU(2) that one has the best-known example of the use of the boson operator
technigue for construction of group representations, namely, the Jordan—Schwinger
construction (Jordan 1935; Schwinger 1952). This expresses the three hermi-
tian generators of SU(2) as certain functions of the annibilation and creation
operators associated with two independent harmonic oscillators, and one is thereby
led to a specific unitary representation of SU(2). Actually, considered purely as
a representation of SU(2), what one obtains via the Jordan—~Schwinger construc-
tion is identical to a representation of SU(2) obtained by more elementary means
not involving oscillator operators at all but merely certain polynomials in classical,
commuting, complex variables. This latter is described, for example, in ‘Weyl’s

* For tlre representation theory of this group see, for example, Edmonds A R (1957).
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book (Weyl 1931). Thus one may look upon the Jordan-Schwinger calculus

as being a mathematically equivalent reformulation of Weyl’s treatment, but which
makes certain calculations simpler.

One might have thought that the Jordan~Schwinger construction was minimal
in the sense that one could not do with less than two independent oscillators in
building up the SU(2) structure. However, it has been shown by Biedenharn
and Louck that this is not so, and that a truly minimal oscillator operator con-
struction of the representations of SU(2) exists which works with one boson alone,
(Biedenharn and Louck 1971). They have named this construction the *“ Symplec-
ton calculus.” (However, this reduction from the use of two bosons to just one
is accompanied by some basic changes in the interpretation of the formalism; this
will be briefly discussed later). When one identifies the representation of SU(2)
provided by the symplecton calculus, one finds it to be the same as the one provided
by the Jordan-Schwinger scheme or by Weyl’s treatment. One would suspect
therefore that there is a well-defined mathematical transformation that relates the
symplecton calculus to the older ways of treating the group SU(2), which trans-
formation brings out clearly the points of equivalence in the various treatments.
The purpose of this paper is to develop this equivalence transformation in detail,

and also to show how some calculations in the symplecton calculus can be
simplified with its use.

The material of this paper is artanged as follows. Section 1 contains a brief
resumé of the Weyl and Jordan-Schwinger treatments of SU(2), followed by an
account of the symplecton technique. In section 2 we establish the equivalence
between the symplecton calculus and the Weyl treatment of SU(2) which uses
polynomials in classical commuting variables. With the help of this equivalence,
we are able to give a closed expression for an important set of operator polynomials
whose defining properties were set down by Biedenharn and Louck. This is an
illustration of the usefulness of the equivalence mentioned above. Another illus-
tration is contained in section 3 where we give a simple proof of an important
multiplication law for the above-mentioned polynomials; the proof given by
Biedenharn and Louck was based on induction while ours is somewhat more

direct. In the concluding section, we make a few remarks comparing the different
treatments of SU(2).

1. Various treatments of SU(2)

The defining representation of the group SU(2) consists of all complex unitary

unimodular matrices in two dimensions. Thus a general element g can be written
in the form

— e B 21 812 —
e=(_3 ) ter+ipp=1 1.1
in terms of tw‘o complex parameters ¢, 8 [The bar denotes complex conjugation).
Group mualtiplication corresponds to matrix multiplication in this defining represen-

tation. One usually identifies the three (hermitian) infinitesimal generators in

this case with the Pauli matrices; writing Jy, & =1, 2, 3 for them in general, one
has here:
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S~ to 1.2

In an arbitrary (unitary) representation of SU(2), the (hermitian) operators J,
obey the commutation relations

[V Ji] = ieuimTm (1. 3)

As is well-known, there 1s one unitary irreducible representation (UIR) of SU(Q)
(up to equxvalence) in each complex dimension (2j4-1), j=0, 4, 1,... And
within any given UIR one can introduce a basis consisting of the elgenvectors of
Jy, say, with well-known ex} ressions for the matrix elements of the other two
generators J;, J,.

The Weyl, the Jordan—Schwinger, and the symplecton calculi are three super-
ficially different ways of realising the UIR’s of SU(2). Each of them leads to
a direct sum of all the UIR’s of SU(2), once each. We describe them briefly in
the above-named sequence.

Let us start with Weyl’s treatment.* We consider polynomials f(§, 5) in two
complex variables &, 7. For conciseness, we may think of € and » as constituting
the two entries in a row-vector ¥, and then write f(¥) for the above polynomial.
The set of all these polynomials obviously forms a complex linear vector space
P of infinite dimension. In this space we define a set of linear operators T, g€ SU(2),
that give us a linear representation of SU(2):

(T,f) @) = f(#8) (1.4)

Here, the element g should be thought of as the 2 X 2 matrix appearing in eq. 1.1.
It is trivial to verify that we do have a representation of SU(2) here. The evalua-
tion of the infinitesimal generators of this representation is straightforward.
Writing J,(® for them (the superscript W is for Weyl), we identify their forms
by setting

T, o 1+ 0, + (89

g ~1+i60/2 +0(6%) (1.5)
We then find:
1 i 9 1 0 d
W — (¢t il W = — (&2 —
Jl z(fbv)’i'nbg):v]z 2(£3’7 77'52)’
1 D
JW = - hdl
The familiar raising and lowering combinations are given by
P
J W = J W 4 i, M= >
. P}
J_ W) = JI(W) — IJS(W) =7 b“é (1 ,7)

* The details that follow may also be found in Bargmann V 1962.
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This infinite dimensional representation of SU(2) is well-known to be a direct
sum of the finite dimensional UIR’s of SU(2), each appearing once. The reduc-
tion is achieved by considering polynomials f(§, ) which are homogeneous of a
given degree; this degree is clearly preserved by the transformations T, in &q.
(1.4). Foreachvalueofj, j=0,4%,1,...,a basis for homogeneous polynomials
of degree 2j is provided by the monomials

Fim (& m) = EF =[G+ m) | (G — m) T4,
mo=jj—1,..., ~j (1.8)

which arc (2j + 1) in number. The index m on f, is the eigenvalue of the gene-
rator J3™, and the (2 + 1) monomials for given jtransform under the action of
T, via the spin j UIR of SU(2); the numerical factors ensure thatin this basis each
T, is represented by a unitary matrix. Since these monomials taken together for

all j and m obviously span the space of all polynomials £ (¢, ), this construction
has led to a direct sum of all the UIR’s of SU(2), once each.

The Jordan-Schwinger method introduces two independent boson creation
operators a,T and their conjugates a, obeying the commutation relations

[aq, aBT] = Ba.B: [%a; aﬁ] = [aat 361‘] =0; ¢,8=1,2 (1 9)

These operators act on a Hilbert space ¢ with a positive-definite metiic and the
dagger denotes hermitian conjugation relative to this metric.* It follows that

there is 2 unique vector |0 ) in the Hilbert space (unique upto a phase factor)
satisfying

4, 10)=0, a=1,2; (0{0)=1 (1.10)

All the vectors of the Hilbert space are generated by acting on the vector |0 ) with
polynomials in the two (commuting) creation operators a,f. One now defines a
unitary representation of SU(2) on & by choosing the generators to be:

Jl98) = J W9 L (-8 = gt a
J_(J—S) = Jl(J.S) — UZ(J—S) = aaf a,
J S =t () a — at ay) (1.11)

(The superscript J-S is for Jordon-Schwinger). The hermiticity of the
generators is ebvious. To reduce this representation one only needs to notice
that all the generaters commute with the total number operator

JV = alf al + ag-‘- a2 = ‘Nl ‘;“' ATQ

(1.12)

alue 2j for W transform amon g
A basis for the Hilbert space

Consequently all those states with a fixed eigenv
themselves, and in fact irreducibly, under SU2).
can be defincd by

i m) = (@)™ (@Y= [0)[(+m) ! (j— m) I3,

n;:j,j——-—l,...,——-j; j=‘-0,%,1,... (1]3)

* We appeal here to the standard operator treatment of the simple harmonic oscillator i
quantum mechanics given, for example, in Messiah A (1970). w
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These vectors in fact form an orthonormal basis for the space, and again m is the
eigenvalue of J;W-S'.  And for fixed j, the (2j -+ 1) basis vectors | j, m) transform

via the spin j UIR of SU(2). The SU(2)-representation contents are clearly
identical in the Weyl and the Jordan-Schwinger schemes.

In fact, one can see that the Jordan-Schwinger calculus is essentially identical
to the Weyl treatment: the creation operators a,t in the former are analogous to
the commuting complex variables £, 7 in the latter, and one can think of a,, a,
as being analogous to d/d&, d/d7 consistent with the commutation rules eq. (1.9).
The orthonormal basis vectors |j, m) correspond to the basic monomials Sim (€, m).
The chief advantage in the operator treatment is that the notion of scalar prceducts
among the vectors is built into the Hilbert space structure so that computation
of matrix elements, etc., is made automatic. One could impose a Hermitian scalar

product into the space & of classical polynomials f(£, n) too if one wished, by
defining the basic moncmials to satisfy

(f;'m' (f, 77\9 .fjm (5’ 7))) = aj'jam'm (I .14)

Then the parallel is complete. In particular, no more than the definition eq. (1.14)
is needed to specify the scalar product, though if one wished to picture the scalar
product of two polynomials (&, n) and f' (&, n) as being given by some kind of
integration over the complex ¢ and % planes, that too could be arranged consistent
with eq. (1.14) (Bargmann 1962):

(f' & s fE& ) = | didédndriexp(— E— m) T DS (&) (1.15)

Equipped with this scalar product, the complete mathematical identity of the
Weyl and the Jordan-Schwinger techniques is easily seen.

The symplecton calculus generates a representation of SU(2) (in fact the same
one encountered twice above) using just one boson operator system. GCne con-
siders an operator a and its ‘‘ conjugate > 4 subject to the rule

@ al=aa—ad=1 (1.16)

To a limited extent, 4 and a are like boson destruction and creation operators,
namely, to the extent that the commutation rules coincide. However, the under-
lying linear space on which & and a operate is not a Hilbert space with a positive-
definite metric (in fact it is an indefinite metric space), and there is no vector
annihilated by 4. In any case, in building up the SU(2) representation, atten-
tion is focussed not on the underlying vector space on which d and a operate, but
on the linear space of all operafors constructed as arbitrary polynomials in the
pair of operators g, a subject to eq. (1.16). Let this linea.r space be called S.. A
particularly simple way to generate a linear operator acting on § is to consider
the operation of taking the commutator of a fixed element in § with a general. one:
this defines an operator on § associated with the chosen fixed element (which is
of course some polynomial in & and @). The three generators of SU(2) are built
up in just this way. Cne defines three operators Xu, X by:
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X, = —}a* X.=1%a* X, = }(ad + da) (1.17)

These X’sare elements of S. For any element f(a, @) in S, we define the associated
linear operator £(f) acting on S by

Qf)f (@ a) = 1f(a,a), ['(a,d)] (1.18)

f’ being a variable element in §. The SU(2) generators J'S) are then chosen 10
be the £’s corresponding to the X's:

]:t(S) = JI(S) i ijg(s) = (Xi) .
T8 = Q(X;) (1.19)

The X’s can be easily checked to obey the commutation relations of SU(2); via
the Jacobi identity this property is then ensured for the J§)'s,

(The superscript
S denotes symplecton).

This construction leads therefore to a representation of SU(2) acting on the
space S of operators built up polynomially from 4 and a. Now the degree of -
homogeneity of a polynomial f(a, 4) is not definable in the normal way in view
of eq. (1.16). But it again turns out that the representation of SU(2) occurring
in S can be broken up and expressed as a direct sum of the UIR’s of SU(2), each
one appearing once. And corresponding to this one can set up a set of basic poly-
nomials &, (4, @) which are linearly independent, span S, and effect the reduction

of the representation. The defining equaticns for determining the &, (a, d) have
been given by Biedenharn and Louck.

One sees that though all three methods lead to the same representation of SU(2),
the Weyl and Jordan-Schwinger methods work with polynomials in commuting
variables {in (&, 1) and in (a,%, a,") respectively] and define the representation on
these polynomials; whereas the symplecton calculus defines the representation
on polynomials in noncommuting variables a, @. The similarity lies in the use of
polynomials in two quantities. We will develop a detailed one-to-one correspon-
dence between the Weyl and the symplecton methods, which will then clarify the
structure of the latter. The technique we use is essentially what is used to express

quantum mechanics in classical phase space language (Wigner 1932, Moyal 1949).

2. Relation between Weyl and symplecton calculi

A general polynomial f (@, &) in § does not have a unique form because of
eq. (L .16). Howeveritdoesacquire a unique form if with the help of eq. (1.16) it
is rewritten in such a way that in each term the power of g stands to the left of the

power of d, when it will be said to be in ordered form. Thus by considering
expressions of the form

2 fra @ @ 2.1)
the f;,, being complex numbers, one botainsall elements of S, there being a one-
to-one correspondence between elements of § and sets of coefficients {f£,,}. Given

this, une can now set up a one-to-one correspondence between elements of S and

those of & by associating with the operator (2.1) the classical (i.e. non-operator)
polynomial
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2. (2.2)

Conversely, given any polynomial f (€, n) in &, we shall denote by
(f &)+ (2.3)

the operator belonging to S and obtained from f (€, n) by writing powers of ¢ to
the left of powers of % in each term, then substituting a for £ and 4 for » without
disturbing the positions. Thus we have

f(gs ’7) = ;‘? fr,a f'”'?' =) (f(fﬂ?))-l =r? f;,s a'a (2 4)

An important property of the (.).+ symbol is expressed by the following:
(f¢, )r=0=) f(§,m) =0 (2-5)

With the help of this correspondence every linear operation on § can be trans-
ferred to act as a linear operation on & and conversely. We see this now for
the SU(2) generators defined in the symplecton calculus. It suffices to work
with monomials and: then extend the result to polynomials by linearity. For
the case of J., we have:

J®aa=—aad=—3ad" +aadat (2.6)
Using eq. (1.16) to order the term 4*a® we find:

aa®=aa -+ 2sad +s(s— 1) a? (2.7)
so that we have:

s(s—1)
2

= (s 4+ 20 D )
~((e5+25m) ),

— (et e ),

&

This result is immediately generalised to arbitrary polynomials belonging to $
and reads:

709 (flem). = (e £ e (), @.9)

J{—(ﬂ) ar dG = g ari-l d'—l + ".-.-2

+

0

i

B

In a similar fashion, one easily establishes the equations

L0 (f ). = (S nge2rEm)
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10 (fEm = (e 3 (fg—15) S @) ; @.9)

in fact the SU(2) generators in the Weyl scheme and the symplecton scheme are
related by:

LSS E )= (RT™ e f (£, 7)), .10

Now the operator e? is a linear, invertible one acting on the space & of polynomials
in §, n. Equation (2.10) therefore shows that there is a complete equivalence of
the SU(2) representation constructed in the symplecton calculus and the more
elementary one constructed in the Weyl treatment. Since egs (2.4, 5) have already
established an equivalence between S and & as linear spaces, we can conclude that

as far as linear and group representation aspects are concerned, the two structures
are completely equivalent.

This equivalence gives a simple proof of the statement that the symplecton
representation of SU(2) is also a direct sum of all the UIR’s, once each. Other-
wise, demonstration of this fact would entail construction of the basis polynomials
Py (@, @) and verification of their properties. We can turn the situation to our

advantage and use the equivalence to give a closed expression for these polynormials.
Combining eqs (1.8, 2.4 and 2.10), we set:*

91‘ (a’ é) = 2 (lehu (§s "7))—1- (2 . 11)

The numerical factor included here is to obtain agreement with Biedenharn and
Louck. By considering simple cases like j = } and 1, one can check that one has
agreement with the explicit expressions given by them. Since ¢ exists, since
£ im (§, m) form a basis for &, and because of eq. (2.5), we have a simple proof that
P, (a,a) do form a basis for S. And relations of the form

Ja(S) ‘7):‘:“ (a’ ﬁ) = n"‘pjm (a’ '&):

J&9 P, (a, @) = [JF m) (j £ m + DR &, oz, (a, &) (2.12)

are automatic consequences of corresponding relations for the Weyl representa-
tion, and eq. (2.10).

3. The maltiplication law

The equivalence between S and & so far established concerns the linear and group
representation properties only and does not extend to multiplication. Clearly
multiplication of two polynomials f. £, 1) and f' (§,7) in @ is commutative, while
the operators (f(£, 7)) and (f (£, 7Y): do not commute. We need to express the

multiplication law in § in terms of polynomials in &; stated differently, given two
polynomials f(&,1) and f' (§,9) in &, we seek an expression for the polynomial
h(£,7) defined by ‘

(T EMA(SED) = (B E M)

G.1)
Such an expression can be obtained by working first with monomials.
Consider then the product
&€ =aada (3.2)

* It is clear that the polynomials &g (a, d) are uniquely determined .
e : ' u A
multiplicative constant> by thiir SU12) properties. P to j-dependent
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To move the factor d¢ to the right with the help of eq. (1.16), we may think of &
as dfda purely as a mnemonic; we then get: ‘

> ! . .
& e @) = (Z i Lt )é’

k=0

= (Z: 'l" S?% %k* 3 77') g = (& {e%R & 79} 7). (3.3)
¥

The operator Q herc was defined in the equation precedingeq. (2.8). Now, to
avoid splitting up the factors in each monomial we use a familiar device (Mebta,
1964) and write eq. (3.3) as:

& (&) = ({GXP (‘b'g:-m) P me & 772"}

) 3.4
bi=¢, ne=n/ +

One can now extend this result by linearity to any polynomial and one has

(f ' (f’ 77))+ (/ (éa "7))‘r = (h (é: ’7)){'
b m = {oxp (575 ) 6 m) S n0)] @.5)

Ei=4, Ng=n

This is the desired expression for the non-commutative multiplication law for the
operator polynomials in S.

We now make use of eq. (3.5) to derive an important multiplication law for
the symplecton calculus polynomials &, (a, @. As noted by Biedenharn and
Louck, this law is essential in the further aevelopment of their calculus. Consider

then the product
@}m (aa d) ‘wf’m' (aa d) = 2+ (eQ f}m (5: 77))’1— (lei'm' (f’ 77))+ (3 . 6)

Now the left hand side is again a polynomial in @ and 4; after ordering it, it must
necessarily be expressible as a linear combination of these same polynomials
P (a, d) since they span the space S. From general angular momentum theory
we can say quite a lot about the form this linear combination must take. Keep-
ing in mind eq. (2.12) as well as the fact that the SU(2) generators J,*S are the Q-
operators associated with the X [see eq. (1.19)}, we can express the behaviour of
P, (a, @) under finite elements of SU(2) thus:

exp (104,'S) P, (@, @) = exp (i0,X32) Py (a, G) €xp (— 16:X3)
=2 Dlm'm (6) P’ (a, d) 3 .7)

Here we have used axis-angle parameters for SU(2), and the matrices D/, (6y)
are the usual D-functions of angular momentum theory, Let us now also recall
the following facts: (i) the polynomials &, (4, @) are uniquely determined up to
j-dependent numerical factors by their SU(2) transformation progerties; (ii) the
Clebsch-Gordan coefficients for SU (2) are unique, normalised, invariant three-
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index tensors for this group; (iii) these C-G coefficients also enjoy the usual ortho-
normality and completeness properties.* Combining all this with eq. (3.7), we
immediately arrive at the following structure for the right hand side of eq. (3.6):

+4 _
Pim (G, @) Pyor (a, d) = ~ 'S G, m, om )X
= pj—i |
X" J {J') Py, mem (a, @) 3.8

The unknowns here to be determined are the factors {(j* |j|j’) which have no
dependence on the magnetic quantum numbers. To find them let us write eq. (3.8)
in the equivalent form:

24+ m VG m) LG+ ) LG — m) 1TE (eREmyim) (0§ ).,
= Z CUH" | m mom' +m) G127 x
o {_(j” + m + m') ! (j” —_— — In') !]__& (eQ fjrf+ " m’ nj';___nl—ga)+ (3 .9)

We can solve for the factors (j" | j |j' ) by using the law of multiplication eq. (3.5)
to evaluate the left hand side. But let us first specialise eq. (3 .9) to the case m = J,
m’ = — j’; this will be sufficient to ensure that none of the possible values of
J* are missed, and also simplifies the calculation. So we work with

207 (273 L (2°) 1 (8¥) e (¥ )
== ,‘Z‘; 27 W +F—Ji'G = +)03C (i | —JshJi—Ji) X
XTI (@R~ =417y (3.10)

Application of eq. (3.5) to the left hand side is trivial; on the other hand, using

cq..(Z.S), we can convert eq. (3.10) into an equation involving £ and 7 alone.
Doing so and shifting the operator e? to the left, we get:

E U =iV — i+ et —JL 1 J—i) x
<K JTFUTY E i

25:-.-( 2yt . p __‘1 32 »
(2N 1EY T < exp ( 2&:‘3—77) £ 3.11)

The polynomual standing on the extreme right is easily computed :

1ot — ‘ R :
expl ~ 5 55 g (=1 )2 !
p( 2 aga,,) Y Z rt2r 2j— Jr)) !((2‘;:)__ PR

rmQ

Tha actual I h 3-12)
uUpper imit to the index r is the lesser of 27 '

the var: g7 omzop e g ; y J and 2f".  If we ch

> g:r:bk rtog J=J - rineq.(3.12), then the range of ” and i ange from

: na % agree exactly with the left hand sid. € eXponents

e ofeq. (3. .
“ompare terme and equate the coefficients. In (Ehi(s rixla)x;j:rﬂ':vaet Zetmay cirectly
et:

* For tne definilons and pro

T F
Edronds A R 11957 perties of the SU(2) Clebsch-

Gordan coefficients see, for oXample
| ]
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CU il ~ihi—i 11

(= @) ! @27 ! :
'—U+J“~fﬂ[0”+j~fﬂtﬂ+ﬁ“ﬁﬂJ (3.13)

The particular C-G coefficient appearing here has the value (Edmonds 1957)
@+ .@h! E)! __J;

CG'ij" | —i'sdri—i) = (= 1)”"""'[(]-“/-‘,-")! G+7i+77+ D!
(3.14)

leading to the value
G = Q" +DGHS =N G+ = G+ =D
(j+i" +i"+ Dt (3.15)

for the unknowns in the product rule eq. (3.8). These results agree with those of
Biedenharn and Louck. They have been derived here however by a slightly more
direct and economical method, and suggest the value of utilising the relation
between S and & that we have established.

If one examines the arguments that led to the general form eq. (3 .8) for products
of the basic polynomials &,, (@, d), one realises that they are of a general group-
theoretic nature and should therefore apply to the space & and the polynomials
Jim (€, ) as well. That is, the relation

Sim (&, m) frm? (€, 0)
= 35' CG jil'm',mm'+m) (G 1jli") S, mim (€ 1) (3.16)

involving some new coefficients {(j” | j | j* )’ must necessarily hold. This is indeed
the case, but one finds that only the term j” = j + j survives. In fact one has:

G LT = B ey 1) Y Q1) (25 + 2 1T .17

This characteristic difference between the product laws for the polynomials in
S and in @ clearly arises because the former are polynomials in non-commuting
variables obeying cq. (1.16) while the latter are polynomials in the commuting
variables ¢ and 4. This is an elucidation of the remark of Biedenharn and Louck
that the product law eq. (3.8) with the coefficients in eq. (3.15)isa unique property
of the symplecton calculus.

4, Concluding remarks

Guided by the fact that the SU(2) representation content in the symplecton calculus
isidentical with what one has in the older Weyl and Jordan-Schwinger treatments,
we have set up the mathematical transformation that establishes the equivalence
of the linear and group representation aspects of the two approaches. One
jmportant motivation behind the symplecton calculus is its use of a single boson
operator system, in contrast to the two pairs used in the Jordan-Schwinger treat-
ment. But this reduction in the number of operators used is in some sense super-
ficial, since there is a change in the interpretation too. In the Jordan-Schwinger
case, one has a definite solution to the boson operator commutation relations in
a positive—definite Hilbert space, that is, a linear space of vectors exists on which
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the oscillator operators act linearly and irreducibly. And the transformations
corresponding to elements of SU(2) also act on this space of vectors, Thus, the
oscillator operators and the group representation act on the same space, 2nd the
vectors of this space can obviously be identified with polynomials in the two com-
muting creation operators. On the other hand, in the symplecton calculus, the
initial step is not to find a solution to the commutation relation eq. (1 .10)1in some
suitable vector space, but rather to directly consider the Sinear space of polyqon‘uals
in a and @&. And the SU(2) representation consists of linear operators acting on
these polynomials rather than on an underlying vector space on which a and 4
themselves act. That is why the SU(2) generators J,'9 are chosen as the *° £2-
operators >’ corresponding to suitable polynomials X, (@, @). Thus, as noted before,

one essentially ends up with a representation defined on polynomials in two
quantities.

[n this connection the following remark should be made. If one. §ets up a
solution to the SU{2) commutaticn relations eq. (1.3) by means of hermitian opera-
tors J; in a well-defined Hilbert space, then one need have no doubts that on

exponentiation one will obtaina genuine representation of SU(2). This is the situz}—
tion in the Jordan-Schwinger treatment. Alternatively, if one has any matrix
solution at all to the commutation relations eq. (1.3) in a finite-dimensional vector

space, then too one is assured that on exponentiation a representation of SU(2)
will result; and in fact in a suitable basis the generators will appear as hermitian
matrices. This is the case with the Weyl treatment if one approached it from the
expressions in eq. (1.6) for the penerators: these leave invariant subsets of poly-
nomials homogeneous of a given degree, and such subsets are finite dimensional.
[Of course, in this case one has the finite transformations already given ineq. (1 .4)].
However, if one exhibits a solution to eq. (1.3) by means of linear operators in an
infinite-dimensional space, without securing the Hermitian property for them,
then in general one will not be dealing with a representation of SU(2) at all. A
simple instance of this situation is the following: take any non-trivial unitary
representation of the non-compact group SU(1, 1), possessing hermitian generators
in a positive-definite Hilbert space (Bargmann 1947). By multiplying two of the
SU(l, 1) generators (the *‘ non-compact™ ones) by factors of i and leaving the
third alone, one immediately produces a solution to the SU(2) commutation
relations but no representation of SU(2) at all.*

At first sight the symplecton
calculus solution to the SU{2) commutaticn rules would appear to belong to this

third category. The space § of polynomials is infinite-dimensional, is not a priori

equipped with a positive-definite scalar product, and the operators Q(X, ;) therefore
have no verifiable hermiticity properties.

: . There is therefore no guarantee that
the Q(X;) will exponentiate to give a representation of SU(2). The equivalence

we have established between the J,(S) and the J,(™ helps solve this problem for the
symplecton calculus. It proves the existence of, and leads to explicit expressions
foF, tthc basic polynomials &, (g, @). Purely within the symplecton calculus itself,
this important question could be settled by the realisation that the action of any
* The finite dimensional

representations of the two groups SU(2) and sSud,
related: from a representation of the one we ean

1) are closely
continuation.

get a representation of the other by analytic
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Q(X;) on a polynomial f(a, @) does not increase the degree of the leading terms

in f.

Finally, it is clear that just as the symplecton calcuius has a natural extension
to the groups Sp(2n), so does the analysis presented in this paper. This would
bring in the language of classical Hamiltonian dynamics and phase space, and the
Movyal scheme for transcription of quantum mechanics to classical language. The
present work may also suggest generalisations of the symplecton caleulus itself.
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