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Abstract. A quantum-mechanical generalisation of Carathéodory’s theorem in
classical dynamics is established. Several related properties of classical canonical
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Introdaction

It is well known that there are many analogies between the formal structure of
classical Hamiltonian dynamics on the one hand, and the structure of quantum
mechanics on the other. To each of the important conceptual elements in the
former there exists a corresponding element in the latter. Thus, for example, we
have the notions of Poisson Brackets (PB’s), canonical transformationsand the
Hamiltonian form for the equations of motion in classical dynamics; and the
analogous things in quantum mechanics are commutators of operators, unitary
transformations, and the Heisenberg form for the equations of motion. Of course,
the discussion of such parallels makes sense only in the case of quantum systems
that possess classical analogues.

It is remarkable that the existence of these analogies does not stop at the level
of the concepts mentioned above, but goes much further. Thus, several of the
equations pertaining to classical transformation theory also turn out to possess
quantum analogues: the equations in the two cases can be worked out so as to
have exactly the same formal appearance, and differ only in the meanings attached
to the various symbols. This was shown by Jordan and Dirac soon after the
quantum mechanical transformation theory had been worked out (Jordan 1926;
Dirac 1933). Leaving to the next section the tasks of establiching and explaining
an adequate notation, the result of Jordan and Dirac may be briefly described as
follows: If one considers a classical dynamical system described by canonical
variable pairs ¢,, P,, a canonical transformation leads to new canonical pairs
0., P,, given as functions of the old variables. In the case that the ¢’s and Q’s
together constitute a maximal set of independent phase space variables, there exists
a single real ““ generating function” S(g;Q), determined upto an additive con-
stant, in terms of which the canonical transformation is completely specified.
The equations that do so are:

38(q; Q) , _ _3S(g; Q) .
r = T , Pr= 20, (A)
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Here, of course, all the quantities involved are classical real variables and func-
tions. Jordan and Dirac demonstrated that for certain kinds of unitary trans-
formations on the Hilkert space of a quantum mechanical system described by
! canonical position and momentum operator pairs, exactly the same equations as
. the above hold good; however, now the g¢’s, p’s, Q’sand P’s are all hermitian
i operators, and S(g; Q) is also an operator which is determined by the unitary

‘ transformation. It is to be written in a particular  well-ordered” way, with
. , dependences on g always appearing to the left of dependences on @. The con-
ST dition on the unitary transformation such that eq. (A) hold is justthat the operators
' q and Q are all independent. One loses however, the reality property of §; in
the quantum case, S(¢g; @) need not be a hermitian operator.

T T iR

Going back to the classical case, it is known that a suitable generalisation of
eq. (A) exists in the case of canonical transformations for which the ¢’s and Q’s
do not form a maximal independent set of phase space variables (Whittaker 1927).
One has to introduce additional variables which are just Lagrangian multipliers,
and these appear explicitly in the formulae that replace eq. (A) above. Dirac has
5 shown that this case too has a quantum analogue, with exactly similar looking
| equations being valid in both classical and quantum mechanics (Dirac 1945). In
the quantum case one has to introduce the analogues of Lagrangian multipliers
which however turn out to be operators; and the ordering prescription is to place
them in between the ¢’s and Q’s.

There is in the classical case a very interesting property of canonical transforma-

‘ tions that asserts the existence of a set of equations of the general form (A), what-
f ever the transformation. It essentially says that if one is given any canonical
| transformation in phase space, one can always form a maximal independent set
of phase space variables made up of equal numbers ¢f old and new variables chosen

in a special way. This result is due to Carathéodory (Carathéodory 1965),

This property gives one a complete and satistying description of a// canonical trans-
formations, even those for whicheq. (A) or one of its commonly described three

variants fails. Indeed, most treatments of canonical transformation theory stop

with the consideration of four distinct types of generating functions S (g; Q),

S3(g; P), S¥(p; Q) and S (p; P); and if for a particular canonical transforma-

tion none of these types is suitable, then it is termed degenerate and is usually

handled by the method of Lagrangian multipliers. Carathéodory’s theorem tells

us that as a matter of fact no canonical transformation is really degenerate in any

general sense, since descriptions of it of the general form (A) always exist. We

can go further and list the complete set of possible descriptions of a given canonical

transformation and see explicitly how these different descriptions are related to each
other.

The purpose of this paper is to extend the results of Jordan and Dirac by stating
and proving a quantum-mechanical analogue to Carathéodory’s theorem. We
find that in addition to the existence of such an analogue, the detailed formulae
for a canonical transformation in the classical case and a unitary transformation
in the quantum case are again strikingly similar; this is perhaps to be expected.
However, when one works out the equations that connect different possible descrip-
tions of a given unitary transformation, one then finds a departure in form from
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the analogous equations valid for a canonical transformation. But this difference
has an interesting interpretation and is reminiscent of the Feynman path integral
formulation of quantum mechanics (Feynman 1948).

We present the material of this paper in the following order: In section 1 we
set up a concise notation for dealing with the phase space of a classical dynamical
system, with the help of which an elegant statement of Carathéodory’s theorem
and its consequences can be given. Section 2 contains the statement and proof
of a quantum-mechanical version of Carathéodory’s theorem. With the help
of this result, we analyse in section 3 the details of the independent descriptions
of a unitary transformation in quantum mechanics, and see how one can pass
from one description to another. At thisstage the characteristic differences between
the classical and quantum formulae will become apparent. Finally, in the con-
clusion, we relate our results to those of Dirac, show how our results can be inter-

preted, and make some comments on the relationship between classical and quantum
mechanics.

The level of mathematical rigour maintained in this paper does not pretend to
be higher than the level maintained in the quoted papers of Dirac. In particular
no attention is paid to questions of domains, and boundedness or unboundedness
of operators. Since our purpose iy to bring out the formal similarities between
classical and quantum mechanics, this seems reasonable.

1. Resumé of classical results

We consider a classical dynamical system described by 21 canonical phase space

coordinates ¢, .. 4 P1s ---» P»- Among functions of these variables, the PB
is defined by

ansa =), (LE-LX) (L1

ywm]
The values of the fundamental PB’s are
{qn q‘} = {p"pl} =0, {g,, pn} = 3y, (1 2)

For conciseness, we may sometimes write a single symbol w,, p=1,2,...,2n
to stand for all the ¢’s and p's: w, =¢q, w,=p), wg =g, ws=p,

2

s
Wypy = Gu> Won = Pp. Then with the help of an antisymmetric numerical matrix
¢,y || Whose only non-vanishing elements are
| €19 = €34 = -+ = €pg9, = T 1,

€ = €3 = ... = Eppy ey = — 1 (1.3)
equations 1.2 and 1.1 take the forms

Af(w) dg(w)

{wm wv} = Cup {f(w)’ g(w)} = Cu pr. dew,

(1.4)

(A summation from 1 to 2»n over repecated greek indices is understood, unless
explicitly indicated otherwise). ~
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We are interested in subsets of n variables picked out from the 2a quantities
w, in a particular way. Let x = {x,;} denote such a subset. Itis to be formed by
including one variable from each canonical pair (¢,,p,), r = 1,2, ..., n and drop-
ping the other. Thus we have, for each value of » from | to n, either

Xopy == Gyy Xoy = 0. A (1.5)
or

Xpy =0, Xy = p, (1.6)
Clearly there are precisely 2° such subsets. These subsets of the phase space co-
ordinates are just the maximal subsets one can form comsisting of variables in
involution with one another; two dynamical variables f(w) and g(w) are said to

be in involution if their PB vanishes. Given such a special subset x with elements
x, (half of these elements are zeros), we shall denote the complementary set of

variables, namely, those left out of x, by x, and its elements by J?p,. Along with
each x, x is also one of the 2 special subsets defined above, and we always have

X, + Xy =wup=12,...,2n (1.7)

In this paper we shall for simplicity deal with time-independent canonical
transformations in the classical case, and time-independent unitary transformations
in the quantum case. (Generalisation of our results to the time-dependent case
is straightforward). A classical canonical transformation consists in giving 2 n

independent phase space functions Q, (g, p), P,(¢,p), r = 1,2, ..., n, which obey
the fundamental PB relations

{Qn Qa} = {Pr: Pa} =0, {Qn Pn} = 3, (1.8)

All these PB’s are to be evaluated using eq. 1.1. It is very well known that if 'any
such transformation is given, one always has

r=21: (p,dq, - -Prer) =dW (1 9)
where W is some function on phase space; in fact the condition that the left hand
side of €q.1.9 be a perfect differential is the necessary and sufficient condition that
the transformation g, p — Q, P be canonical. If for a given transformation, the
2nvariables ¢g,, Q, form an independent set, one can imagine the function W express-
ed as a function of them; writing W = S(q;Q), one immediately obtains eq. (A)
of the introduction characterising such canonical transformations. The other
three commonly treated types of generating functions correspond to the variable
sets (g, P), (7, @), (p, P) forming maximal independent sets (Kilmister, 1964). One
deals with each of these by suitably altering the left hand side of eq. 1.9. However,

itis easy to write down canonical transformations for which none of these four
possibilities exists.

We now state Carathéodory’s theorem. Let a canonical transformation
4r Pr — Q., P, be given, and let x be any special subset of the g¢’s and p’s chosen
in the manner described earlier. Then the theorem says that there will always be at
east one special subset X formed from the new variables Q, P such that the 2n,
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quantities x,, X, form a maximal independent set. With the given canonical trans-
formation we can then associate several such complete sets of variables (x, X),
there being at least one for each of the 2* possitle choices of x; and with the help
of each such complete set we get one explicit description of the transformation.
With the use of the matrix | ¢4* | which isinverse to || e,, ||, we can easily manipulate
eq. 1-9 so as to read

A” (;c“dx,, — X .4X;) = perfect differential
= dS(x; X) (1.10)

The generating function S(x; X)is unique up to an additive constant, and has been
written in terms of the independent set (x, X). The generalisation of eq. (A) of the
introduction clearly reads

~ DS(-’C;X)’ b 0S(x; X) | (1.11)

=T T, R S &

and the function S (x; X) will obey the condition that the first half of the above

transformation equations allow the X’s to be solved for in terms of x, x. (One
must restrict A in eq. 1.11 to those values that correspond to non-zero components

of x and X ). Let now (x, X) and (y, Y) be two complete sets of co-ordinates asso-
ciated with a given canonical transformation, and write S(x; X), S'(y; Y)
for the generating functions in the two cases. The final equation we are interested
in is the one that relates these two generating functions. Apart from an additive
constant, one easily finds the relation to be

S'(y; ¥)= S(x; X)+ " (x 3, — X,.Y,) (1.12)

We stress that the functions S and S’ give two possible descriptions of one 'and the
same canonical transformation and that the relation between them is a local one

in phase space.

2. The quantum mechanical case

We now consider a quantum-mechanical system describable in terms of n canoni-
cally conjugate pairs of position and momentum operators gq,, p,, r=1, 2, ...
n. (The symbols g, p, x, », ... of the last section will be used again here, though
now they denote linear operators on a Hilbert space; this makes the writing easier
and causes no confusion). These operators are assumed to be hermitian and
irreducible or complete and to obey the fundamental commutation relations

[4rs gl =[Pnpl= 0, [Qr)pa] = ihan (2. 1)

(h is Planck’s constant and k = h/27). For definiteness we assume that each of
the operators g,, p, has all real numbers from — co to 4 oo for eigenvalues, analo-
gous to their being Cartesian position and momentum operators for particles.
The property of irreducibility or completeness may be described in two ways:
one is that, roughly speaking, all dynamical variables for the system can be con-
structed as functions of the ¢g’s and p’s; the other is that any operator that
commutes with all the ¢’s and p’s is necessarily a C-number.
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Subsets of operators x = {x,}, formed out of the ¢’s and p’s in the manner des-
cribed in the classical case, have now a simple description in the standard termino-
logy of quantum mechanics (Dirac 1958): they are just the complete commuting
sets of operators that one can pick out of the complete set of operators g,, p,, and
there are exactly 2* such complete commuting sets. Further, if x is one of these

sets, so is the complementary set of operators x. The simultaneous eigenvectors
of the operators x, are non-degenerate and form a basis for the Hilbert space.
We will write x”, x”, ... for collections of eigenvalues of the x; x' stands for a set
of numbers {x',}, with a particular entry being zero if the corresponding operator
entry in x is zero. Thus the n non-vanishing real numbers in x’ denote a set of
eigenvalues for the corresponding n commuting operators in x. The main pro-
perties of the normalised simultaneous eigenvectors of the x are summarised by

¥y = I 8(x" — x,) 2.2)
7

xﬂ‘ lxl) — xpll l xl >’ (xll

where in the second equation the product is taken over those values of u for which
X, is not zero. The phases of these basis vectors | x') are not determined by
these equations, but they can be adjusted so that the complementary set of opera-

tors x has the representation

- ! 1 0 ’ , - . ) ’
x.u.lx):""lheuvb’;"[x% (x lxpuzlhfwbx'r (X% | 2.3)
v ’

Again, we restrict 4 to values for which 3;“ is not zero.

We can now state Fhe quantum-mechanical analogue of Carathéodory’s theorems.
Let U be any fixed unitary transformation and let us write Q,, P, for the transforms
of g, p, by U:

Q, = Ug, U, P.=Up, U r=1, 2,...,n (2'4)

Then the @’s and P’s also obey eq. 2.1, are irreducible and complete, and analogs

to egs 2.2, 2.3 for subsets X, X of them can be written down. We assert: Given
a complete commuting subset x of the operators g,, p, and a definite unitary operator
U, one can always find a complete commuting subset X of the operators Q,, P,,

such that the 2n operators contained in x and X form an irreducible and hence
complete set. |

We shall first prove a particular case of this result, and then explain how the
general case follows. Let the complete commuting set x consist of the operators
gnr=1,2,...,n. Consider now some subset of the operators Q,, say {Q,} with
p running over a selection of the numbers 1, 2 ..., n. We shall say that the pro-
perty @ holds for {Q,} if the following is true: if we choose any one of the Q’s in
{Q}, it is pgssible to find an operater that does not commute with it but that
commutes with the remaining Q’s in {Q,} as well as with all the g’s. In such a
case, none of the operators in {Qp} can be expressed as a function of the remaining
ones and the ¢’s. If O fails for {Qp}, it must fail with respect to at least one of
these- Q’g. Let us now start with the full set of Qs namely Q,, Qs, -+ -, O and
enquire if © holds for this set. If it does, then none of the Q’s can be expressed

ALY s

ey
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as a function of the other Q’s and all the ¢’s. In this case, our proof when com-
pleted will show that the 2r operators ¢y, ..., G Qi - - ., Qn are irreducible and
so complete. More generally, let us supposc @ fails for Qy, Q,, ..., @, and for
simplicity of notation suppose it fails with respect to @,. That means that any
operator commuting with the (2n — 1) operators gy, ..., gn, @1, --. Quy auto-
matically commutes with Q, as well; we may conclude that @, is some function of
Gy o on Guy Q1s -+ > Quor. (Jordan 1969). Consider next the set Q,, ..., O,
and suppose © fails again, and once more for notational simplicity suppose it fails
with respect to Q,-,. We then conclude as before that Q, , is some function of
Gis « o5 Gy Ors - o> Qu—p; using this expression for Q,; in the previously estab-
lished expression for Q,, we find that the latter is also some function of ¢, ...,
Gny Q1 - - -» Ou_n. Proceeding in this way, we may end up with all the Q’s being
expressed as functions of the ¢’s, which means that @ fails for every subset {Q,}
of the O’s. In this case, we cansee that the 2» operators gy, ..., q,, Py, ..., P,
form an irreducible set. For, any operator F commuting with these 2n operators
also obviously does so with @y, ..., Qn, ;. ..., P,; but the latter set is irreducible,
so F must be a C-number. More generally, we will end up with a subset of Qs
for which © holds, and each of the remaining Q’s is some function of the Q’s in
the subset and all the ¢'s. Again for simplicity of notation suppose & holds for
O,. ..., Q,, and that each @, for r = A -+ |, ..., n is some function of the n g’s
and the first 4 0’s. We shall now show that the 2n operators q,, ..., g,, Oy, - . .,
Q.. Pui>..., P, form an irreducible set. Let F bean operator commuting with
each of these 2r operators:

[Faq"] =0,r=1,2,...,n (2.50)
[F,0]=0,r=12,...,4 | (2.5 b)
[F,P] =0,r=A4+1,...,n (2-5¢)

Since each Q, for r == A4 + 1, ..., n is a function of the ¢’sand @,, ..., Q,, from
eqs 2.5a, b we conclude that

[F,O]l=0,r=4d4+1,...,n (2.6)

Thus F commutes with all the ¢’s and likewise with all the @’s. Recalling that
each of these is a complete commuting set by itself, we see that F must on the one
hand be a function of the ¢’s alone, and on the other hand it must be a function
of the @’s alone:

F‘:‘-l/}(’qln"‘aqﬂ)——‘(f'(Qla"'a Qn) (2'7)

Using this expression of F in terms of the @’s and imposingeq. 2.5 ¢, we see that
in fact ¢ is a function of Q,, ..., Q, alone, so we henceforth write ¢(Qy, ..., QL.
If both ¢ and ¢ had no genuine dependences on their arguments but were merely
constants, that would be proof that Fis a C-number and so the irreducibility of
Ais oo Qo> Q1 -« or Ouy Pasiyy - -+, P, would be established. But this must neces-
sarily be the case! If ¢ has some essential dependence on its arguments, so must
s on its arguments; the second equality in eq. 2.7 could be written as

®(Q1,Q27"'?QA3¢(Q))=O (2.8)
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denoting some functional relation among the operators appearing inside @. Now
in general the O’s and the ¢’s do not mutually commute, so any relaticn ccnnecting
them cannot be handled as a classical equation. Butineq. 2.8, the ¢’s appear only
in the combination ¥(g), and this combination does commute with each @, by
virtue of eq. 2.7. Thus eq. 2.8 is a connection among mutually commuting
operators, so it can be handled just like a classical equation. To the extent that
there is some dependence on the Q’s, we can use eq. 2.8 to solve for and express
one of the operators Qy, - - -, @, as a function of the remaining Q’s in this set, and
the function (g). But this must be impossible since the property @ holds for
Q. ..., Q.! Hence there can be no essential dependence on any Q in eq. 2.8,
and none on the ¢’s either. Thus the operator F must bea C-number, and the
irreducibility of the set ¢, ..., Gus Q15 -+ s Quy Paty, ..., Py is proved.

We thus see that for the special case when the complete commuting set x chosen
from the g’s and p’s consists of the g’s, we can find a complete commuting set
X from the Q’s and P’s, namely @, ..., Q. Patq, --., P,, such that x and X are
together irreducible. It is now easy to generalise to any other choice of x. A
general choice of x differs from the choice ¢q, ..., g, by having some of these g’s
replaced by their canonically conjugate p’s. But, the interchange

Ge > Pe; Pr > — 4, (2.9)

carried out for any collection of values of r constitutes, as is well known, a unitary
transformation (or more precisely, there is a unitary transformation that imple-
ments it); it is just the Fourier transformation with respect to the relevant set of
q’s. ,Given any complete commuting set x chcsen from the ¢'s and p's, and the
operators @Q,, P, resulting from ¢,, p, by a unitary transformation U, we can intro-
duce an intermediate set of operators §g,, p, such that x consists cf §,, gy, . . ., G-
These operators g, p will be unitarily related both to ¢, pand to @, P. The theorem
in the form already proved applies to the transition g, p — Q, P, showing that a
complete commuting set X out of Q,, P,, can be adjoined to the ccmplete ccmmut-
ing set gy, ..., d, to yield an irreducible set. But since the set §,, ..., §, consists
of precisely the initially chosen set x picked up from the operators g,, p,, the
quantum-mechanical version of Carathéodory’s theorem, as stated following
eq. 2.4, is seen to be proved.

3. Representations of a umitary transformation

We shall now show that equations similar to eq. 1.11 can be set up to characterise

a unitary transformation in quantum mechanics, thereby further developing the
analogies existing between classical and quantum mechanics.

The complete set of operators ¢, p, r =1, 2, ..., n, and the unitary operator
U being given, we have first the transformed operators Q,, P, which are also com-
plete. Next, with any given complete commuting set x out cr)f the ¢’s and p’s, we
associate a complete commuting set X out of the Q's and P's, such that thc; 2n
op:rators in x and X are together irreducible. Given x, there ’exists at least cne
such X, as shown in the previous section. The simultaneous eigenvectors of th
x’s give a basis for the Hilbert space, characterised by egs 2.2, 2.3. SimilarI;



Analogy between classical and quantum mechanics 9

the simultaneous eigenvectors of the X, also define a basis for the Hilbert space,
.and we have the properties
XulX')sz,'lX’), (X"X,)’;—HS(X“”—"X”,)
o

o
X,

)

Xu | X') = — ihen 2,
4

X'y, (X'| X, = ihe, (X' | 3.1)
With the forms chosen for x and X in the respective bases, there are no phase
ambiguities ecither in | x" ) orin | X' ) (except for overall constant phase factoig).
The unitary transformation U is then completely characterised by the scalar pro-
ducts of vectors drawn from these two bases, namely, by

(x| X") (3.2)

taken for all allowed values of the cigenvalue sets x” and X’. We know in advance
that x and X together constitute a complete set, so that any other operator can be
expressed as a function of these. Using a result of Dirac, we then see that the
scalar product 3.2 will not vanish for any values of x* and X’ in their allowed
domains of variation (Dirac 1945). (Qualitatively speaking, if there had been any
functional relations among the x,’s and X,’s, that would have led to the scalar
product 3.2 being proportional to one or more delta functions with arguments
depending on x’ and X', but we are assured this will not happen). A general
operator F is fully determined by its ““mixed x-X representative > which con-
sists of the ‘ matrix elements”: ’

F(xX;X)=(X|F|X") 3.3)
(However, these mixed representatives must not be treated the way one treats
matrices, since the x-X representative of the product FG of two operators F, G
is not simply the “matrix product” of the individual x-X representatives but
involves an intermediate integration with a non-trivial factor). To express F
explicitly as a function of x and X, we consider the function of x" and X’ defined
by

F(x';X) _(x'|F|X')

(x'1X)  (x[X")
which we may since by Dirac’s result ( x' | X’) never vanishes, and then expand
its x’ and X’ dependences in the general form

F(x'; X') _ . .
e _Z u, () v, (X7) 3.5)

n

3.4

For example, one can expand the X'-dependence of the left hand side of eq. 3.5
in terms of some complete set of functions v, (X’), and dencte the expansicn co-
efficients by u, (x"). (The choice of the complete set v, (X’) is arbitrary and does
not influence what follows). Usingeq. (3.5), one can express Fas a ““well-ordered”
function of x and X, namely, the dependences on x always stand to the left of
dependences on X'

(X' |F|X') = Zu{x" |ua (XY 0, (X) | X")
= 2y (X |ty (D)0, (X)]| X") |
F = 2- u-(x) v.(X) (3'6)
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We now use the above formulae to compute the mixed x-X representatives

of the operators .{‘#, X .« and then deduce their expressions in terms of x and X.
Following Dirac (Dirac 1933), we introduce a function S (x"; X') by setting

(x' | X'y = exp (iS (x'; X')/h) (3.7)
and denote the corresponding well-ordered operator obtained via eqs 3.5, 3.6 by

S(x; X). This operator need not be hermitian. Making use of eqs 2.3, 3.7,
we get:

i ) - O iy v DS (X' XD, v
(x lxﬂX):‘h%g;f(x | X' = — T x K | X'
, 0S8 (xg X .
=— (X | “‘“%f:““)lx)
~ S (x; X)
Xp = 7 €uy T 3.8
u €up X, ( )
Similarly combining eqgs 3.1, 3.7 leads to
- S (x; X)
Xo= € —33 (3.9)

In the above two equations, we restrict u to values for which the left hand sides do
not vanish. These are now operator equations, and the operations 3/2X,, 9/dx,
have a straightforward meaning since x and X are individually commuting sets
and S(x; X) is well-ordered. Comparing these operator equations with eq. 1.11
valid for a classical canonical transformation, (recall that there all the quantities
x, X, S are classical real variables), we see that the equations are of the same form
in the two cases; it is just that the meanings attached to the symbols are different.

Two different descriptions of a given canonical transformation in classical
dynamics, both of the general form of eq. 1.11, involve two different generating
functions related by eq. 1.12. We want to obtain the quantum-mechanical analogue
of eq. 1.12. The unitary operator U being held fixed, let x, X be one complete set
of operators of the type described above, and let y, ¥ be another. Then the trans-
formation U is characterised by a function S (x'; X’) or equally well by a function
S'(y'; YY), and we seek the relation between them. In the general case, the com-
plete commuting set y differs from the set x in that some of the ¢’s in x are replaced
by their corresponding p’s, some of the p’s in x by their g's, and the remaining
operators in x reappearin y; X and Yare similarly related. To connect S(x’; X"
and §'(y'; Y’)in this most general case would require a massive automation
of the notation. Tt suffices to examine a couple of special cases from which the
general form of the transformation law to go from S to S’ can be deduced. Let
us suppose the unitary transformation U admits both x=g¢q, ...,q,, X = 0.,
o Quand y=py, ..., po. Y =P, ..., P, as complete sets. We want to relate
S(g'; Q)and S'(p'; P'). For a single degree of freedom, (cne ¢ and one p), the
eigenvectors of ¢ and of p are related by Fourier transformation:

o0

ip')= [ dq'htexp(ip'q'/B) |¢")

-0

lg') =13 g‘f_dp'h"* exp (—ig'p' Ry | p’) (3.10)
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For the relation between S{(g’'; @) and S’ (p'; P’) we then get:

o0

ey = (o der) g e 1@ QP
- f ( 13- dg,’ dQ,')h~"<q'1Q’>exP (‘;; g: (PO, — p, q,'))
xep(f{s@; o) + £ @o —pan)) G- 1)

This example is an extreme case in the sense that none of the operators in the set
x, X appears in y, Y. The classical relation corresponding to eq. 3.11 arise. from
specialising eq. .12 appropriately and reads:

S'(p; P) = S(q; Q) + 2 (P, 0, — p.q) (3.12)

As another example, one in which (x, X) and (y, Y) possess common elements,
consider a unitary transformation U that admits X =¢q,, ..., ¢p, Yy =p1 ..., Dy,

X=Y=¢@,,...,0, Thatis, both ¢, Q and p, Q form irreducible sets. Then
eq. 3.11 gets replaced by

exp (;1, S (7' Q’))

oo

. f j‘]- dqu) h—n/2 exp (i {S (ql; Q/) . i‘l prlqu})
rm] re=
(3.13)
whereas the corresponaing classical rslation would have been:
]
Se;:Q=80: Q— 2 pgq, (3.14)

rm

From. these examples one quickly realises that the general rule for obtaining
S'(y"; Y) from S(x'; X') is to “exponentiate the classical relation” eq. 1.12
and integrate with respect to the eigenvalues of those operators in (x, X) that do
not appear in (y, Y):

[0 d

pxXp (% S (y'; Y’)) = f (IMI* htdx’, ) (I;Z* -t dX’,,) X

OO

x e ({500 %) + @ in — 1/%))) 313
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The asterisk on the product over p means that p runs over those values for which
the operator x, is absent in the set y; and similarly for the product over ». Ifa
particular operator from x (X) reappears in y (Y), then the same numerical eigen-
value of it appears as one of the arguments of S{(x'; X’) and of S'(p’; Y’)(and
clearly this eigenvalue is rnot integrated over).

The interesting point that emerges is that while the equations that determine a
canonical transformation on the one hand, and those that determine a unitary
transformation on the other, have exactly similar forms, namely eq. 1.11 and
egs 3.8, 3.9, the laws relating different descriptions of a given transformation are
rather different in the two cases. In the classical case, eq. 1.12 connecting two
possible generating functions is a local one in phase space. The corresponding

connection in the quantum case is a nonlocal one; examples are provided by
egs 3.11, 3.13.

Concluding remarks

We have formulated and proved a quantum-mechanical analogue of Carathéodory’s
theorem in classical mechanics, and derived quantum analogues to several classical
equations. To conclude, we make several comments that help interpret our results
and further illumine the relationship between classical and quantum mechanics.

Dirac showed that the condition that must be satisfied by the operators g, - . -,
gy Q15 ..., O, in order that any other operator be expressible as a function of
them is that the scalar product { ¢’ | @’ ) never vanish. Clearly this criterion must
be the same as the condition of irreducibility of the g’s and Q’s taken together, for
that too would permit every operator to be expressed as some function of the
qg's and Q’s. Exactly similar results hold for the pairs of complete commuting sets
(x, X) we have been comnsidering. If (x, X) is irreducible, Dirac’s work allows us
to assert that { ¥’ | X’ ) never vanishes; only then does it make sense to define
a function S (x'; X') as in eq. 3.7, and only then do we have a basis for deriving
the quantum operator equations like eqs 3.8, 3.9. If the set (x, X) were not irre-
ducible, there would be some relations among these operators; assuming these
relations could be written in well-ordered form, they would result in (x| X”)
being proportional to a product of delta functions that constrain x’ and X, and
we would be unable to express a delta function as an exponential in the form of
eq. 3.7. One could then follow Dirac’s method and introduce further operators
analogous to Lagrangian multipliers, but the theorem in section 2 assures us that

we can avoid this by switching to some irreducible set (¥, ¥) which is bound to
exist.

Concerning the transformation law given in eq. 3.15 in the quantum-mechanical
case, the following explanatory remarks may be made. We have seen that if (x, X)
is an irreducible set, then on the basis of eqs 3.3-3.6, to each function F(x'; X")
corresponds one well-ordered operator and conversely, quite generally, any
operator can be expressed in well-ordered form. One might then be tempted to
rewrite eq. 3.15 as an equation relating the operators defined by the functions
S(x'; X)and §'(y'; Y’)in their respective mixed bases, ie., convert the C-pumber

eq. 3.15 into an operator statement hopefully similar in structure to eq. 1.12. But
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the problem is.that there is no simple connection between the well-ordered form
of an Operator Fand the well-ordered form of its exponential exp (F). All the same,
there is a simple operator interpretation of eq. 3.15 which is the following. From
its definition in eq. 3.7, we'see that the function exp (iS(x'; X")/k) is just the mixed
x-X representative of the unit operator! Thus while S(x'; X’) corresponds to
a possibly complicated operator (and it-is this operator that appears in eqgs 3.8,
3.9), the function exp (iS(x'; X')/k) corresponds to a very simple operator. It
is because we are using mixed representatives for operators that a trivial operator,
namely, the unit operator, possesses a non-trivial function of the state lables x',
X' as its representative. With this understanding one can claim: the quantum-
mechanical analogue to the classical law eq. 1.12 relating two different generating
functions for a given canonical transformation is the law that relates one mixed
representative of the unit operator to another, the given unitary transformation
determining which mixed representatives are allowed.

It is interesting to explore further the structure of eq. 3.15 with a view to exposing
the significance of the exponentials occurring there. It is well known that a uni-
tary transformation in quantum mechanics, which, for example, belongs to a one-
parameter group of such transformations, can be written as the exponential of an
antihermitian operator. Similarly, the elements of a one-parameter group of canoni-
cal transformations in classical mechanics can be written as the exponentials of
a first order partial differential operator in phase space, with a structure determined
by the classical PB. These two facts are really analogues of one another denoting
similarity of structure, and the exponential functions appearing in the two cases
are also truly analogous. However, the exponential functions exp (1.S/h), exp (1S'[h)
appearing in eq. 3.15 are of a quite different nature, and are symbolic of the rela-
tionship between classical mechanics and quantum mechanics. This is because
there is no motivation that can be given purely within quantum mechanics for
expressing the scalar product ( x’ | X’ ) as the exponential of some function of
x’ and X', and then examining the properties of this function. It is the desire to
have the equations characterising a unitary transformation in quantum mechanics
take up forms exactly like those characterising a canonical transformation in
classical mechanics that prompts the definition of the function S(x'; X’') as in
eq. 3.7, and this structure for ( x' | X’) is automatically reflected in the transforma-
tion law eq. 3.15. One sees the truth of this statement also when one examines
the way in which the Schrédinger equation in non-relativistic quantum mechanics,
treated in the W.K.B. approximatior, yields in leading order the Hamilton-
Jacobi equation of classical dynamics (Messiah 1970).
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